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Metal-organic frameworks (MOFs) exhibit immense structural diversity and hold promise for applications
ranging from gas storage and separation to energy storage and conversion. However, structural flexibility

makes accurate and scalable property prediction difficult. While machine learning potentials (MLPs) offer

a compelling balance between accuracy and efficiency, most existing models are system-specific and
lack transferability across different MOFs. In this work, we introduce FFLAME — Fragment-to-Framework
Learning Approach for MOF Potentials, a fragment-centric strategy for training transferable MLPs. By
decomposing MOFs into their constituent metal clusters and organic linkers, FFLAME enables efficient

reuse of chemical environments and significantly reduces the need for full-framework training data. We
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demonstrate that fragment-informed training improves model generalizability, particularly in data-scarce

regimes, and accelerates convergence during fine-tuning. FFLAME achieves near-target accuracy on
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1 Introduction

Metal-organic frameworks (MOFs) have attracted considerable
attention due to their potential in a wide range of applications,
including carbon capture,” hydrogen and methane storage,*”
gas separation,®” and water vapor adsorption.® This versatility
stems from their modular architecture, high surface areas, and
highly tunable pore structures. MOFs consist of metal nodes
and organic linkers that self-assemble into extended reticular
frameworks, giving rise to an expansive chemical design space.’
However, identifying optimal MOFs for specific applications
remains a major challenge due to the enormous diversity of
possible structures.*®

The performance of MOFs is strongly influenced by their
physical properties and chemical characteristics, including
mechanical and thermal stability,"* ™ thermal conductivity,****
and heat capacity.’®” Among these, Witman et al.'® further
demonstrated that the structural flexibility of MOFs signifi-
cantly influences their performance in gas separation applica-
tions. Classical force-field-based approaches, such as
UFFAMOF,"** DREIDING,”* and BTW-FF,*”> enable high-
throughput screening. However, they often lack the precision
required to capture subtle yet critical phenomena and can
generate unphysical configurations, such as distorted aromatic
rings. Properties that are sensitive to vibrational modes, such as
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unseen MOFs with minimal additional training. These results establish a robust and data-efficient
pathway toward general-purpose MLPs for the simulation of diverse framework materials.

negative thermal expansion coefficients, breathing behavior of
MIL-53, and polar gas adsorption in certain classes of MOFs,*
require more sophisticated interaction models.>* While density
functional theory (DFT) provides high-accuracy predictions of
these properties, its computational cost is prohibitive for large-
scale screening and dynamic simulations.

In this context, machine learning potentials (MLPs) present
a promising middle ground, combining near-DFT accuracy with
substantially reduced computational cost.**** By learning from
quantum data, MLPs facilitate realistic simulations of MOF
structures, energetics, and dynamics at scale.”” Recent studies
have demonstrated the effectiveness of MLPs trained on indi-
vidual, well-characterized MOFs. For instance, Vandenhaute
et al.”® developed an MLP for MIL-53 that successfully predicted
its phase transition pressure. Similarly, Wieser and Zojer*”
computed the thermal conductivity of MOF-5 using a machine-
learned force field in agreement with single-crystal experi-
mental values. However, such models are typically system-
specific and lack transferability. Extending these approaches
to new MOFs often necessitates generating extensive new
training data and retraining from scratch, thereby limiting their
scalability and broader applicability.

To address this, recent efforts have focused on developing
more general and transferable MLPs for MOFs. One straight-
forward strategy involves training models on large and diverse
datasets of MOFs. For example, Yue et al.* trained an MLP on
approximately 3000 Zn-based MOFs. Alternatively, transfer
learning from a pre-trained foundation model can improve data
efficiency. Elena et al,* for instance, fine-tuned the MACE
model using 127 carefully selected MOFs. Although MACE

© 2025 The Author(s). Published by the Royal Society of Chemistry
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offers a reasonable starting point, it was initially trained on the
MPtrj dataset of 150 000 inorganic crystals,**> whose chemical
environments differ substantially from those in MOFs. As
a result, even with fine-tuning, the resulting models exhibit
limited generalization beyond their training domain, and it
remains unclear which classes of MOFs they can reliably
extrapolate to. This underscores a core challenge in the field:
current models often lack both interpretability and systematic
transferability to previously unseen frameworks.

A natural next step is to incorporate organic covalent
bonding environments into the refinement of MACE. A related
strategy, training machine learning potentials for MOFs using
atomic clusters, has been proposed to bypass the high cost of ab
initio calculations of bulk materials,® particularly in chal-
lenging cases involving open metal sites® or defects.** However,
the transferability of such cluster-based models to other mate-
rials sharing similar structural building blocks remains to be
explored. Rather than relying on the careful selection of
chemically inequivalent atoms to define representative clusters
of a bulk structure, we instead leverage the intrinsic modularity
of MOFs by decomposing them directly into their building
blocks. This fragment-centric view forms the basis of the
framework we develop in this work.

In this work, we introduce FFLAME - Fragment-to-
Framework Learning Approach for MOF Potentials, a strategy
for building transferable MLPs for MOFs using a fragment-
centric representation. By decomposing MOFs into metal clus-
ters and organic linkers, we train models that can generalize
across frameworks assembled from these constituent frag-
ments. This strategy enables efficient reuse of learned chemical
environments, substantially reducing the data required to
model new MOF structures with high accuracy. Importantly,
even when a target MOF is excluded from the training set,
FFLAME can achieve near-target accuracy if its building blocks
are included, often requiring only minimal fine-tuning.

2 Outline of the methodology

A detailed description of the computational methods used is
provided in Section 5. Here, we describe the system we study and
provide evidence that the methodology leads to a more efficient
route for developing a machine learning potential.

2.1 Selection of the building blocks

To construct a representative library of MOF building blocks, we
analyzed structures from the CoRE 2019°% and QMOF?*7**
databases by decomposing them into metal nodes and organic
linkers using MOFfragmentor.* Fig. 1a summarizes the most
frequently occurring building blocks in the two datasets.

Among metal nodes, Zn and Cu are the most prevalent
elements, consistently appearing across both databases. The CoRE
2019 dataset, in particular, exhibits a broader diversity in metal
node chemistry, likely due to the experimental origins of its
structures.

For organic ligands, common examples include 1,4-
benzenedicarboxylic acid (1,4-bdc), 4,4'-bipyridine (4,4’-bpy),

© 2025 The Author(s). Published by the Royal Society of Chemistry
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benzene-1,3,5-tricarboxylic acid (btc), etc. The structures corre-
sponding to the ligand abbreviations are provided in the SI.
Notably, some less conventional ligands, such as phosphoric
acid (H3PO,), formic acid, and oxalic acid (ox), also appear
frequently in the CoRE 2019 database. These species are likely
used as structural modulators during the synthesis of MOFs.

Based on the statistical distributions observed, we focus on
three metal species, Zn, Cu, and Al. We further excluded structures
with extra elements other than C, H, and O. In the rest of the
frequently occurring building blocks, we selected five metal nodes
and seven organic ligands, aiming to maximize the diversity of
their possible combinations. These selected building blocks
establish a basic building block library for training a general-
purpose machine learning potential for MOFs, which are illus-
trated in Fig. 1b. A total of 25 MOFs composed of these chosen
building blocks were identified within the two databases and used
for subsequent modeling and analysis in Section 3.

2.2 Proof of concept

To evaluate the impact of incorporating building block configu-
rations during machine learning potential training, we conduct
experiments on three MOFs: CAU-10-OCH3, Zn,O(TCPB),, and
MOF-14. These MOFs feature distinct metal node motifs: Al
chain bridged by O, Zn,0O, and a Cu paddlewheel, respectively.
We fine-tune the MACE-MP-0b2 model (hereafter referred to as
MACE) for each MOF, both with and without the inclusion of
building block configurations. Discussion on the selection of the
MACE foundation model is provided in the SI.

To sample ligand configurations, we begin by extracting them
from MOF structures. Molecular dynamics (MD) simulations and
geometry optimizations are first performed on the MOFs. Details
can be found in Section 5. Ligand configurations are then
extracted from the MOF trajectories using the MOFfragmentor
package.® These extracted ligands lack hydrogen atoms at the
metal coordination sites. Missing hydrogens are added using
functions from MOFChecker,” and their positions are subse-
quently optimized using the XTB force field.** A total of 500
representative ligand configurations are selected via K-means
clustering.*

In contrast to ligands, directly isolating physically realistic
metal node structures from MOFs is more challenging. To
address this, we identify alternative MOFs that contain the same
metal node but differ in their ligands. MD trajectories from
these MOFs are used to sample 50 representative metal node
configurations.

We refer to the MOF of interest as the target MOF. Config-
urations of the target MOF are sampled from the same MD
trajectories used for ligand extraction. Based on these data, we
construct four types of training sets: (1) configurations of the
target MOF alone (referred to as frameworks), (2) frameworks
and metal node configurations, (3) frameworks and ligand
configurations, and (4) frameworks, metal nodes, and ligands.
Excluding the training configurations, the test set was sampled
from the remaining configurations in the MD trajectories. It
consists exclusively of the target MOF configurations. All four
types of training sets share the same test set.

Digital Discovery, 2025, 4, 3466-3477 | 3467
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Fig. 1

(a) Statistical distribution of building blocks in the CoRE 2019 and QMOF datasets. The most common metal nodes and organic ligands

show notable overlap between the two datasets. (b) Molecular structures of the five selected metal nodes and seven selected ligands used to

construct the building block library.

Since all test-set energy errors after fine-tuning are below 1.5
meV per atom, and the inclusion of building blocks has negli-
gible impact on these energy errors, we focus on force errors to
evaluate model performance, as shown in Fig. 2. Models fine-
tuned using only target MOF configurations serve as bench-
marks and are indicated by dashed lines. Different colors
represent varying numbers of target MOF configurations in the
training set.

In all three cases, supplementing the training set with either
ligand or metal node configurations reduces the force errors
compared to the framework-only baseline. Incorporating both
leads to further improvements. However, the gains show di-
minishing returns: as the number of framework configurations
increases, the added benefit from building blocks becomes less
pronounced.

3468 | Digital Discovery, 2025, 4, 3466-3477

Notably, a model fine-tuned with 10 target MOF configura-
tions—augmented with building block data—can match or
even outperform one fine-tuned on 50 framework configura-
tions alone. This suggests that incorporating ligand and metal
node configurations enriches the diversity of local atomic
environments, thereby enhancing the model's ability to gener-
alize from fewer framework samples. This strategy offers an
efficient and accurate approach for developing a fundamental
and transferable MLP for MOFs.

2.3 Ligand sampling method

The approach for obtaining ligand configurations described
above is to extract ligands from MD simulations of MOFs con-
taining the ligands, which are referred to as “constrained”
ligands. An alternative method is to run molecular simulations

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(a) Visualization of edba ligand configurations from three sources: extracted from MOF A, extracted from MOF B, and sampled from MD

simulations of the isolated ligand. The configuration space sampled from the isolated ligand broadly covers that of the constrained configu-
rations. (b) Comparison of model performance on free and constrained ligand test sets. The model fine-tuned with the free ligand training set

performs well on both test sets, demonstrating strong generalization.

on isolated ligands. The ligand configurations obtained by this
method are referred to as “free” ligands. We applied both
strategies to the seven ligands selected in Section 2.1, obtaining
two sets of training and test datasets.

In Fig. 3a, we visualize the configuration spaces sampled by
the two methods for a flexible ligand (edba) among the selected
ligands in the two-dimensional space. The constrained config-
urations are extracted from two MOFs that contain this ligand,
which are labeled as “Constrained A” and “Constrained B”. As
shown in Fig. 3a, the configuration space of free ligands covers
the major part of the constrained ligand spaces, although the
distributions differ.

It is interesting to compare our fine-tuned MACE models
(MACE-finetune-free and MACE-finetune-constrained) with the
original MACE model (MACE-MP-0b2) and MACE-OFF24.
MACE-finetune-free is fine-tuned using the free ligand
training dataset, while MACE-finetune-constrained is fine-
tuned using the constrained ligand training dataset. MACE-

© 2025 The Author(s). Published by the Royal Society of Chemistry

OFF24 is a machine learning force field specifically developed
for organic molecules.

The result of this comparison is shown Fig. 3b. Surprisingly,
MACE-OFF24 exhibited higher errors than MACE-MP-0b2 in
both the energy and force evaluations. Our fine-tuned models
achieved lower energy and force errors than the original MACE
model. Notably, the model fine-tuned with free ligand data
performed well on both free and constrained ligand test sets,
demonstrating strong generalization. In contrast, the model
trained on constrained ligands failed to predict the configura-
tions of the free ligands accurately. Based on these results, we
adopt the free ligand sampling method for constructing ligand
configuration datasets in the remainder of this study.

3 The FFLAME workflow

The aim of FFLAME is to develop a workflow that allows us to
systematically create a machine learning force field sufficiently

Digital Discovery, 2025, 4, 3466-3477 | 3469
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accurate to simulate MOFs out of the box, or in some cases with
minimal fine-tuning.

3.1 Description of the workflow

The workflow of FFLAME is illustrated in Fig. 4. In this
approach, selected metal nodes and ligands are treated as
“words”, collectively forming a “dictionary” that underpins the
construction of a fundamental machine learning potential for
MOFs. By fine-tuning the MACE model on this curated dictio-
nary, we obtain a transferable potential, MACE-FFLAME-N5L7,
where N5L7 refers to the selected five metal nodes and seven
organic ligands. MACE-FFLAME-N5L7 can serve as a foundation
for modeling new MOFs that share components within the
dictionary.

To build this fundamental model, we selected 5 MOFs from
the set of 25 that featured distinct metal nodes, and performed
molecular dynamics simulations to sample their metal node
configurations. These were combined with the previously
described free ligand training dataset and used to fine-tune the
MACE model. To quantify model uncertainty, we repeated the
fine-tuning process using three random seeds, generating an
ensemble of models to estimate prediction deviations. Addi-
tional details on the fine-tuning procedures are provided in
Section 5.

3.2 Performance of FFLAME

As shown in Fig. 5, MACE-FFLAME-N5L7 achieves significantly
lower energy, force, and stress errors across the remaining 20
MOFs compared to the original MACE model, although the 20
MOFs are not in the training set. For a few structures among
them, the accuracy is sufficient to perform simulations.

Next, we performed NVT and NPT simulations using MACE-
FFLAME-N5L7 for the 20 MOFs, and sampled configurations
with high prediction deviations. In total, 489 such configura-
tions were collected. Additionally, six strained configurations

Dictionary

Metal node configurations

e BN

Ligand configurations

New MOFs with building blocks
from the Dictionary

RN
el
Aty $3 /\/

o RN

MACE-MP-0b2

MACE-FFLAME-NSL7
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were generated per MOF, resulting in a final set of 609 config-
urations. We then fine-tuned MACE-FFLAME-N5L7 using these
data to obtain a more accurate and generalizable potential
across all 25 MOFs (including the five MOFs used for sampling
metal node configurations), which we refer to as MACE-
FFLAME-MOF25.

Although energy errors slightly increased for a few MOFs in
this second round of fine-tuning, all remained within accept-
able limits. Importantly, this strategy contrasts with the tradi-
tional approach of training a universal MOF potential by
sampling an equal number of configurations from each struc-
ture. Instead, FFLAME adaptively focuses on MOFs where the
model exhibits high force prediction deviations, allowing for
more targeted data acquisition and more efficient fine-tuning.

3.3 Transferability of FFLAME

To evaluate the transferability of our approach, we selected ten
Al-based MOFs from the work of Li et al.,** whose metal nodes
and organic ligands exhibit structural similarities to those in
our training dataset.

To identify the sources of errors, we visualized per-atom
force errors predicted by MACE-FFLAME-N5L7, as shown in
Fig. 6. The force errors of MACE-FFLAME-N5L7 remain below
0.1 eV A~'in Fig. 5. Thus, in the visualization, atoms with errors
below 0.1 eV A" are depicted in blue, whereas those above this
threshold are shown in red.

In Fig. 6, two types of Al-containing secondary building units
are present. In the first, each Al atom is coordinated to six
oxygen atoms, forming an eight-membered ring. This coordi-
nation environment, even though with a different geometry,
closely resembles those in Al chain (O or OH bridged) nodes
from the training set, resulting in low force errors on the Al
atoms. In contrast, the second type consists of three Al atoms
bridged by a single oxygen atom. Here, two Al atoms are coor-
dinated to five oxygen atoms, while the third is coordinated to

Fine-tune MACE-FFLAME-N5L7

Loss

Fine-tune

0 200 400 600

Fig. 4 Workflow of FFLAME. Selected metal nodes and ligands act as fundamental building blocks (“words”) forming a shared “dictionary” for
MOF representation. By fine-tuning the MACE model on configurations of metal nodes (MOF-derived) and isolated ligands, a general-purpose
model, MACE-FFLAME-N5L7, is obtained. This model serves as a more efficient and accurate starting point for adapting to new MOFs composed

of known building blocks.
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Fig. 5 Performance of MACE-FFLAME-N5L7 and MACE-FFLAME-MOF25 on 20 MOFs. Comparison of energy (top), force (middle), and stress
(bottom) errors for the original MACE model, MACE-FFLAME-N5L7, and MACE-FFLAME-MOF25. Fine-tuning MACE with a small set of metal
node and ligand configurations (N5L7) significantly improves model performance on MOFs not included in the training set, while requiring
substantially fewer data points than traditional framework-based training. A second round of fine-tuning, incorporating prediction deviation-
guided configurations and strained structures, results in MACE-FFLAME-MOF25, a more accurate and general model across all 25 MOFs.

six oxygen atoms. However, the latter exhibits a bond length
distinct from those encountered in the training data, leading to
poor transferability of our model in this case.

The ligand modifications can be categorized into two classes:
introduction of functional groups and scaffold extensions.

We evaluated the effect of functional groups, including
carbonyl, aldehyde, methyl, hydroxyl, and methoxy. In general,
the introduction of functional groups results in high force
errors in the functional group atoms and their neighborhoods.
Depending on the composition and the position of the func-
tional groups, the influence on the rest of the atoms varies
slightly. If the functional group is near the carboxyl group
coordinated to the metal nodes, it can increase the force errors
of the carboxyl atoms by affecting their rotational flexibility. In
addition, aldehyde or hydroxyl groups may further raise errors
in nearby oxygen atoms due to potential hydrogen-bonding
interactions, which are absent in our model's training set.

For ligands involving scaffold extensions, the model typically
transfers well. MACE-FFLAME-N5L7 shows consistently low

© 2025 The Author(s). Published by the Royal Society of Chemistry

force errors for the first four ligands in this class, as shown in
Fig. 6. The last case, however, presents an exception. Although
the model has encountered conjugation between alkynes and
benzene rings in the training data (e.g., through edba), it has
not been exposed to configurations combining alkynes with
carboxyl groups. Consequently, the model exhibits high force
errors on atoms belonging to these motifs.

3.4 Application: thermal behaviors of MOFs

We computed the lattice coefficients of thermal expansion
(CTEs) for three MOFs with available experimental data using
our model (MACE-FFLAME-MOF25) and the model reported by
Elena et al.* The results are summarized in Table 1. Unlike their
study, which employed quasi-harmonic phonon calculations,
we used MD simulations and therefore obtained a different CTE
from the value reported in their work (—6.65 x 107° K™') for
MOF-5. Overall, both models show good agreement with
experiments and reliably capture the CTEs.

Digital Discovery, 2025, 4, 3466-3477 | 3471
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cations and scaffold extensions. Functional group modifications generally increase force errors for the modified atoms and their neighboring
atoms, while the model demonstrates excellent transferability for ligands corresponding to scaffold extensions.

Table 1 The CTE of MOF-5, HKUST-1, and MOF-14 at 300 K, obtained from experiments and simulations. Values are given in units of 1076 K™%

MOF MACE-FFLAME-MOF25 Experiment MACE-MP-MOF0-v2
MOF-5 —13.6 —13.1 (ref. 44) —14.2
HKUST-1 -3.7 —4.1 (ref. 45) 2.9
MOF-14 -9.7 —11 (ref. 45) -13.1

3.5 Application: rotational barrier of phenylene group in
MOF-5

To validate our model's performance for high-energy configu-
rations, we computed the rotational energy barrier of the
phenylene group in MOF-5. A series of structures with varying
rotation angles is generated, and the energy of each structure is
calculated using both MACE-FFLAME-N5L7 and DFT. The

3472 | Digital Discovery, 2025, 4, 3466-3477

barrier predicted by MACE-FFLAME-N5L7 is 0.546 eV, in excel-
lent agreement with the DFT value of 0.538 eV, as shown in Fig.
7. Our result also falls within the range of experimental
measurements (0.490(87) eV)* and the predictions of other
machine learning potentials (0.49-0.56 €V).***” Further
comparison of the predicted and DFT-calculated forces and
stresses for these MOF-5 configurations is provided in the SI.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Energy difference as a function of the rotational angle of the
phenylene group in MOF-5. The rotation angle ¢ is defined by the
dihedral O1-02-C1-C2.

4 Conclusions

In this work, we present a modular strategy for training MLPs
for MOFs based on their constituent building blocks. By
systematically incorporating configurations of individual
building blocks into the training pipeline, we demonstrate that
models require significantly fewer bulk configurations to ach-
ieve accurate predictions. Our fine-tuning experiments on three
representative MOFs confirm that including building block data
improves model accuracy, particularly in data-scarce regimes.

Building on this foundation, we introduce FFLAME, which
leverages the dictionary of building blocks to fine-tune
a generalizable MOF potential. The dictionary guides the
scope of new MOFs to which the model can be generalized.
FFLAME exhibits excellent performance on unseen MOFs and
converges with fewer fine-tuning epochs compared to models
initialized from MACE (see SI for more details). This reduction
in training time is especially valuable when developing general
MLPs across large datasets. By examining per-atom errors on
similar building blocks, we gain insights into the extent to
which the fine-tuned model can be transferred.

Overall, our results highlight the efficiency and effectiveness
of building block-based training strategies, offering a prom-
ising path toward accurate, transferable, and data-efficient
MLPs for complex framework materials.

5 Methods

5.1 Dataset preparation

The initial training set of MOFs was generated from MD
trajectories. Simulations were performed using the MACE-MP-
0b2 calculator in the canonical (NVT) ensemble, employing
a Langevin thermostat*® with a time step of 1 fs over a total
duration of 50 ps. Trajectories were sampled at four tempera-
tures: 100, 300, 500, and 600 K to capture thermally accessible
configurations across a wide range of thermal conditions.
Temperatures above 600 K were avoided to minimize the like-
lihood of generating unphysical structures.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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To improve the model's ability to predict stress, additional
configurations were included by applying uniform volumetric
strain to the unit cells. Six strained structures were generated
per MOF by systematically expanding and compressing the
lattice in all directions, with volume variations ranging from
—10% to +10%.

For free ligands, forces and energies were calculated using
the GFN1-xTB semiempirical potential.** MD simulations were
run at 100, 300, 500, and 600 K. 100 representative configura-
tions were selected from the MD trajectories for geometry
optimization. The MD and optimization trajectories were
combined for sampling to enrich the training dataset.

For the twenty MOFs not included in the initial training set,
NPT and NVT simulations were performed using the fine-tuned
fundamental model, MACE-FFLAME-N5L7, to explore more
realistic structural fluctuations. These simulations were used to
identify configurations where the model predictions showed
large deviations. Such outlier configurations were selected for
DFT single-point calculations and subsequently included in the
second round of model fine-tuning.

All simulations and post-processing were conducted using
the Atomic Simulation Environment (ASE), interfaced with
various calculators as needed.*

5.2 K-Means sampling and visualization

To efficiently sample representative configurations from the
molecular dynamics trajectories, atomic environments were
first encoded using Smooth Overlap of Atomic Positions (SOAP)
descriptors,® computed with the Python package DScribe
v2.1.1.°* We use SOAP to featurize MOFs due to its hand-crafted
characteristics.

To construct training, validation, and test datasets, we
applied K-means clustering®* to the SOAP feature space. The full
configuration space was partitioned into N clusters, where N
corresponds to the number of configurations to be selected. The
configuration closest to each cluster center was selected as
a representative sample. This approach ensures that the final
dataset spans the structural diversity observed in the simulation
trajectories while reducing redundancy.

For visualization, the SOAP features were projected into two
dimensions using the ¢distributed Stochastic Neighbor
Embedding (¢-SNE) algorithm.* The implementation from the
scikit-learn Python library® was used, with the perplexity set to
30 and the learning rate set to auto.

5.3 DFT calculations

The quickstep code of the CP2K** software was used to perform
DFT calculations for labeling configurations. These calculations
were performed using Perdew-Burke-Ernzerhof (PBE) func-
tional within the generalized gradient approximation (GGA),*®
with Grimme's D3 corrections for van der Waals (vdW) inter-
actions.’® If the lattice parameter was smaller than 10 A,
a supercell was used. We employed the orbital transformation
method with a plane-wave cutoff of 600 Ry, a relative cutoff of 50
Ry, and a self-consistent field (SCF) convergence threshold of 1
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x 107° The calculations used I' point sampling. The CP2K
input script can be found on Zenodo.*”

A good initial guess of the wavefunction can significantly
reduce the number of iterations for SCF convergence. This
strategy has already been widely used to accelerate ab initio
molecular dynamics or geometry optimization by DFT calcula-
tion. To extend this idea to DFT labeling, we sorted configura-
tions by structural similarity and performed DFT calculations
sequentially. Except for the first configuration, the remaining
configurations use the converged wavefunction of the previous
one as the initial guess. To determine an optimal ordering in
which adjacent configurations are globally maximally similar,
each configuration was treated as a node in a fully connected
graph. Similarity between configurations was defined by the
Euclidean distance between their SOAP descriptors, which
served as the edge weights between nodes. A minimum span-
ning tree (MST) was constructed to connect all nodes with the
lowest possible total edge weight. A depth-first traversal of the
MST was then used to generate the final sequence of configu-
rations. Compared to performing the DFT single-point calcu-
lations for each configuration from scratch, this ordering
strategy reduced the total calculation time by 48% for 100
IRMOF-8 configurations and by 22% for 100 isolated tcpb linker
configurations.

5.4 Fine-tuning MACE

Fine-tuning was performed on the pre-trained MACE-MP-0b2
(medium) model®® using the MACE codebase (version
0.3.13).*"*? Details of the model selection can be found in the SI.
The model architecture was retained from the original; it uses
128 channels with a maximum message-passing angular
momentum quantum number of max_L = 1. Local atomic
environments were defined using a cutoff radius of 5 A, and
interatomic distances were encoded using eight radial basis
functions.

We applied the multihead replay fine-tuning mechanism to
avoid catastrophic forgetting. A two-stage fine-tuning strategy
was adopted to balance the learning of energy, force, and stress
contributions. In the first stage, the loss weights were set to 1:
10: 100 for energy, force, and stress, respectively. In the second
stage, the weights were adjusted to 10:1: 1 to focus on accurate
energy prediction. Optimization was performed with a batch
size of 8 using an initial learning rate of 1 x 10~ with a weight
decay of 5 x 1077 In the second stage, the learning rate was
reduced to 1 x 10~ * Early stopping was employed with
a patience parameter of 10 epochs to prevent overfitting.

5.5 Coefficient of thermal expansion calculation

To calculate the CTE for the selected MOFs, we performed MD
simulations in the NPT ensemble over the temperature range of
100 K to 500 K, in increments of 100 K, using LAMMPS.>
Interatomic energies, forces, and stresses were evaluated with
our fine-tuned model, MACE-FFLAME-MOF25 and MACE-MP-
MOFO0-v2 from the work of Elena et al** Each simulation was
run for a total of 1 x 10° steps with a timestep of 1 fs. For each
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temperature, the average lattice parameters were computed
after an initial equilibration period of approximately 40 ps.
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