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ia as a simple shape descriptor for
diffusion-based shape-constrained molecular
generation
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The article introduces MLConformerGenerator, a machine-learning framework for shape-constrained

molecular generation that combines an Equivariant Diffusion Model (EDM), guided by a compact shape

descriptor based on the principal components of the moment of inertia tensor, and a Graph

Convolutional Network (GCN) model for bond prediction. The compact yet informative descriptor

provides concise representation of molecular shape, enabling scalable learning from large datasets and

synthetic conformers generated from 2D molecular inputs. The use of a GCN for bond prediction is

evaluated in comparison to deterministic methods. The suggested approach provides an ability to fine-

tune the model to generate datasets with chemical-feature distributions closely matching those of target

datasets of real conformers. The proposed model supports generation conditioned on both explicit

conformers and arbitrary shapes, offering flexibility for applications such as dataset augmentation and

structure-based molecule design. Trained on over 1.6 million molecules, the model demonstrates the

ability to generate chemically valid, structurally diverse molecules that conform to target shape

constraints. It achieves an average shape similarity of 0.53 to a reference conformer, with peak similarity

exceeding 0.9 – a performance comparable to that of analogous models relying on more complex

descriptors. The results show that integrating physically grounded descriptors with modern generative

architectures provides a robust and effective strategy for shape-constrained molecular design.
1 Introduction

Machine-learning-based generative methods offer powerful
tools for the automatic creation of a wide range of objects.1

Within cheminformatics, these approaches are especially valu-
able for tasks of conditional molecular generation, as they allow
balancing the many interdependent factors which need to be
considered for successful construction of a molecule.
Numerous strategies have been reported,2–7 and can broadly be
grouped into string-based methods – relying on textual repre-
sentations such as SMILES2,3 and graph-based methods, which
aim at explicit construction of molecular graphs.4–7 While the
relative simplication of the molecule in a string-based repre-
sentation is advantageous in many applications, where the
generation of chemical structure alone is the main point of
interest, for some tasks the expressionability of these formats is
not sufficient.

One of such tasks is shape-constrained generation, which
can be formulated as generation of a molecular conformer
capable of tting into or replicating a shape of interest. Beyond
al Sciences, Kingston University, Penrhyn

mail: denis.sapegin@quantori.com

ge, MA 02139, USA

the Royal Society of Chemistry
generating a valid chemical structure, this task requires
ensuring that the molecule can adopt a geometry consistent
with the given constraint. Such challenges are abundant in
many areas of chemistry, including design of host–guest
molecular systems,8 structural based drug-design,9 organome-
tallic chemistry, especially catalysis,10,11 and are typically
addressed manually through expert-based design approaches.
Because molecular conformer design is inherently complex and
demands substantial expertise, the application of machine-
learning-based generative methods seems extremely attractive
for its facilitation.

String-based molecular representations usually do not
adequately represent the spatial geometry of the molecule to an
extent necessary to be applied to conformer design. In contrast,
graph-based representations provide a more information-rich
alternative by directly encoding the topology, relationships
and features of atoms. Models based on graph neural networks
have demonstrated remarkable success in generative tasks. An
illustrative example is the equivariant diffusion model (EDM)
introduced by Hoogeboom et al.,5 which relies on graph
networks capable of handling both discrete (categorical) and
continuous features to perform conditional generation of
sensible three-dimensional molecular geometries.
Digital Discovery, 2025, 4, 2927–2941 | 2927
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A key consideration in application of EDMs to shape-
constrained generation is the choice of the shape descriptor.
Many existing approaches rely on autoencoders to capture
shape from point clouds representing molecular surfaces, as
demonstrated by Chen et al.6 and Adams et al.7 Although
autoencoders can effectively produce latent embeddings that
encode a molecule's geometry, this strategy requires additional
training of the encoder. In contrast, physical property-based
shape descriptors require no extra training step, making them
more straightforward to implement. A particularly simple yet
powerful descriptor is the set of principal components of the
moment of inertia (MOI) tensor, which is inherently O(3)-
invariant in a principal axis frame with the origin at the
center of mass. As shown by Cheng and Lo in (KREED)12 and
(Stiefel Flow Matching)13 for the case of molecular structure
elucidation from rotational spectroscopy data,14 three oating-
point values of the principal moments of inertia can robustly
capture a molecule's overall geometry. This general, physically
grounded descriptor can be applied for generation either
guided by a specic reference molecule or an entirely arbitrary
shape constraint. The MOI tensor can be dened for any object
with a specic shape and density. It inherently acts as
a dimensionality reduction operator for shapes by efficiently
representing the mass distribution in 3D space using a 3 × 3
symmetric tensor. Through diagonalization, the tensor yields
three principal moments of inertia, which serve as compact and
rotation-invariant descriptors of the object's geometry. Such
representation not only captures essential geometric charac-
teristics but also enables generalization of model predictions to
arbitrary shapes, even when the model is initially trained on
molecular structures. As long as the principal moments of
inertia of the arbitrary shape are similar to those in the training
dataset, the model can effectively generalize across diverse
geometries.

As noted by Vignac et al.,15 most 3D molecule generators
focus on predicting atom positions and types only, while
depending on semi-empirical methods16 for restoration of the
bonds within the generated molecules.5–7,17 Although these
techniques can achieve reasonable accuracy, their exibility is
oen limited. Furthermore semi-empirical algorithmic tools for
bond evaluation do not consider the target distribution of the
chemical features, therefore may negatively impact the quality
of the generated molecular sets.

This study aims to demonstrate how a simple physically
grounded descriptor can facilitate efficient, geometry-aware
molecular design within an EDM-based framework. We intro-
duce an equivariant diffusion-based model augmented with
a graph convolution network (GCN) module for atom adjacency
restoration – MLConformerGenerator. The model utilises the
principal components of the moment of inertia as a simple
shape descriptor for conditional molecule generation. To
address challenges inicted by semi-empirical algorithmic
prediction of molecular graph connectivity, we consider Struc-
ture Seer, which infers atom adjacency from general atom
descriptors,18 as a potential alternative for adjacency restora-
tion. Given 3D coordinates and initial connectivity, a modied
Structure Seer model can reconstruct bonds in a trainable
2928 | Digital Discovery, 2025, 4, 2927–2941
manner. The suggested approach enables shape-constrained
generation from either a reference molecule or an arbitrary
shape.

Our central claim is that by training the model to match the
chosen shape descriptor, it effectively learns both reference-
specic and arbitrary shapes when trained on automatically
generated 3D conformers. This helps to signicantly augment
the training dataset and achieve promising results even for
generation of relatively large molecules, containing up to 39
heavy atoms.

2 Methods
2.1 MLConformerGenerator architecture

The MLConformerGenerator framework consists of three
primary components: an EDM block for the initial generation of
atom coordinates and types, a Graph Convolutional Network
(GCN) block for bond classication and a deterministic struc-
ture standardisation pipeline. The EDM block generates atoms
based on the requested number of heavy atoms in the molecule,
while the GCN block utilizes interatomic pairwise distance
information to predict bond types.

The EDM block follows the conditional generation frame-
work described by Hoogeboom et al.,5 with several modica-
tions. Atomic charges are not considered during the generation
process. The denoising model is structured as an Equivariant
Graph Neural Network composed of nine equivariant blocks,
each containing two Graph Convolutional Layers (GCL) with 420
hidden features and one equivariant update layer with 420
hidden features. The model operates on eight atom types:
carbon (C), nitrogen (N), oxygen (O), uorine (F), phosphorus
(P), sulfur (S), chlorine (Cl), and bromine (Br), while hydrogen
atoms are not explicitly considered during generation. To
condition the generation, the model uses the principal
components of the MOI tensor as a context, represented with
a oating-point vector of size three. The context was normalised
using mean-MAD (Mean absolute Deviation) normalisation
based on the distribution of context values within the training
dataset. The normalisation was aimed at reducing the impact of
scale differences and enhancing model stability during
training.

For bond prediction, the GCN block (termed AdjMatSeer) has
been redesigned from the original model described in ref. 18 to
better address the adjacency prediction task within the
proposed pipeline. The GCN encoder generates adjacency
matrices using embedded atom types with embedding dimen-
sion of 64 and pairwise interatomic distances obtained from the
EDM output. An initial distance matrix is utilized for prelimi-
nary embedding generation, while a Boolean adjacency matrix,
derived from the distance matrix by applying a threshold, is
used for nal bond classication. Bond types are classied into
ve categories: no bond (0), single bond (1), double bond (2),
triple bond (3), and aromatic bonds (4). To simplify the archi-
tecture while maintaining predictive performance, the Trans-
former decoder layer from the original model was omitted. The
revised architecture consists of three layers dedicated to
embedding generation from the distance matrix, followed by
© 2025 The Author(s). Published by the Royal Society of Chemistry
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four additional layers that operate on the Boolean adjacency
matrix for nal bond classication based on the embeddings.
Each layer contains 2048 hidden features. The models were
implemented using the PyTorch library.19
2.2 Datasets (preparation)

To construct a suitable dataset for training, the ChEMBL data-
base20 was selected as the primary source of molecular struc-
tures. The ChEMBL database was considered well-suited for this
purpose because it contains manually curated chemical
compounds represented in a unied and standardised manner.

For this study, the small-molecule subset of ChEMBL was
examined, focusing on molecules containing 15 to 39 heavy
atoms. Key features of the training dataset are presented in
Table 1. The heavy atom count range was chosen because it
encompasses 85.9% of the small-molecule subset, making it
representative for modeling. The distribution of molecules
within this atom count range (Table 1) was suitable and repre-
sentative of the broader chemical space, as molecule frequen-
cies across different heavy atom counts are comparable within
the selected subset. The balanced distribution ensures that the
dataset adequately captures the diversity of chemical structures
necessary for model training.

For training the EDM block, it is crucial to examine the
distribution of the principal components of the MOI tensor
values, within the dataset. Calculating their mean and mean
absolute deviation is essential for normalisation. Since the
structures in the ChEMBL database are generally represented as
2D molecular graphs without explicit information on their 3D
conformations, we opted to generate random conformers using
the Distance Geometry Embedding Algorithm21 implemented in
the RDKit library.22

To assess how random conformer generation affects the
mean and mean absolute deviation of the context values within
Table 1 Key parameters of the ChEMBL subset used for training

Total number of molecules 1 641 644
Permitted types of heavy atoms C, N, O, F, P
Principal components of MOI tensor Ixx
Mean value 104.79 � 0.0
Mean absolute deviation within dataset 52.03 � 0.01
Distribution of molecules by number of heavy atoms

© 2025 The Author(s). Published by the Royal Society of Chemistry
the dataset, they were calculated independently three times for
the entire dataset. The results are provided in Table 2.

Our experiments demonstrated that the mean and MAD
values of the principal MOI tensor components remain rela-
tively stable across different runs when conformers are gener-
ated algorithmically (Table 2). This consistency indicates that:

� The synthetic dataset adequately represents the general
molecular shape, ensuring that the generated data is repre-
sentative of the shape of the structures.

� The algorithmic conformer generation approach may be
considered viable and reliable for the training process.

Since the EDM block learns to produce molecular structures
that match the principal MOI components, we argue that the
geometry optimization of molecules during training is not
strictly necessary. Even if random conformers are used, a subset
of these generated structures will inevitably be close to the
optimized or experimentally determined geometries of the
target compounds. This justies the use of randomly generated
conformers for training without compromising the model's
ability to generalize to real molecular structures. When
considering this approach further, it should be noted that the
rationale for relying on generated conformers without applica-
tion of any energy-based ltering is twofold. First, we aim to
expose the models to a broader and more diverse conforma-
tional space. In many real-world scenarios, a molecule's actual
conformation can vary signicantly depending on its environ-
ment and may not correspond to the minimum-energy geom-
etry under specic conditions. Less energetically favorable
conformers may still be valid in particular contexts—such as
binding to a protein, interacting with other molecules, or
existing within a crystal lattice. By training on a wide range of
conformers, the model learns to associate the global shape
descriptor (MOI) with plausible molecular structures, based on
realistic bond lengths and angles, rather than being biased
toward a narrow set of energy-minimized geometries that are
only valid under certain assumptions. This encourages the EDM
, S, Cl, Br
Iyy Izz

1 472.96 � 0.07 537.33 � 0.07
219.79 � 0.08 232.97 � 0.07

Digital Discovery, 2025, 4, 2927–2941 | 2929
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Table 2 Mean and MAD values of principal MOI tensor components (random generation of conformers using Distance Geometry Embedding
Algorithm21)

Run number Ixx Iyy Izz

1 Mean 104.79 473.03 537.40
Mean absolute deviation within the dataset 52.03 219.88 233.04

2 Mean 104.81 472.96 537.32
Mean absolute deviation within the dataset 52.04 219.76 232.97

3 Mean 104.79 472.89 537.26
Mean absolute deviation within the dataset 52.02 219.74 232.89

Values, averaged over 3 runs Mean 104.79 � 0.01 472.96 � 0.07 537.33 � 0.07
Mean absolute deviation within the dataset 52.03 � 0.01 219.79 � 0.08 232.97 � 0.07
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block, which is responsible for generating initial atom posi-
tions, to produce a wide variety of structurally sound molecules.
At the same time, the GCN block, which predicts the molecular
adjacency matrix, benets from exposure to a broader distri-
bution of correlations between interatomic distances and bond
patterns. Second, this approach allows for independent control
over the structural validity of conformers through a determin-
istic standardization step. To address concerns about the
realism of randomly generated geometries, we perform geom-
etry renement using molecular dynamics aer the generation
(see Section 2.5). The overall architecture is intentionally
modular: instead of embedding a rigid denition of “optimal”
geometry into the training process, we allow users to pair the
EDM block with their own conformer optimization and ltering
pipeline. This design enhances adaptability and makes the
model extensible across a range of cheminformatics applica-
tions and workows.

For validation of the model's ability to generate structures
similar to real molecule's geometry the Cambridge Crystallo-
graphic Data Centre (CCDC) virtual screening set (Table 3)23 was
used as a source of reference molecules for generation. A
thousand real molecules, which satised constraints on heavy
atom account and elemental composition with annotated
Table 3 Key parameters of CCDC virtual screening subset used for
model evaluation

Total number of molecules 1000
Permitted types of heavy atoms C, N, O, F, P, S, Cl, Br
Principal components of MOI tensor Ixx Iyy Izz
Mean value 117.70 443.07 517.63
Mean absolute deviation within dataset 49.15 201.20 211.42
Distribution of molecules by number of heavy atoms

2930 | Digital Discovery, 2025, 4, 2927–2941
geometries were selected to test the generation performance of
the model. The mean and MAD values as well as distribution of
the examples by atom count (Table 3) correlates well with the
training dataset.
2.3 Training of the EDM block

The training procedure for the EDM block was adapted from ref.
5. The initial dataset, consisting of SMILES strings, was pro-
cessed using RDKit to generate random conformers based on
the Distance Geometry Embedding Algorithm.21 All conformers
were stripped of hydrogen atoms, retaining only heavy atoms. It
is important to note that during training, a new random
conformer was generated for each sample every time it was
included in a batch, ensuring that the model was exposed to
diverse conformations throughout the training process.

The generated conformer coordinates were then used to
center each molecule at the apparent center of mass, with the
mass of all atoms assumed to be equal to one. Aer centering,
a MOI tensor was calculated using the same assumption of
equal mass for all atoms. To orient the molecule into a principal
frame, a rotation matrix was computed to eliminate all non-
diagonal components of the MOI tensor. The three non-zero
principal components were concatenated into a oating-point
vector of size three and used as a context.

Calculated context values, one-hot encoded atom types, and
coordinates, rotated into a principal frame, were then subjected
to a forward diffusion process, introducing noise according to
a polynomial noise schedule of the form 1 − x2, with a noise
precision of 10−5 and 1000 noising steps. Noised representa-
tions were passed to the model, with the optimization objective
of

Lt ¼
�
1

2
ðj3� b3j2� (1)

where 3 is a noise vector sampled from a standard multivariate
normal distribution with mean 0 and identity covariance
matrix, d̂ – neural net prediction.

The model was initially trained on a random train/
validation/test split of 60/20/20 for 1000 epochs, ensuring
stable and smooth convergence. This was followed by training
for an additional 500 epochs on the entire dataset to maximize
performance. Training was performed on a single virtual
machine (VM) equipped with 8 Nvidia H200 GPUs and 60 CPUs,
with a batch-size of 2048 using the AdamW optimizer with
© 2025 The Author(s). Published by the Royal Society of Chemistry
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a weight decay of 10–12 and a learning rate of 10–4, along with
the AMSGrad variant.24 Gradient clipping was applied to limit
gradients to a maximum of 150% plus 2 standard deviations
from the mean of recent gradient history. The average training
time per epoch was 730 seconds, and the complete training
process took approximately 13 days.

2.4 Training of the AdjMatSeer block

Random conformers for the case of AdjMatSeer training were
prepared similarly to the EDM block training case. To ensure
the predictive performance of the model on the noised input,
the coordinates of each conformer were intentionally disturbed
by displacing each atom from its original position within a ball
of radius R. The radius R for each atom was independently
selected from the range [0, Rmax], where Rmax was chosen
independently for each conformer from the range [0, 0.4]. The
introduced disturbance allowed for controlled variability while
preserving the overall molecular structure.

The model was trained to predict the adjacency matrix using
three types of input data derived from the disturbed random
conformers: the complete pairwise distance matrix representing
atom-to-atom distances, the Boolean adjacency matrix indicating
bond connectivity between atoms, and the atom types encoded to
guide adjacency predictions. The loss function, as described in
ref. 18, was dened as a cross-entropy loss between the predicted
and expected bond types, effectively formulating the adjacency
matrix prediction as a multi-class classication problem.

The model was initially trained on a random 60/20/20 train/
validation/test split of the ChEMBL dataset for 200 epochs using
AdamW optimiser with a learning rate of 10−4 and a batch size
of 2048. This was followed by an additional 140 epochs at
a reduced learning rate of 10−5. Finally, the model underwent
ne-tuning for 20 additional epochs on the entire dataset at
a learning rate of 10−5, achieving a 98.57% correct bond rate on
the test set. The average epoch time was approximately 330
seconds, and the entire training process took around 2 days
when conducted on a system equipped with 60 CPUs and one
NVIDIA H100 GPU.

2.5 Structure standardisation pipeline

To ensure the quality and validity of the molecular structures
generated by the model, a deterministic standardisation pipe-
line was introduced as an integral block of the module. The
pipeline steps were implemented using RDKit22 and followed
a well-dened sequence to maximize the number of valid and
chemically sensible molecules accessible to the user. The
standardisation process consists of the following steps,
executed in the given order:

(1) Selection of the largest fragment: if the generated mole-
cule is not fully connected, only the largest fragment is retained.
This step increases the likelihood of obtaining a valid molecule
and ensures the usability of the generated structures.

(2) Kekulization: the molecule's aromatic systems are
explicitly represented in their Kekulé form. This process
improves chemical accuracy and ensures compatibility with
downstream applications.
© 2025 The Author(s). Published by the Royal Society of Chemistry
(3) Sanitization: the molecule is checked for chemical
correctness and structural integrity. This step involves stand-
ardising atom valences, checking for aromaticity, and ensuring
that the molecular graph is valid.

(4) Position-constrained MMFF94 geometry optimization: to
improve the quality of the resulting geometry while preserving
the overall molecular conformation suggested by the model,
a position-constrained geometry optimization was performed
using the MMFF94 force eld.26 This step renes atomic posi-
tions while maintaining the original geometry as much as
possible.

By following these standardised procedures, the pipeline
ensures that the generated molecular structures are chemically
sound and geometrically consistent, signicantly enhancing the
reliability and interpretability of the model outputs. Since stand-
ardised molecules contain correct atom valence information, the
positions and connectivity of hydrogen atoms can be straight-
forwardly calculated using conventional methods if required.
2.6 Shape similarity

2.6.1 Similarity to a reference molecule. The shape simi-
larity between two molecular structures was dened as a Tani-
moto-like metric based on their molecular volume overlap:

Smol A=mol B ¼ VAXVB

VA þ VB � VAXVB

(2)

Here, Vi represents the molecular volume of structure i, and VA
X VB denotes the volume intersection between molecules mol A
and mol B.

To calculate the molecular volumes and their intersections,
the Gaussian method proposed by Grant et al.25 was applied.
This approach provides an accurate estimation of molecular
volume through Gaussian-based integration. For the chosen
metric to effectively describe overall molecular shape similarity,
it is essential to align the molecules in a way that maximizes
their volume intersection. To achieve satisfactory alignment
while maintaining reasonable computational efficiency, the
structures were aligned based on shape-multipole approach.25

First, the center of coordinates was moved to nullify the rst
moment of the volume density function. Subsequently, the
second moment – a symmetric 3 × 3 tensor referred to as the
shape quadrupole –was employed to rotate themolecule into its
“shape – principal” frame. This was accomplished by calcu-
lating the rotation matrix that diagonalizes the shape quadru-
pole. Once positioned in the principal frame, the molecule is
assumed to be aligned with the axes according to its molecular
volume distribution, allowing for the comparison of molecular
shapes using the dened similarity metric.

2.6.2 Similarity to a reference arbitrary shape. A Tanimoto-
type score was dened to assess the similarity between an
arbitrary structure represented by an STL le, which models
a binding protein pocket, and a set of molecular conformers.
Both the STLmesh and the molecular structures were aligned to
their principal axes using Principal Component Analysis (PCA).
This alignment ensures that the comparison is orientation-
independent, allowing for a fair assessment of similarity.
Digital Discovery, 2025, 4, 2927–2941 | 2931
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Once aligned, the molecules are voxelized, meaning they are
represented as a grid of points in 3D space, with each point
indicating the presence of a part of the molecule within
a certain radius. The voxel size is determined by the grid_-
spacing parameter, set to 0.5 Angstroms, which means each
voxel represents a cube with sides of 0.5 Angstroms. This size
strikes a balance between capturing sufficient detail for accu-
rate Tanimoto score calculation and maintaining computa-
tional efficiency.

The van der Waals (VdW) radii of the atoms are used to
determine the extent of each atom's inuence in the voxel grid.
The arbitrary shape Tanimoto coefficient is then calculated by
comparing the voxelized representations of the STL mesh and
the molecules. It is dened as the ratio of the intersection of the
voxel grids (common occupied voxels) to the union of the voxel
grids (total occupied voxels).

Sshape=mol ¼ VGshapeXVGmol

VGshapeXVGmol

(3)

Here, VGshape and VGmol represent the voxel grids of the arbi-
trary shape and a molecule correspondingly.

Different scale factors were applied to the VdW radii to
observe how the dened Tanimoto score changes. As the scale
factor increases, the effective size of the atoms increases, which
initially leads to a higher overlap and thus a higher Tanimoto
score. However, beyond a certain point, further increasing the
scale factor causes excessive overlap, reducing the score. In
practice, a scale factor of 1.7–1.8 was discovered to yield the
maximum Tanimoto score for most molecules, indicating an
optimal balance between overlap and separation. This behavior
reects the sensitivity of the Tanimoto score to the spatial
conguration and size of the molecules relative to the binding
pocket.

2.7 Generation based on a reference molecule

The generative performance of the model, in the context of
generating conformers similar to a given reference conformer,
was evaluated by requesting 100 samples for each molecule
from a subset of the CCDC virtual screening set, consisting of
one thousand real conformers. The generation process involved
calculating the context for a reference conformer and randomly
selecting the number of heavy atoms for the molecule to be
generated. The chosen number of heavy atoms for each sample
was within the range

[Nref + variance, Nref − variance],

where Nref is the number of heavy atoms in the reference
molecule and variance is an integer parameter. The generative
performance of the model was assessed at two denoising step
settings: 100 and 1000 steps. To compare the performance of
the proposed GCN-based bond prediction approach with
a deterministic bond-prediction method, OpenBabel16 was
used as a benchmark. To comprehensively evaluate the
generative performance in terms of both efficiency and gener-
ation quality, the following set of metrics was considered
appropriate:
2932 | Digital Discovery, 2025, 4, 2927–2941
2.7.1 Generation speed. Measured as the number of valid
molecules generated per second on a NVidia H100 GPU. This
metric quanties the model's efficiency in producing chemi-
cally sound structures.

Generation speed ¼ Nvalid molecules

tgeneration
(4)

where Nvalid molecules is the total number of valid molecules
generated by the model; tgeneration – total generation time, sec.

2.7.2 Total number of valid molecules. The ratio between
the number of valid molecules generated and the total number
of requested molecules. This metric reects the reliability of the
generation process.

FRvalid ¼ Nvalid

Nrequested

(5)

where Nvalid is the total number of valid molecules generated by
the model and Nrequested is the total number of molecules
requested to be generated.

2.7.3 Average shape Tanimoto similarity. Calculated as
described in Section 2.5 shape similarity for each generated
molecule and a corresponding reference. The values were
averaged across all generated molecules and separately for
those with a specic number of heavy atoms.

Average similarityshape ¼

PfNg

fi¼1g
Si=ref iðshapeÞ

N
(6)

where Si/ref i(shape) is shape similarity of the i-th molecule to
a corresponding reference and N – number of molecules in the
set of interest.

2.7.4 Maximal shape Tanimoto similarity. The highest
shape similarity observed for molecules with a given number of
heavy atoms.

Maximal similarityshape ¼ max
0\i\N

�
Si=ref iðshapeÞ

�
(7)

where Si/ref i (shape) is shape similarity of the i-th molecule to
a corresponding reference.

2.7.5 Average chemical Tanimoto similarity. The chemical
similarity was dened as the Tanimoto coefficient between bit-
Morgan ngerprints (2048 bits, 2 hops) of a generated molecule
and a corresponding reference conformer. The values were
averaged over all generated molecules and separately within
a subset of molecules with a specied number of heavy atoms.
This metric assesses how chemically similar the generated
molecules are to the references.

Average similaritychemical ¼

PfNg

fi¼1g
Si=ref iðchemicalÞ

N
(8)

where Si/ref i (chemical) is chemical similarity of the i-th molecule
to a corresponding reference and N – number of molecules in
the set of interest.

2.7.6 Number of chemically unique molecules. Chemical
uniqueness of the molecules was assessed by comparing InChI
© 2025 The Author(s). Published by the Royal Society of Chemistry
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strings generated using RDKit. The assessment of chemical
uniqueness was performed in two contexts:

Compared to training dataset – the count of unique mole-
cules generated that are not present in the training data. This
metric evaluates the model's capacity to generate novel
structures.

Nunique = j{Gen}\{Train}j (9)

where {Gen} is a set of generated molecules, {Train} is a set of
molecules used for training the model.

Within the generated set – the number of unique molecules
within the entire set of generated samples, reecting diversity
within the generated outputs.

Nunique = j{x ˛ Gen}j (10)

FRunique ¼ Nunique

Ngenerated

(11)

where Nunique is the number of unique molecules and Ngenerated

is the total number of generated molecules.
2.7.7 Frechet ngerprint distance (FFD). The Fréchet

Fingerprint Distance (FFD) employs the Fréchet distance
formula applied to molecular ngerprint distributions,
combining both mean and covariance information. The calcu-
lation begins by computing Morgan ngerprints for each
molecule using RDKit's Morgan ngerprint generator with
radius 2 and 2048 bits. For two sets of molecular ngerprints,
the FFD is calculated as

FFD ¼ km1 � m2k2 þ TrðS1Þ þ TrðS2Þ � 2 Tr
� ffiffiffiffiffiffiffiffiffiffiffi

S1S2

p �
(12)

where m1 and m2 represent the mean ngerprint vectors of the
two sets, S1 and S2 are their respective covariance matrices, and
Tr() denotes the matrix trace operation.

The covariance matrices are regularized with a small epsilon
(10−6) to ensure numerical stability and positive deniteness.
The square root of the matrix product S1S2 is computed using
the matrix square root function, with additional numerical
safeguards to handle potential complex components. This
formulation captures both the difference in central tendency
Fig. 1 The image of the pocket selected for generation based on an arbitr
surface of the selected pocket.

© 2025 The Author(s). Published by the Royal Society of Chemistry
(mean term) and the structural diversity (covariance term)
between the two molecular ngerprint distributions, providing
a comprehensive measure of molecular set similarity that
accounts for both positional and distributional differences in
the ngerprint space. FFD was computed to compare generated
molecules against three established compound databases:
ChEMBL,20 PubChem,27 and ZINC 250k dataset28 as described in
ref. 29. A random set of 100 000 molecules was selected from
each database for FFD calculation. This metric quanties how
similar the distribution of chemical features of generated
molecules is to the distributions found in known molecule
databases.
2.8 Generation based on an arbitrary shape

The generation of molecules constrained with an arbitrary
shape was studied on the example of mimicking a shape of
a protein pocket. As a model system, the CLK1 protein ref. 30
was chosen, specically its complex with N2-(3-(morpholin-1-yl)
propyl)pyrido[3,4-g]quinazoline 2,10-diamine (6q8k).31 The
binding pocket was dened based on the bound ligand using
the PyVol32 extension of the PyMol viewer, the image of the
selected pocket is provided in Fig. 1. The pocket shape was
extracted as an.stl le, aligned to the principal frame, and the
principal components of the moment of inertia (MOI) tensor
were calculated and supplied to the model as input for gener-
ation. The number of heavy atoms was set to be randomly
chosen for the range between 37 and 39.

In addition to evaluating the similarity of the generated
molecules to the target pocket shape, molecular docking of the
generated molecules was performed using the target CLK1
binding pocket. Although docking scores obtained from
unspecied protocols are not highly predictive of experimental
binding affinities, they were used as an additional sanity check
to assess the quality of the generated compounds.
2.9 Docking

The generated ligands were docked to CLK1 (ref. 30) using
the united-atom algorithm of AutoDock Vina (version 1.2.7)33

with the exhaustiveness of 32 and energy range of 6. Ligands
ary shape. (a) The view of the binding site with a reference ligand, (b) the

Digital Discovery, 2025, 4, 2927–2941 | 2933
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were treated as exible and the receptor as rigid. The grid box
was positioned around the coordinate centre of the active site
and encompassed all the active site residues. The binding
energy was converted to affinity using the temperature of
310.15 K.

The 6q8k.pdb le was prepared in AutoDockTools (part of
MGLTools version 1.5.7) and Swiss-PdbViewer (version 4.1.1).
All ligands, the expression tag and water molecules were
removed. Missing residues and missing atoms were repaired.
Histidine hydrogens were assigned to the s(3) nitrogen, missing
hydrogens were added to the protein. Kollman charges were
calculated and distributed across the protein. The protein
coordinates were rotated to minimise the gridbox size, and the
structure was converted to .pdbqt format.
Table 4 General generative performance of MLConformerGenerator, e

Parameter
100 denoising
steps

1000 den
steps

Total generation time, sec 11 476 96 009

Averaged time for generation
(per single reference context), s

11.48 96.01

Total valid molecules (% from requested) 47.94% 48.60%
Generation speed (valid molecules per s) 4.18 0.51
Chemically unique molecules
(not found in training dataset)

99.84% 99.81%

Chemically unique molecules
(within the generated set)

99.94% 99.94%

Fig. 2 Examples of molecules generated by MLConformerGenerator alo
similarity scores. In the 3D visualizations, reference molecules are sh
comparison. Molecules were generated using 100 denoising steps.

2934 | Digital Discovery, 2025, 4, 2927–2941
Ligands were converted to .pdbqt format with OpenBabel
(supplied along with MGLTools version 1.5.7)16 with Gasteiger
charges and polar hydrogens added per pH 7.2.
3 Results and discussion
3.1 Generative performance – reference molecules

To evaluate the generative performance of the MLConformerG-
enerator, 100 molecules for each molecular shape present in
CCDC virtual screening set were generated using 1000 and 100
denoising steps. The general metrics are presented in Table 4.
As expected, the time required for generation of samples per
reference increases linearly from 11.48 s to 96.01 s with the
increase in the number of denoising steps. The small difference
valuated at 100 and 1000 denoising steps

oising
Parameter

100 denoising
steps

1000 denoising
steps

Average shape
Tanimoto similarity

0.5332 0.5338

Average chemical
Tanimoto similarity

0.1087 0.1086

FFD PubChem 2.64 2.57
FFD ChEMBL 4.14 3.98
FFD ZINC 250k 4.95 4.84

ngside their corresponding reference structures and shape Tanimoto
own in stick representation and highlighted in magenta for visual

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 The distribution of shape Tanimoto similarity scores for the
dataset generated from CCDC virtual screening subset.

Fig. 4 Generation performance at 100 and 1000 denoising steps. (a)
Average shape Tanimoto similarity, (b) maximal shape Tanimoto
similarity and (c) chemical Tanimoto similarity as functions from the
number of heavy atoms in the reference molecule, with variance
parameter set to 2.
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in the values of average shape similarity values indicates that
generation with 100 denoising steps still produces molecules
with resemblance to the target shapes comparable to that for
1000. Both runs produced molecules with low chemical simi-
larity (Tanimoto coefficient lower than 0.11) to the reference
molecule, indicating good chemical variability of generated
molecules. FFD values calculated for generated molecule sets
and common chemical datasets of real molecules – ChEMBL,
PubChem and ZINC 250k are relatively low (<5), suggesting that
the distribution of chemical features in the generated mole-
cules is reasonably similar to that of real-world compounds.

To visually illustrate the generative performance and allow
for an overall qualitative assessment, representative examples
of the generated molecules, along with their corresponding
reference structures, are presented in Fig. 2. Furthermore, to
quantitatively evaluate the model's performance, the distribu-
tion of shape Tanimoto similarity scores between generated
molecules and their respective references is presented in Fig. 3.

The distribution of shape Tanimoto similarity values among
the generated compounds reveals that over 62% of the mole-
cules exhibit a similarity score greater than 0.5 relative to the
reference shape. The relatively narrow distribution, with
a median located above 0.5 threshold, indicates that the model
demonstrates a strong ability to capture and reproduce the
target geometry.

A more detailed assessment of the model's generative ability
was conducted by analysing the average shape Tanimoto simi-
larity, maximum shape Tanimoto similarity, and average
chemical similarity across subsets of generated molecules
grouped by their number of heavy atoms. The corresponding
results are presented in Fig. 4.

Reduction in the number of denoising steps from 1000 to 100
does not lead to a signicant decline in sample quality, as evi-
denced by both average and maximum Tanimoto similarity
scores shown in Fig. 4a and b. The evaluated metrics remain
relatively constant with a decrease in the number of denoising
steps, indicating that the generation quality is preserved while
inference time is reduced signicantly. This indicates that alike
in the case of diffusion models for image generation,34 a reduc-
tion in denoising steps can still yield high-quality outputs.

Another notable, though expected, dependency, is the
decrease in both average and maximum shape Tanimoto
© 2025 The Author(s). Published by the Royal Society of Chemistry
similarity with increasing heavy atom count in the reference
molecules. While the maximum shape similarity ranges from
0.80 to 0.99 for molecules with 15 to 27 heavy atoms, it drops to
0.6 to 0.8 for larger structures. This is likely due to the increased
structural complexity of larger molecules and suggests that the
model would benet from greater exposure to such examples
during training. In contrast, the chemical similarity remains
relatively stable, uctuating within the range of 0.08 to 0.13 as
can be seen from Fig. 4c. The observed low values of chemical
similarity between generated molecules and corresponding
references indicate that the model tends to produce chemically
diverse structures. A slight upward trend in chemical Tanimoto
coefficient can be observed with an increase in the number of
heavy atoms in the molecule. This may be attributed to the fact
that, as molecule size increases, and given that the model has
learned a limited set of chemical features, the probability of
reusing known fragments rises – leading to a modest increase in
similarity. Despite the minimal change in similarity metrics,
Digital Discovery, 2025, 4, 2927–2941 | 2935
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Fig. 5 FFD values to different datasets for different numbers of
denoising steps – 20, 50 and 100.
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a slight decline in generation quality is observed, as indicated
by an increase in FFD (Table 4) values when the number of
denoising steps is reduced.

To further assess the impact of the number of denoising
steps on FFD values, a small subset of 100 molecules from the
CCDC virtual screening set was selected. For each molecule, 100
samples were requested while varying the number of diffusion
steps. The resulting FFD values – calculated with respect to
ChEMBL, PubChem, and ZINC250k as a function of the number
of steps are shown in Fig. 5.

It can be observed that the difference in FFD values between
50 and 100 denoising steps is relatively small, while the average
generation time per reference structure decreases from 11.69
seconds to 6.92 seconds. However, reducing the number of
denoising steps further to 20 results in a noticeable decline in
generation quality, as indicated by a substantial increase in FFD
values across all reference datasets, with a linear decrease in
averaged generation time per reference to 4.01 seconds.
3.2 Generative performance – arbitrary shape

Since the principal components of the moment of inertia (MOI)
tensor can be computed for any object with a dened geometry
and mass distribution, virtually any shape can be used to
Fig. 6 (a) Illustrative examples of molecules generated based on the shap
reference pocket shape and annotated with the corresponding similar
a reference pocket.

2936 | Digital Discovery, 2025, 4, 2927–2941
condition the generation process – provided that its principal
MOI components are similar to those observed in the training
dataset and its overall size is comparable to molecules with the
targeted number of heavy atoms.

The performance of MLConformerGenerator in application to
generation of molecules conditioned on an arbitrary shape was
evaluated on a total of 360 molecules generated using the shape
of a selected CLK1 binding pocket (Fig. 1) as a reference. The
average shape similarity between the generated molecules and
the reference shape, computed using eqn (3) (with a scaling
factor of 1.8), was 0.436, with a maximum similarity reaching
0.534. The lower average shape similarity observed when
generating molecules from an arbitrary target protein pocket
shape is primarily due to how the similarity metric is dened
(see Section 2.6.2). Since the binding pocket typically occupies
a much larger volume than any individual ligand, the resulting
shape similarity scores tend to be lower than those character-
istic for the case of generating from a reference molecular
conformer, even when the generated structures are reasonably
well-aligned with the pocket.

Six molecules with the highest similarity score to the pocket
are illustrated along with the distribution of shape similarity
scores for the generated samples to help assess the overall
quality of generation are illustrated in Fig. 6a and
b correspondingly.

Visual inspection of the results shown in Fig. 6a suggests
that MLConformerGenerator effectively captures the overall
pattern of the target arbitrary shape by attempting to ll the
reference volume with the specied number of atoms. While
some examples reveal that, aer alignment, a few atoms fall
outside the boundaries of the reference shape, the visualiza-
tions nonetheless demonstrate that the model is capable of
generating molecules that approximate a given shape. These
observations, along with the values of shape similarity metric
and its narrow distribution (Fig. 6b), support the applicability of
the model for arbitrary-shape-constrained molecular design.
e of the selected CLK1 binding pocket. Each example is aligned with the
ity value. (b) Distribution of generated samples by shape similarity to

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Distribution of binding affinities (docking scores) for molecules
generated with CLK1 binding site shape constraint.
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Docking experiments were performed with molecules
generated based on the shape of the selected CLK1 binding
pocket to evaluate whether the generated compounds can t the
intended site. This served as an additional validation of the
viability of the shape-constrained generation process. The
distribution of docking scores for the 360 generated molecules
along with illustration of the best poses of top scoring
compounds is presented in Fig. 7 and 8 correspondingly. The
generated ligands exhibited a distribution of affinities close to
normal. The top candidate dissociation constant reached Kd =

438 pM indicating exceptional affinity to the target pocket. The
performance of the model conditioned on the arbitrary shape of
the pocket showcased that created molecules successfully tted
into a target binding site and show reasonable affinities which
attests applicability of MLConformerGenerator to the task of
molecule generation based on the extracted pocket shape, even
though trained only on generated molecular conformers.

It should be noted that little to no correlation was observed
between the arbitrary shape similarity and the binding affinity
Fig. 8 Visual representation of the top six compounds with the highest p
in kcal mol−1.

© 2025 The Author(s). Published by the Royal Society of Chemistry
of the corresponding structures. This is expected, as protein–
ligand interactions are not solely governed by the compound's
ability to t within the binding site. The arbitrary shape simi-
larity metric is introduced to assess the model's ability to
reproduce a given shape constraint, rather than to predict its
binding affinity. While the docking experiments demonstrate
that MLConformerGenerator is capable of generating chemically
valid structures with reasonable docking scores, the overall
success of the approach in generating high-affinity ligands
using the proposed model will depend on the careful selection,
denition and conguration of the target pocket shape, as well
as the use of a specialized docking protocol tailored to the
system of interest.
3.3 Comparative analysis of deterministic and GCN-based
bond prediction strategies

Deterministic methods for bond prediction are commonly uti-
lised in molecular generation pipelines due to simplicity of
usage and effectiveness in determining atomic adjacency from
the atom types and spatial coordinates produced by EDMs.5–7

However, these methods present several limitations. Such
methods do not account for the underlying distribution of bond
types or chemical features present in the training data. Addi-
tionally, they may require extra installation steps or runtime
dependencies, which can complicate their integration into
production environments. To address these challenges, we
explored the use of a GCN – based model as an alternative to
traditional deterministic approaches, specically comparing its
performance against OpenBabel16 in the scope of the EDM-
based molecule generation pipeline. Such an approach, while
also relying on interatomic distances, offers the advantage of
explicitly learning correlations that reect the chemical feature
distribution of the target dataset. The comparative performance
of the generation results using both bond prediction
redicted affinities, annotated with their corresponding docking scores

Digital Discovery, 2025, 4, 2927–2941 | 2937
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Table 5 Performance of AdjMatSeer (GCN) and OpenBabel bond prediction with EDM at 1000 denoising steps

Parameter AdjMatSeer (GCN) OpenBabel Parameter AdjMatSeer (GCN) OpenBabel

Total valid molecules (% from requested) 48.16% 93.56% Average chemical
Tanimoto similarity

0.1086 0.1056

Chemically unique molecules
(not found in training dataset)

99.81% 99.93% FFD PubChem 2.57 2.89

Chemically unique molecules
(within the generated set)

99.94% 99.87% FFD ChEMBL 3.98 4.63

Average shape Tanimoto similarity 0.5338 0.5336 FFD ZINC 250k 4.84 5.38
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approaches at 1000 denoising steps is presented in Table 5 and
Fig. 9a and b.

As shown in Fig. 9, both the average and maximum values of
shape Tanimoto similarity are nearly identical across the two
bond prediction approaches. This trend also holds for the
overall average shape and chemical similarity to reference
across the entire generated dataset, as summarized in Table 5.
However, notable differences emerge in terms of the fraction of
valid molecules generated and the FFD values. While Open-
Babel yields a signicantly higher fraction of valid structures
aer standardisation (93.47% vs. 48.60%), it also exhibits
consistently higher FFD values (by approximately 11–18%)
when compared to real datasets – suggesting that the proposed
GCN-based method may produce molecules that are closer in
Fig. 9 Generation performance with AdjMatSeer and OpenBabel
bond prediction. (a) Average shape Tanimoto similarity, (b) maximal
shape Tanimoto similarity.
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distribution of features to real chemical structures. These
observations suggest that, while deterministic methods may
outperform the proposed GCN-based bond prediction approach
in terms of the absolute number of valid structures generated,
the GCN method offers greater exibility in tuning the model to
generate structures that more closely resemble a target distri-
bution of chemical features.

A key factor contributing to the lower rate of valid structures
was suggested to be the occasional lack of precision in the 3D
coordinates generated by the EDM block, which can hinder
accurate bond prediction by the GCN block. This sensitivity is
further inuenced by the fact that the GCN was trained on
moderately-noised structures, limiting the level of precision it
can reliably leverage during inference. To address this, we
explored an inference-time resampling strategy, as described in
ref. 35, which introduces iterative renement of intermediate
states during the denoising process. Specically, at each
denoising step i, we apply a predened number of intermediate
denoising updates in the direction of step i − 1. This additional
renement helps harmonize structural intermediates and
smooth out potential outliers, thereby improving geometric
stability and enhancing the reliability of subsequent adjacency
predictions. The impact of resampling on generation quality is
summarized in Table 6.

Applying resampling during inference results in a noticeable
– but relatively modest—improvement in both molecular val-
idity and average shape Tanimoto similarity, increasing from
approximately ∼48% to ∼52% and from ∼0.53 to ∼0.54,
respectively, while maintaining a generation throughput of over
one molecule per second. Nonetheless, the GCN block may still
benet from further architectural renements and improved
training strategies to enhance molecular validity, while retain-
ing its capacity to generate structures with chemical feature
distributions closely aligned with those of the target dataset.
3.4 Performance assessment with respect to existing models

A careful evaluation of the MLConformerGenerator, incorpo-
rating both deterministic and GCN-based bond prediction
strategies, demonstrated the validity of using principal MOIs as
a concise and computationally efficient physical descriptor for
shape-constrained molecular generation. A comparative
performance analysis of the proposed framework against other
approaches for similar tasks is presented in Table 7.

The performance values for the considered models were ob-
tained from their respective original publications.4,6,7 Although
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 6 Performance of AdjMatSeer (GCN) bond prediction with EDM at 100 denoising steps with 1 and 4 resampling steps

Parameter
1 resampling
step

4 resampling
steps Parameter

1 resampling
step

4 resampling
steps

Generation speed
(valid molecules per s)

2.53 1.10 Chemically unique molecules
(within the generated set)

99.79% 99.18%

Total valid molecules
(% from requested)

51.57% 53.05% Average shape Tanimoto similarity 0.5409 0.5452

Chemically unique molecules
(not found in training dataset)

99.47% 98.99% Average chemical Tanimoto similarity 0.1146 0.1163

Table 7 Comparative performance of the MLConformerGenerator and other state-of-the-art models for shape-constrained molecular
generation.4,6,7

Valid molecules
(% from output samples)

Average shape
similarity

Maximal shape
similarity Reference

MLConformerGenerator (deterministic bond prediction) 93.6% 0.536 >0.99 This study
MLConformerGenerator (GCN bond prediction) 48.2% 0.533 >0.99
MLConformerGenerator (GCN bond prediction, 4 resampling steps) 53.05% 0.545 >0.99
ShapeMol + g 98.7% 0.746 0.852 6
ShapeMol 98.8% 0.689 0.803
Shepherd 73.7–96.2% 0.799 — 7
SQUID (l = 0.3) 100.0% 0.717 0.904 4
SQUID (l = 1.0) 100.0% 0.670 0.842
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the generative performance was assessed on different datasets,
these results are included to provide a general overview of rela-
tive model capabilities. For ShapeMol6 and SQUID,4 the
percentage of connected molecules reported by the authors was
interpreted as the percentage of valid structures, in accordance
with our own validity criteria, to enable a consistent comparison.

The MLConformerGenerator, which uses a simple oat vector
of the size of three as a shape-capturing context, was trained on
articially generated conformers derived from SMILES repre-
sentations. Despite the simplicity of this approach, the model,
when paired with a deterministic bond prediction module,
achieves competitive performance in generating valid molec-
ular structures and even surpasses other models in terms of
maximum achieved shape Tanimoto similarity. The combina-
tion of lower average and higher maximum similarity suggests
that the structures generated with MLConformerGenerator
exhibit a broader variance in shape similarity values. It should
be noted that while the proposed model achieves a notably high
maximum shape Tanimoto similarity (up to 0.99), its average
similarity (∼0.53) is lower than that reported for models
employing more expressive shape descriptors.6,7 We attribute
this discrepancy primarily to the limited representational
capacity of the MOI tensor. While the MOI provides a compu-
tationally efficient means of capturing overall molecular shape,
it offers only a coarse approximation and lacks the resolution to
grasp ner 3D features. As a result, even when the model
accurately learns to reproduce the target MOI, the generated
conformers may still diverge in ne-grained geometry, leading
to lower average shape similarity across diverse molecules.
Nonetheless, we consider this trade-off to be a deliberate and
acceptable design decision. Compared to more detailed
© 2025 The Author(s). Published by the Royal Society of Chemistry
descriptors, such as voxel grids or surface-based representa-
tions, the utilization of MOI tensor as a shape descriptor
signicantly reduces computational overhead and model
complexity. This makes it particularly well-suited for scalable,
shape-aware generation in early-stage molecular design tasks,
where speed and simplicity are oen prioritized over precision.
Additionally, the physical properties of the MOI tensor – such as
additivity and translational invariance- in theory enable its use
in generating molecules of arbitrary size. This can be achieved
by splitting the initial shape constraint into smaller fragments,
generating the corresponding molecular substructures inde-
pendently, and subsequently merging them into a complete
molecule. This approach is currently under investigation as part
of our future research.

The generic nature of the chosen shape descriptor enables
generation based on arbitrary input shapes without the need for
additional retraining or ne-tuning – a capability not reported
for other models evaluated. While the proposed GCN-based
bond prediction approach (AdjMatSeer) may result in a lower
percentage of valid structures, it enables ner control over the
distribution of chemical features for the within the sets of
generated molecules, as evidenced by lower FFD values.
However, due to the absence of detailed information on the
distribution of chemical features within the datasets generated
by competitor models in the original publications, this metric
was excluded from the analysis.
4 Conclusions

The applicability of the principal components of the moment of
inertia tensor as a compact and efficient shape descriptor for
Digital Discovery, 2025, 4, 2927–2941 | 2939
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the task of shape-constrained molecular generation was illus-
trated, using the proposed EDM-based model –

MLConformerGenerator. The simplicity of the considered
descriptor enables effective training on synthetically generated
conformers derived from 2D molecular representations. We
demonstrate the gain in efficiency by training our model on
a subset of the ChEMBL database containing over 1.6 million
molecules. The versatility of the chosen descriptor supports
exible generation scenarios, allowing the model to operate
using either a reference molecular conformer or an arbitrary
target shape. This capability was validated through experiments
on two distinct shape-conditioning tasks: generation based on
a set of target conformers, and generation based on the shape of
a binding pocket of CLK1.

Generative performance evaluation showed that
MLConformerGenerator produces molecules with chemical
feature distributions closely aligned with real datasets, such as
ChEMBL, PubChem, and ZINC 250k, as evidenced by FFD
values consistently below 5. Despite relying on a compact yet
expressive descriptor, the model achieves competitive perfor-
mance relative to approaches using more complex shape
representations. With deterministic bond prediction, the model
achieved a 93.6% validity rate for generated molecules.
Switching to a GCN-based bond prediction module (AdjMat-
Seer) reduced validity to 48.2–53.0%, while in turn resulted in
lower FFD values – indicating a closer match to chemical feature
distributions in the datasets containing real molecules. This
trade-off suggests that the GCN-based bond prediction is better
suited for applications focused on generating chemically real-
istic datasets, even at the cost of lower validity per attempt.
When conditioned on a reference conformer, the generated
molecules showed moderate to high shape similarity to the
target, ranging from 0.3 to 0.99, with an average of 0.53–0.54. At
the same time, the chemical similarity to the reference mole-
cules remained low (<0.2), conrming the model's capacity to
produce chemically diverse outputs within a given shape
constraint.

Finally, the model's practical utility in shape-constrained
molecular design was demonstrated through an end-to-end
experimental pipeline: Extract Target Protein Pocket Shape /

Generate Candidate Molecules / Dock to Protein. This high-
lights the potential of the suggested approach in generative
structure-based molecular design workows.
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