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i-perspective attention
aggregation model for the prediction of
drug–target interactions

Xinke Zhan, a Tiantao Liu,a Changqing Yu,b Yu-An Huang,c Zhuhong Youc

and Shirley W. I. Siu *a

Accurate prediction of drug–target interactions (DTIs) is indispensable for discovering novel drugs and

repositioning existing ones. Recently, numerous methods based on deep learning have made promising

progress in DTI predictions. These methods often utilize a single attention mechanism, which limits their

ability to capture the complex features of both drugs and proteins. As a result, feature representation can

be incomplete, training can become more complex and prone to overfitting. These together can impair

the generalizability of the model. To address these problems, we propose an end-to-end neural network

drug–target interaction approach called Multi-perspective Attention AggRegating (MAARDTI). Here,

a multi-perspective attention mechanism is introduced that combines channel attention and spatial

attention to capture a more comprehensive feature representation. The dual-context refocusing module

is used to enhance the attention representation capability and improve the generalizability of the model.

Experiments show that our proposed model outperforms ten state-of-the-art methods in three public

datasets, achieving AUC values of 0.8975, 0.9248, and 0.9330 in DrugBank, Davis and KIBA, respectively.

In the cold-splitting test with novel targets, drugs, and their bindings, MAARDTI performs on par with

some methods for cold drug predictions. It outperforms in predicting unseen targets and bindings,

underscoring the effectiveness of the novel multi-perspective attention mechanism in challenging

scenarios. Hence, MAARDTI has the potential to serve as an effective tool for rapid identification of novel

DTIs in drug research.
Introduction

The identication of drug–target interactions (DTIs) is an
important area of research within the drug discovery pipeline,
with signicant implications for drug discovery, repositioning,
rediscovery and drug reproling.1,2 While high-throughput
experiments remain the most reliable approach for deter-
mining the interaction of drugs toward their targets, they pose
considerable challenges when scaling up for large-scale in vitro
screening and in vivo validation, as they are prohibitively costly
and time-consuming.3,4 Despite extensive investments, the drug
development process is still very lengthy, taking up an average
of 10 to 15 years to complete. The drug approval rate by the Food
and Drug Administration (FDA) has been notably low, with less
than 10% of drug candidates successfully progressing from
phase I to nal approval.5 With the rapid development of in
silico approaches for predicting DTIs,6–8 computational
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methods have attracted increasing attention. Nowadays, it is
possible to make full use of various biological data of known
DTIs to quickly narrow down the scope of drug screening and
explore unknown functions of drugs and proteins. These
advances greatly motivate the drug discovery research to
develop more efficient and accurate DTI prediction methods.

In recent years, a number of machine learning-based
methods have been developed to predict DTIs.9–13 These
methods typically use the amino acid sequences of proteins and
the Simplied Molecular Input Line Entry System (SMILES) of
drugs as input. For instance, Wang et al.14 reported a computa-
tional method that extracts feature vectors from drug structures
and protein sequences and employs rotation forest to predict
DTIs. Li et al.15 obtained PSSM features from protein amino acid
sequences and substructure ngerprints from drug chemical
structures. To avoid the curse of dimensionality, the authors
used principal component analysis (PCA) to reduce feature
dimensions, and nally applied the local binary pattern (LBP) to
predict DTIs. The aforementioned methods have made signi-
cant progress in the eld, particularly by narrowing the search
space for potential drug–target candidates. However, they suffer
from the limitation that manual feature selection is required
prior to model construction. This process can introduce bias,
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leading to poor model generalizability and insensitivity to noisy
data.

Recently, deep learning16,17 has become a research focus
since it can learn the latent feature representation through
backward propagation without the need to manually engineer
features. Moreover, a number of deep learning frameworks have
shown outstanding performance at affordable costs compared
to classical machine learning methods. In this regard, Öztürk
et al.18 proposed a model called DeepDTA, which only considers
one-dimensional sequence representation. It includes two
convolutional neural network (CNN) blocks to extract features
from the amino acid sequence of proteins and SMILES of drugs
separately, and then feeds them into a fully connected network
(FCN) to obtain the nal prediction results. Lee et al.19 devel-
oped DeepConv-DTI, which expands the diversity of proteins to
include diverse protein lengths and various target protein
classes. In these studies, extensive experiments were conducted
to validate the effectiveness of CNN-based methods. The
difference between DeepDTA and DeepConv-DTI is that
DeepConv-DTI adopted the extended connectivity ngerprint
(ECFP) algorithm to extract drug features. Interestingly, neither
of the two methods takes into account interaction features of
the known protein–drug pairs, but treats protein and drug
separately. Meanwhile, Zheng et al.20 proposed a novel end-to-
end deep learning framework called DrugVQA to predict DTIs,
which denes the prediction task as a classical visual question
answering problem. The method employs dynamic convolu-
tional neural network (DynCNN) and bidirectional long short-
term memory (LSTM) to extract features from 2D pairwise
distance maps and represent drugs using molecular linear
notation. Zhu et al.21 reported a drug–target affinity prediction
model named RRGDTA. The framework enhances correlations
between molecular substructures and contextual features
through a multi-scale interaction module (MSI), captures local
structural correlations via a rotary encoding module (ROE), and
preserves critical interaction patterns using an association
prediction module (APM) with intra-mask retention (IMR). Wei
et al.22 reported a model named LAM-DTI to address the
sequence length discrepancy between drugs and targets, and
a learnable association information matrix dynamically adjusts
to capture DTI pair information, effectively identifying
interactions.

In addition, due to the remarkable performance of the
transformer network, attention-based and BERT-based
methods23,24 have also been successfully used for predicting
DTIs.25–29 Notably, Huang et al.30 proposed a transformer-based
model named MolTrans. In their research, a 2D binding map of
proteins and drugs is used as input and the molecular repre-
sentation features are extracted by the augmented transformer
module. Zhu et al.31 proposed TDGraphDTA, a transformer and
diffusion-based model for drug–target affinity prediction. The
framework integrates multi-scale information interaction to
capture relationships between molecular substructures and
employs a diffusion-based graph optimization module to
enhance molecular graph representation and interpretability.
Zhao et al.32 proposed an end-to-end model named Hyper-
AttentionDTI, which adopts the attention mechanism of feature
Digital Discovery
matrices. This method utilizes the original features of proteins
and drugs, but high spatio-temporal complexity and the CNN
block receptive eld limit its performance. Bian et al.33

proposed a shared-weighted-based multi-head cross attention
network, called MCANet, which uses the cross-attention mech-
anism to compute attended protein and drug features. Ouyang
et al.34 introduced a BERT-inspired model called Pre-trained
Multi-view Molecular Representations (PMMRs), an innovative
neural network approach that leverages pre-trained models to
enhance the generalizability and accuracy of drug–target
binding predictions. By integrating multi-view molecular
representations, they attempted to address the challenges
posed by limited and diverse training data. These studies have
proposed increasingly complex models with a large number of
parameters, which makes training of these models particularly
difficult and prone to overtting. Moreover, these attention-
based methods primarily focus on the unitary inter-
subsequence or inter-substructure but ignore the positional
features of the subsequence or substructure.

In view of the problems above, we propose an end-to-end
neural network approach called MAARDTI for predicting DTIs.
The drug SMILES strings and protein amino acid sequences are
utilized as the input of our model. Two independent CNN
blocks are then used to extract the protein and drug embedding
features. In addition, different from the single attention
mechanism of earlier studies, the MAAR module is designed to
generate an aggregating matrix which fuses channel attention
and spatial attention for strengthening subspace representa-
tion. Meanwhile, the bi-contextual refocusing module is adop-
ted, which fuses attention matrices to obtain a multi-
perspective attention feature representation, for improving
attention generalizability. Finally, the drug and protein feature
vectors are concatenated and fed into the prediction block. We
conducted extensive experiments on several widely used
benchmark datasets and compared our results with state-of-the-
art methods. The superior prediction results of our method
demonstrate the effectiveness of MAARDTI in predicting DTIs.
Overall, this work has the following novelties: (i) A novel
computational method outperforming state-of-the-art methods
in DTI prediction is proposed. (ii) A multi-perspective attention
aggregating module is designed, which captures the channel
and spatial attention features to strengthen the feature learning
ability of the model. (iii) A bi-contextual refocusing module
including the drug-contextual refocusing block and the protein-
contextual refocusing block is designed to further improve
multi-dimensional feature expression of attention. (iv) To the
best of our knowledge, this is the rst attempt in which the
fusion attention weight matrix and aggregation matrix are
utilized for protein and drug subspace feature representations.
We demonstrate that effective multi-perspective attention
fusion can improve DTI prediction.

Methods

In this study, we report a novel computational method called
MAARDTI for predicting potential DTIs. This model mainly
contains four parts: the embedding block, the MAAR module,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 The overall architecture of MAARDTI. Given a protein sequence and a drug SMILES string as an input, the prediction process consists of
four main steps. (1) Embedding block: the categorical strings are passed through the embedding layer and the CNN block to extract low-
dimensional feature representations. (2) MAAR module: the channel attention matrix and the spatial attention matrix are used to capture latent
feature representations of substructures and subsequences. (3) Bi-contextual refocusing module: to learn protein and drug contextual infor-
mation, the aggregationmatrix and the attentionweightmatrix are fused to augment the attention ability representation. (4) Prediction block: the
drug–target interaction is predicted based on the concatenated drug and protein features.
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the bi-contextual refocusing module, and the prediction block.
The architecture of the proposed model is depicted in Fig. 1.
The core innovation of MAARDTI lies in its MAAR module,
which integrates both channel and spatial attention mecha-
nisms. This dual-attention approach allows the model to
capture both the inter-channel relationships and spatial
dependencies within the feature maps, thereby providing
a more comprehensive representation of the interactions
between drugs and proteins. Furthermore, the bi-contextual
refocusing module enhances the feature fusion of drugs and
proteins by incorporating contextual information from both
sides, improving the model's ability to generalize and predict
unseen interactions.
Drug–target embedding block

The raw data for our model are protein amino acid sequences
and drug SMILES strings. Protein sequences are composed of 20
different amino acids and drug strings consist of 64 different
characters. Prior to learning, these categorical values in the
sequences and strings are encoded into numerical vector
representations through the embedding layer by converting
them into integer values. Aer embedding, the protein
embedding matrix Pembed˛ℝLprot�Dp and the drug embedding
matrix Dembed˛ℝLdrug�Dd are obtained, where Lprot is the length of
the protein sequence and Ldrug is the length of the drug string,
and Dp and Dd are the embedding dimension of the protein and
drug, respectively. To enhance feature representation, we adopt
two independent CNN blocks. Each CNN block contains three
1D-convolutional layers in which different sized lters are used
for better capturing important local dependencies. The CNN
block for the protein and the drug can be formulated as follows:
© 2025 The Author(s). Published by the Royal Society of Chemistry
Lp
(l+1) = s(conv(Wp

(l), bp
(l), Lp

(l))) (1)

Ld
(l+1) = s(conv(Wd

(l), bd
(l), Ld

(l))) (2)

where Wp
(l) and Wd

(l) are the weight matrices and bp
(l) and bd

(l)

are the biases in the l-th CNN layer. Lp
(l) and Ld

(l) are the hidden
protein and drug representations in the l-th CNN layer. s($)
denotes the ReLU activation function.

When the drug embedding matrix Dembed and the protein
embedding matrix Pembed pass through the CNN block, the
protein feature matrix Fprot˛ℝkp�mp and the drug feature matrix
Fdrug˛ℝkd�md are generated in the latent feature space, wheremp

and md are the dimensions of protein and drug feature vectors.
Hence, these matrices contain semantic information and
spatially associated information among the features.

Multi-perspective attention aggregating (MAAR)

We design a multi-perspective attention aggregating block that
contains two attention sub-modules: the channel attention
module and the spatial attention module. The following
sections describe the specic details of each module.

Channel attention module. For exploiting the inter-channel
relationship, the channel attention mechanism is utilized to
enhance the selective attention features.35 As different channels
of feature maps may contain different important information,
we constructed a channel attention module to capture mean-
ingful sub-structures or sub-sequences. Given the input feature
matrix Fcnn˛ℝB�H�D; the matrix is rst fed into the max-pooling
layer and the average-pooling layer to obtain average-pooled
and max-pooled features, respectively.

Favg = avgpool(Fcnn) (3)
Digital Discovery
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Fmax = maxpool(Fcnn) (4)

where B is the number of channels and H and D are the height
and weight of the matrix, respectively. Then, both Favg and Fmax

are forwarded to a weight sharing network, which is composed
of multilayer perceptron (MLP) with one hidden layer. In detail,
the activation size of the hidden layer is set to ℝB=r�1�1; where r
denotes the reduction ratio. Aer each descriptor is fed into the
weight sharing network to obtain the channel attention map,
Fc˛ℝB�1�1; element-wise summation operation is then applied
to merge the output features. The denition of channel atten-
tion is computed as follows:

Fc(M) = s(Wa(Wb(F
p
avg)) + Wa(Wb(F

p
max))) (5)

where s is the sigmoid function, andWa˛ℝB=r�B andWa˛ℝB�B=r

are the weight matrices which are shared between both inputs
Favg and Fmax. The ReLU activation function is followed by Wa.

Spatial attention module. Spatial attention focuses on
specic areas when processing data in computer vision to
improve the performance and efficiency of the model.36 In order
to obtain the inter-spatial relationships, we build a spatial
attention module, which focuses on identifying the signicance
of different areas within the subspace. More precisely, we obtain
two-dimensional maps Favg and Fmax aer the average-pooling
and the max-pooling operations, and then they are concate-
nated to form one feature descriptor Fs˛ℝ1�H�D: A convolution
layer is employed to learn the 2D spatial attention matrix, which
can be formulated as follows:

Fc(M) = s(kn×n([Favg; Fmax])) (6)

where s denotes the sigmoid function, kn×n is the convolution
operation and n is the kernel size.

Finally, the channel attention matrix Fc(M) and the spatial
attention matrix Fs(M) are multiplied to obtain an aggregating
attention matrix:

Fatt = Fc(M) × Fs(M) (7)

where Fatt is the nal output feature representation fromMAAR.
Bi-contextual refocusing module

In the attention mechanism,37,38 three vectors—Query, Key, and
Value—are crucial for effectively learning relationships within
the data. To enhance our model, a transformer is adopted to
map the input into different subspaces. Here, we perform
a fusion operation between the aggregating attention map and
the attention weight matrix to strengthen the attention of
subspace by augmenting the substructure and subsequence
feature representations.

Aer obtaining the aggregation attention matrix Fatt, the
input drug feature matrix Fdrug and protein feature matrix Fprot
are processed using the bi-contextual refocusing module.
Taking drug feature as an example, the drug feature map is rst
projected to the Query matrix Qd, the Key matrix Kd and the
Value matrix Vd; then, we fuse the original attention matrix and
Digital Discovery
the aggregation attention map. For each head, the combining
attention result is calculated as follows:

headd ¼ softmax

�
QdKd

Tffiffiffiffiffi
dk

p þ Fattd

�
Vd (8)

Aerwards, the drug output of the multi-head attention
operation is computed as follows:

Multihead ðQ;K;VÞ ¼ concatd¼1.hðheaddÞWO (9)

where d represents the number of heads and WO is the learn-
able matrix for feature mapping. We concatenate the outputs of
all the heads and compute the nal drug feature vector. Like-
wise, the protein operation is performed as follows:

headp ¼ softmax

 
QpKp

Tffiffiffiffiffi
dk

p þ Fattp

!
Vp (10)

The protein output of the multi-head attention operation is
as follows:

Multihead ðQ;K;VÞ ¼ concatd¼1.h

�
headp

�
WO (11)

Hence, we concatenate the outputs of all the heads and
obtain the nal protein feature vector.

Aer applying the bi-contextual refocusing module, we
obtain the drug augmentation matrix Daug˛ℝkd�md and the
protein augmentation matrix Paug˛ℝkp�mp : The latent drug and
protein feature matrices FD and FP are updated as follows:

FD ¼ Fdrug$aþDaug$b
FP ¼ Fprot$aþ Paug$b

(12)

where both a and b are set to 0.5. This choice is based on the
need to balance the contributions of the original and
augmented features. The detailed results are shown in the
Results section.
Prediction block

We then concatenate the drug and protein feature matrices FD
and FP, and feed them into the multilayer fully connected
networks (FCNs). The dropout layer is employed aer the FCN
layer to avoid overtting during the training process. As a binary
classication task, the output of the last layer is the probability
of the interaction. Here, the PolyLoss function is used in this
classication problem, which can efficiently mitigate the
imbalance of the dataset. The loss function is computed as:

Lpoly�1 ¼ �logðPÞ þ qð1� PÞ (13)

where q is the perturbation term with the value 1.
Experiments and results
Datasets

In this study, we train and evaluate the proposed MAAR model
on three benchmark datasets: DrugBank,39 Davis40 and KIBA,41

which have been widely used in previous studies.42,43 The Davis
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Summary of the benchmark datasets for drug–target
interactions

Datasets Drug Protein Interaction Positive Negative

Davis 68 379 25 772 7320 18 452
KIBA 2068 225 116 350 22 154 94 196
DrugBank 6655 4294 35 022 17 511 17 511
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and KIBA datasets consist of experimental assay values pKd and
pIC50 that measure binding affinities and the biological effect of
drugs, respectively. It should bementioned that in the KIBA and
Davis datasets, the similarity among their drug molecules is
low. Following the previous studies, the thresholds for true
interactions are set as 5.0 for Davis and 12.1 for KIBA when
constructing a binary classication dataset.18 In detail, the
Davis dataset provides binding affinities of 68 drugs toward 379
proteins, while KIBA provides binding affinities of 2068 drugs
toward 225 proteins. Using DrugBank, we follow previous
studies to construct a dataset containing drugs that are inor-
ganic and small; those that cannot be recognized by RDKit44 are
manually discarded. As a result, there are 4294 proteins, 6655
drugs, and 17 511 validated positive DTIs in our DrugBank
dataset. In order to obtain an equal number of negative DTIs, we
randomly selected 17 511 unlabeled drug–target pairs to
generate a complete dataset of 35 022 DTIs. The summary of the
three benchmark datasets is shown in Table 1.
Implementation

Hyperparameters. Learning rate, batch size, and other
hyperparameters are critical factors that can affect the predic-
tion results. To train our model, the AdamW optimizer45 is
adopted with a learning rate of 1 × 10−4. For the input data, the
length of the drug SMILES strings is capped at 100 and the
protein sequence length is 1000. The embedding layer is set to
64 dimensions for both proteins and drugs, which means that
each amino acid or SMILES character has 64 dimensions. Due
Fig. 2 Performance comparison and ROC curves of the five fusion strat

© 2025 The Author(s). Published by the Royal Society of Chemistry
to the different lengths between drugs and proteins, the kernel
sizes of the two parallel CNN blocks are different as well. The
kernel sizes of the protein CNN blocks are 4, 8 and 12, whereas
they are 4, 6, and 8 for the drug CNN blocks. The dropout rate is
set to 0.1. Early stopping is employed to avoid the overtting
problem, and the patience parameter is set to 50. We train the
proposed model using 300 epochs across all datasets. The
detailed hyperparameters of the model are listed in Table S1 of
SI.

Training setting. For all datasets, the ratio between the
training and test sets is 4 to 1. The training set is further divided
into ve parts, with four parts used for training and one part for
validation. Aer the optimal parameters are determined, we
train a nal model using the entire training set (80%) and
evaluate the generalization performance of the model on the
test set (20%). The MAARDTI model is implemented in PyTorch
v1.12.1 (ref. 46) with CUDA version 11.3. All models are trained
on a single NVIDIA GTX3090Ti GPU with 24 GB of memory.

Evaluation criteria. In this study, several commonly used
evaluation metrics are adopted to better evaluate the effective-
ness and robustness of our proposed method. We use the
following performance metrics: accuracy, precision and recall.
We also use the Area Under the receiver operating Characteristic
curve (AUC) and the Area Under the Precision-Recall curve
(AUPR) to measure the generalization performance of our
proposed model.

Ensemble training. Five models are generated during the
training process under ve-fold cross validation. Since different
training datasets result in models with different weights and
sensitivities to drug–target pairs, combining these models into
an ensemble model would provide higher prediction accuracy.

Results
Hyperparameter optimization

In theMAARmodule, we combine channel attention and spatial
attention features through a fusion operation. Five fusion
strategies, namely addition, multiplication, maximum, average,
egies on the DrugBank dataset.

Digital Discovery
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Fig. 3 The impact of fusion weights a and b on model performance.

Table 3 Five-fold cross-validation results of MAARDTI on the Davis
dataset

Testing Accuracy Precision Recall AUC AUPR

1 0.8766 0.7946 0.7637 0.9216 0.8442
2 0.8791 0.7855 0.7903 0.9284 0.8570
3 0.8740 0.7868 0.7637 0.9234 0.8494
4 0.8731 0.7876 0.7575 0.9280 0.8527
5 0.8702 0.7751 0.7650 0.9226 0.8445
Average 0.8746 0.7859 0.7680 0.9248 0.8496

Table 4 Five-fold cross-validation results of MAARDTI on the KIBA
dataset

Testing Accuracy Precision Recall AUC AUPR

1 0.8988 0.7269 0.7617 0.9334 0.8213
2 0.9005 0.7289 0.7713 0.9342 0.8196
3 0.8989 0.7233 0.7708 0.9334 0.8209
4 0.9002 0.7340 0.7559 0.9328 0.8160
5 0.9067 0.7350 0.7590 0.9305 0.8064
Average 0.8998 0.7296 0.7637 0.9330 0.8168
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and concatenation are compared empirically to decide for the
best strategy. Using the DrugBank dataset and ve-fold cross
validation, the performance of the models is obtained. As
shown in Fig. 2, the concatenation operation achieves the best
overall performance with a high average accuracy of 0.8246,
precision of 0.8163, recall of 0.8364, AUC of 0.8975, and AUPR of
0.9032. By concatenating features, all information of the two
attention mechanisms is preserved and the model can learn
how to best combine the features of these two attention
mechanisms in subsequent layers, which increases the exi-
bility and adaptability of the model. Therefore, the concatena-
tion operation is selected as the default fusion strategy for
MARRDTI.

In addition, we experiment the fusion weights a and b used
in the bi-contextual refocusing module. We set up nine groups
of parameter experiments, with the a value ranging from 0.1 to
0.9, while b is set to 1 − a. As shown in Fig. 3, the model ach-
ieves peak performance across key metrics, including accuracy,
AUC, and AUPR, when both a and b are set to 0.5. This validates
our parameter selection, demonstrating that an equal weighting
optimally balances the contributions of raw features and
augmented features.

Cross-validation performance of MAARDTI

In this study, ve-fold cross-validation is employed to mitigate
the risk of overtting during the training of the three bench-
mark datasets: DrugBank, Davis, and KIBA. Specically, the
entire dataset, excluding the test samples, is evenly divided into
Table 2 Five-fold cross-validation results of MAARDTI on the Drug-
Bank dataset

Fold Accuracy Precision Recall AUC AUPR

1 0.8287 0.8232 0.8358 0.9028 0.9113
2 0.8169 0.8066 0.8323 0.8933 0.8941
3 0.8286 0.8237 0.8346 0.8969 0.9026
4 0.8291 0.8143 0.8513 0.8999 0.9070
5 0.8195 0.8135 0.8277 0.8944 0.9008
Average 0.8246 0.8163 0.8364 0.8975 0.9032
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ve parts, with four parts designated for training and one part
designated for validation. The test dataset is then used for nal
predictions. The performance of the three datasets DrugBank,
Davis and KIBA is shown in Tables 2–4.

As shown in Table 2, our proposed method yields good
performance on the DrugBank dataset, with high average values
of 0.8246 for accuracy, 0.8163 for precision, 0.8364 for recall,
0.8975 for AUC, and 0.9032 for AUPR. When tested with the
Davis imbalance dataset, it achieves high average values of
0.8746 for accuracy, 0.7859 for precision, 0.7680 for recall,
0.9248 for AUC, and 0.8496 for AUPR. Similarly, for the KIBA
dataset, our method achieves high average values of 0.8998 for
accuracy, 0.7296 for precision, 0.7637 for recall, 0.9330 for AUC,
and 0.8168 for AUPR. Meanwhile, the ROC curves and PR curves
of these three datasets are shown in Fig. 4 for visual
comparison.

Comparative performance of MAARDTI against ten state-of-
the-art methods

To better evaluate the performance of our proposed method,
MAARDTI is compared against several competing DTI predic-
tion methods. To ensure a fair comparison, these methods were
installed locally and trained and tested on the same datasets
using the ve-fold cross-validation procedure as for our
method. These baseline methods include two traditional
machine learning models (Näıve Bayes and K-Nearest Neigh-
bors), DeepDTA,18 DeepConv-DTI,19 MolTrans,30 Trans-
formerCPI,28 HyperAttentionDTI,32 MCANet,33 MCANet-B,33 Rep-
ConvDTI47 and MGNDTI.48 It is worth noting that the MCANet-B
is an ensemble version of MCANet which combines ve trained
models into one integrated model, exhibiting improved
performance. Using the same procedure, we train the MAAR-
DITI's ensemble model, named MAARDTI-E for comparison.
The results of the cross-validation tests and the ensemble
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 The five-fold ROC curves and PR curves for the DrugBank (a and b), Davis (c and d) and KIBA (e and f) datasets.
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results are shown in Tables 5–7, with the best method for
a performance metric highlighted in bold and the second best
italicized.
© 2025 The Author(s). Published by the Royal Society of Chemistry
We train the ten baseline models with the DrugBank dataset.
The experimental results in the ve-fold cross-validation are
summarized in Table 5. We can observe that our model achieves
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Table 5 Benchmarking MAARDTI against ten methods using five-fold
cross-validation on the DrugBank dataset

Models Accuracy Precision Recall AUC AUPR

NB 0.5415 0.5468 0.5415 0.5417 0.6248
KNN 0.6736 0.6750 0.6736 0.6736 0.7526
DeepDTA 0.7772 0.7615 0.8052 0.8607 0.8679
DeepConv-DTI 0.7990 0.7942 0.7990 0.8683 0.8682
MolTrans 0.7621 0.7355 0.8264 0.8403 0.8407
TransformerCPI 0.7838 0.7722 0.8116 0.8565 0.8606
HyperAttentionDTI 0.8098 0.8026 0.8221 0.8900 0.8935
MCANet 0.8180 0.8092 0.8309 0.8912 0.8963
Rep-ConvDTI 0.7773 0.7620 0.7969 0.8590 0.8634
MGNDTI 0.8089 0.8037 0.8148 0.8816 0.8826
MAARDTI 0.8246 0.8163 0.8364 0.8975 0.9032
MCANet-B 0.8477 0.8461 0.8488 0.9089 0.9109
MAARDTI-E 0.8524 0.8476 0.8581 0.9109 0.9203

Table 7 Benchmarking MAARDTI against ten methods using five-fold
cross-validation on the KIBA dataset

Models Accuracy Precision Recall AUC AUPR

NB 0.6395 0.7231 0.6395 0.5570 0.3885
KNN 0.8206 0.7911 0.7206 0.5600 0.4667
DeepDTA 0.8931 0.7738 0.6324 0.9223 0.7935
DeepConv-DTI 0.7208 0.7967 0.6582 0.9332 0.8212
MolTrans 0.8891 0.7042 0.7353 0.9232 0.7949
TransformerCPI 0.8828 0.7087 0.6679 0.9070 0.7640
HyperAttentionDTI 0.8775 0.6730 0.7149 0.9161 0.7721
MCANet 0.8956 0.7277 0.7407 0.9308 0.8126
Rep-ConvDTI 0.8979 0.7763 0.6547 0.9255 0.8039
MGNDTI 0.8448 0.5611 0.7766 0.9227 0.8191
MAARDTI 0.8998 0.7296 0.7637 0.9330 0.8168
MCANet-B 0.9132 0.7852 0.7572 0.9488 0.8588
MAARDTI-E 0.9143 0.7788 0.7771 0.9498 0.8609
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an improvement of 0.66%, 0.71%, 0.55%, 0.63% and 0.69% in
accuracy, precision, recall, AUC and AUPR, respectively, over the
best baseline model, MCANet. The results indicate that our
model can predict DTIs more accurately.

We then train and assess our proposed model with the Davis
dataset. Different from the DrugBank dataset, this is an
imbalance dataset which is notoriously difficult to train and can
lead to unrealistically high precision but low recall. As shown in
Table 6, our model demonstrates enhanced performance on
most metrics, achieving 0.55%, 0.42%, 0.26%, and 0.89%
improvements in accuracy, recall, AUC and AUPR, respectively.
It is noteworthy that although the precision of our model is
slightly lower than that of DeepDTA, its recall is 9.3% higher,
suggesting that our training strategy effectively addresses the
challenge posed by dataset imbalance, resulting in enhanced
generalization ability.

Furthermore, we train and assess our model with the KIBA
dataset, which is also an imbalance dataset with nearly four
times interaction pairs compared with the Davis dataset. Table
7 summarizes the comparative performance results. Our model
achieves an improvement of 0.42% accuracy, 2.30% recall,
0.22% AUC and 0.42% AUPR over the best baseline MCANet.
Meanwhile, the precision metric of our MAAR model is again
Table 6 Benchmarking MAARDTI against ten methods using five-fold
cross-validation on the Davis dataset

Models Accuracy Precision Recall AUC AUPR

NB 0.6082 0.6429 0.6082 0.5641 0.4845
KNN 0.7240 0.6856 0.7240 0.5477 0.4703
DeepDTA 0.8568 0.7898 0.6776 0.9145 0.8337
DeepConv-DTI 0.8590 0.7761 0.7000 0.9163 0.8304
MolTrans 0.7847 0.6387 0.7121 0.8628 0.7299
TransformerCPI 0.8345 0.7400 0.6423 0.8863 0.7802
HyperAttentionDTI 0.8579 0.7428 0.7642 0.9142 0.8318
MCANet 0.8691 0.7750 0.7602 0.9222 0.8407
Rep-ConvDTI 0.8663 0.7983 0.7159 0.9222 0.8439
MGNDTI 0.8244 0.6553 0.7359 0.9093 0.8266
MAARDTI 0.8746 0.7859 0.7680 0.9248 0.8496
MCANet-B 0.8919 0.8260 0.7848 0.9441 0.8804
MAARDTI-E 0.8946 0.8354 0.7835 0.9480 0.8956
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lower than that of DeepConv-DTI but with a higher recall. This
result further conrms that our training strategy is effective and
that the resulting model is superior in predicting imbalance
datasets. Finally, we examine the performance of the ensemble
models. It is noteworthy that MAARDTI-E improves over its non-
ensemble counterpart by 3.4, 2.3, and 1.6% on the DrugBank,
Davis, and KIBA datasets, respectively, and it performs on par
with MCANet-B.
Ablation experiments

To better evaluate the effectiveness of the MAAR block and the
attention fusion mechanism in our proposed model, we dene
three variants of the MAARDTI model:

� MAARDTI-OA: the MAAR block is removed and the output
features of the CNN blocks are fed directly into the corre-
sponding transformer modules.

� MAARDTI-PA: the drug MAAR block is removed and the
protein MAAR block remains. For protein, the basic framework
is the same as our proposed model. However, the output
features of the CNN block for drugs are fed directly into the
drug-contextual refocusing module.

� MAARDTI-DA: contrary to MAARDTI-PA, the protein MAAR
block is removed and the drug MAAR block remains to predict
drug–target interactions.
Table 8 Ablation experiments of MAARDTI using three variant models
over five random runs

Dataset Methods Accuracy AUC AUPR t-Value p-Value

DrugBank MAARDTI-OA 0.8204 0.8889 0.8979 3.485 <0.05
MAARDTI-PA 0.8172 0.8905 0.8970 2.332 <0.05
MAARDTI-DA 0.8131 0.8861 0.8948 8.829 <0.005
MAARDTI 0.8222 0.8948 0.9031 — —

Davis MAARDTI-OA 0.8642 0.9160 0.8253 3.886 <0.005
MAARDTI-PA 0.8653 0.9161 0.8237 3.774 <0.05
MAARDTI-DA 0.8639 0.9173 0.8318 3.012 <0.05
MAARDTI 0.8703 0.9239 0.8454 — —

KIBA MAARDTI-OA 0.8912 0.9240 0.7960 2.367 <0.05
MAARDTI-PA 0.8899 0.9249 0.7955 2.897 <0.05
MAARDTI-DA 0.8872 0.9225 0.7901 3.107 <0.05
MAARDTI 0.8982 0.9322 0.8117 — —

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 The ROC curves of MAARDTI and the variant models for the ablation experiments on (a) DrugBank, (b) Davis, and (c) KIBA.
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In addition, statistical tests, t-SNE, are conducted to evaluate
the signicance of the improvements reached by MAARDTI
compared to each variant. Table 8 presents the prediction
results with different variant models on the DrugBank, Davis
and KIBA datasets from ve random training models. Statistical
tests are adopted to evaluate the signicance of the improve-
ment achieved by MAARDTI compared to each baseline model.
Lower p values correspond to higher t values, with p values less
than 0.05 indicating statistical signicance. The results in Table
8 show that the MAARDTI model performs well in the DTI
prediction with ve random training models, outperforming its
Fig. 6 Comparison of attention heatmaps and t-SNE visualization result

© 2025 The Author(s). Published by the Royal Society of Chemistry
variants (MAARDTI-OA, MAARDTI-PA, and MAARDTI-DA).
These results are statistically signicant, further verifying the
effectiveness and reliability of the MAARDTI model. The ROC
curves of the three datasets are shown in Fig. 5 and we plot the
attention heatmap and t-SNE feature distribution in Fig. 6. The
heatmap shows the distribution of attention weights of
different models on drug and protein features that brighter
colors indicate higher attention weights, and the model pays
more attention to these features. The heatmap of MAATDTI
shows a more uniform and dispersed attention distribution.
The t-SNE diagram shows the model's dimensionality reduction
s of the four variant models of MAARDTI.
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representation of DTI pair features in two-dimensional space.
The blue points in the gure represent true interactions, and
the red points represent non-interactions. The t-SNE graph of
MAATDTI shows clearer clustering, and the boundaries
between true interactions (blue dots) and non-interactions (red
dots) are more obvious. This indicates that MAATDTI can better
distinguish drug–protein interactions from non-interactions.
We can conclude that MAATDTI performs better in drug–
protein interaction prediction tasks. Its advantages in feature
capture and classication boundaries enable it to more accu-
rately predict drug–protein interactions. These advantages
make MAATDTI a more reliable and effective tool that can be
applied in drug discovery and biomedical research.
Case study 1 – DTI predictions for randomly selected
untrained proteins and drugs

To validate the performance and generalization ability of our
proposed model on real-world prediction tasks, we conducted
several case studies following previous studies.32,33 We
randomly selected two drugs from the DrugBank dataset. The
remaining data with the related drug–target pairs removed are
set as the training set and the related pairs for testing. Two
randomly selected drugs NADH (DB00157) and lisuride
(DB00589) are adopted as testing data, and each drug contains
10 positive DTIs and 10 negative DTIs. Likewise, the same
operation was performed on two randomly selected proteins
DRD1 (P21728) and ADRA1D (P25100) as for the drugs. For
drugs, NADH is a natural chemical that is involved in numerous
Table 9 DTI prediction results of the two drugs NADH and lisuride and

Drug True positive True negative

DB00157-NADH 10 8
DB00589-lisuride 10 9

Protein True positive True negative

P21728-DRD1 10 9
P25100-ADRA1D 10 9

Fig. 7 The cluster size distribution of the (A) strict, (B) balanced, (C) loo
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enzymatic reactions. It is an approved nutraceutical supple-
ment that is used in some dietary supplement products. On the
other hand, lisuride (DB00589) is an ergot derivative that is an
agonist for dopamine D2 receptors and some serotonin recep-
tors. Table 9 lists the number of True Positive (TP), True
Negative (TN), False Positive (FP), and False Negative (FN)
predictions and accuracy. The full results of predictions are
given in the SI le. The accuracy of NADH (DB00157) and
lisuride (DB00589) DTI predictions is 90% and 95%, respec-
tively. For DRD1 (P21728) and ADRA1D (P25100), the accuracy
of both reaches 95%, with one false prediction in each case. The
above experimental results show that our proposed method has
good prediction and generalization ability in predicting drug–
target pairs.

Furthermore, to avoid biases caused by the coincidental
selection of sequence or structurally similar proteins in the
training set for the test set, we adopt MMseq2 (ref. 49) to cluster
protein sequences in the DrugBank dataset. Then, we randomly
remove a cluster of targets from the dataset, which contains ve
targets at least and uses it as a test set. The remaining data are
used as the training set.

For protein clustering, we investigate the effects of clustering
parameters on the performance of the model to simulate
different scenarios as in real applications. The sequence iden-
tity (seq-id), coverage (c) and coverage mode (cov-mode) are three
basic parameters in MMseq2. We build three cluster groups
based on these parameters (Fig. 7):

(i) Strict group: this group has high similarity and coverage
in each cluster and is suitable for assessing the risk of
two proteins DRD1 and ADRA1D

False positive False negative Accuracy

0 2 90%
0 1 95%

False positive False negative Accuracy

0 1 95%
0 1 95%

se groups of the DrugBank dataset.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 10 DTI prediction results of the three cluster groups based on
different combinations of clustering parameters using MMSeq2

Cluster groups Method Accuracy AUC AUPR

Strict MCANet 0.5625 0.8118 0.6977
Ours 0.7812 0.8275 0.7271

Loose MCANet 0.6562 0.7460 0.8081
Ours 0.8750 0.9667 0.9437

Balanced MCANet 0.8125 0.8213 0.6623
Ours 0.9375 0.8841 0.8722
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overtting the model on closely related targets. The seq-id is set
to 0.9, c is set to 0.9 and cov-mode is set to 1.

(ii) Balanced group: the number and size of clusters in this
group are moderate. It reects the real protein family distribu-
tion and is suitable for evaluating the universality of the model.
The seq-id is set to 0.6, c is set to 0.7 and cov-mode is set to 2.

(iii) Loose group: this group has low similarity and low
coverage, which can test the generalization ability of the model
for cross-family targets. The seq-id is set to 0.3, c is set to 0.5 and
cov-mode is set to 3.

Our model (MAARDTI) and MCANet (the second-best model
in our benchmark) are tested in all clustering groups and the
prediction results are shown in Table 10. Our model achieves
a prediction accuracy of 78.12% for the strict group, 87.5% for
the loose group, and 93.75% for the balanced group. Compared
to its performance in the DrugBank benchmark (see Table 5)
with an accuracy of 82.2%, the model has only a 5% lower
performance in predicting unseen targets. However, based on
the loose group result, the model has an improved accuracy of
6% in predicting distant targets. This indicates that our model
has good generalizability. We focus more on AUC and AUPR
since the number of positive and negative examples per protein
is imbalanced, and accuracy could be misleading. We found
that the AUC and AUPR values for the loose group were higher
than those for the balanced and strict groups. We speculate that
this is due to the following reasons: (i) the clustering structure
of the loose group is looser, which allows the model to more
exibly capture the differences and connections between
different samples when processing the data. (ii) The clustering
structure of the loose group may be more consistent with the
actual data distribution. (iii) The clustering structure of the
loose group may allow the model to be exposed to a more
diverse combination of samples during training. Compared to
MCANet, our method is superior in accuracy by 8–40% in all
clustering groups. These results show that our method is highly
adaptive and robust in predicting test targets with different
degrees of similarity to those in the training set.
Case study 2 – DTI predictions for cold drugs, cold targets,
and cold bindings

Due to the inherent difficulties in collecting novel datasets for
testing the generalizability of models, the cold splitting test
approach has been widely used in drug research.50,51 Following
a previous study,52 the cold target, cold drug, and cold binding
were isolated from the BindingDB dataset. These cold drug–
© 2025 The Author(s). Published by the Royal Society of Chemistry
target pairs were excluded from both training and validation
datasets. A cold drug refers to all interactions involving a drug
that has not been previously encountered in the dataset, while
a cold target encompasses all interactions with a target that is
also novel to the model. In addition, the cold bindings comprise
of interactions between cold targets and cold drugs. Overall, the
number of cold targets, cold drugs and cold bindings is 136,
2127, and 114 respectively. Using this cold splitting test
approach, we compare our model with MolTrans, Hyper-
Attention, MCANet and DLM-DTI52 for generalization perfor-
mance. When we train DLM-DTI, we keep the hyperparameters
consistent with the original operation. As can be seen in Fig. 8,
our model MAARDTI is superior to four existing models in both
cold binding and cold target predictions, achieving a 2% in AUC
over the second-best method. For the cold drugs, while our
model is on par with the other three models, DLM-DTI turns out
to be the most accurate.
Case study 3 – DTI predictions on the olfactory receptor–
molecule pair dataset

A key challenge in exploring the complexity of mammalian
olfactory perception mechanisms is to understand how volatile
organic compounds interact with olfactory receptors (ORs).53

This understanding is crucial to revealing how odor molecules
are recognized and processed by organisms, which in turn helps
us understand how the olfactory system works and may provide
new strategies for treating olfactory-related diseases. In order to
address this challenge and develop models that can predict the
ability of odor molecules to activate specic ORs, researchers
need to rely on high-quality, broad-coverage datasets. The
M2OR54 dataset is a valuable resource created for this purpose
and is a specially designed data resource for in-depth studies of
the interactions between odor molecules and olfactory recep-
tors. This dataset contains over 46 700 unique olfactory receptor
(OR) and odor molecule pairs, which were carefully collated and
analyzed from 31 scientic papers. It covers 11 different
mammalian species, including 1237 unique OR sequences and
596 different molecules. To evaluate the ability of our model to
predict for unseen proteins, we report the performance of the
i.i.d. case, and followed the previous work53 to predict in two
scenarios, namely, random or cluster, i.e., a randomly selected
individual OR or a group of structurally similar ORs were put
into the test set while removing their occurrences in the training
set. The prediction results are presented in Table 11. Our model
performs generally better in precision but has a low recall,
which indicates that the model is more careful for positive
sample prediction and could miss some true positive samples.
As expected, predictions in the random scenarios are overall
better than the cluster scenarios, in alignment with the model
behavior reported by Matej et al. (performance values directly
taken from this work).53 In comparison, while our model has
improved performance in terms of MCC by 19–83% in the
cluster scenarios, the model by Hladǐs et al. shows better
generalization ability with enhanced MCC of 22–43% in the
random scenarios. In the cluster group, the prediction results
show that our model has better generalization ability at the
Digital Discovery
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Fig. 8 The predictive performance of MAARDTI compared with four existing models in cold-splitting dataset prediction.

Table 11 Generalization test in two scenarios on the M2OR dataset

Split Method AveP Precision Recall F-Score MCC

i.i.d. Hladǐs et al.53 0.780 0.689 0.698 0.693 0.605
Ours 0.700 0.700 0.595 0.643 0.555

Cluster Molecule Hladǐs et al.53 0.580 0.544 0.342 0.418 0.334
Ours 0.423 0.795 0.242 0.371 0.399

OR Hladǐs et al.53 0.558 0.535 0.132 0.203 0.088
Ours 0.186 0.545 0.055 0.099 0.147

OR-keep Hladǐs et al.53 0.625 0.576 0.095 0.161 0.091
Ours 0.190 0.211 0.227 0.173 0.167

Random Molecule Hladǐs et al.53 0.729 0.657 0.629 0.638 0.533
Ours 0.445 0.633 0.344 0.446 0.409

OR Hladǐs et al.53 0.684 0.636 0.491 0.552 0.417
Ours 0.610 0.757 0.237 0.361 0.323

OR-keep Hladǐs et al.53 0.710 0.670 0.470 0.548 0.430
Ours 0.526 0.736 0.147 0.246 0.242
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molecular level but has difficulty in handling a wider range of
entities. In conclusion, the weak performance of both MAARDTI
and Matej's model indicates that the M2OR dataset is highly
challenging. Further efforts will focus on enhancing recall and
generalization to unseen data.
Discussion

The identication of DTIs can facilitate the development of
drug repositioning and accelerate the current drug discovery
process. In recent years, a number of computational methods
have been proposed to identify DTIs. These methods utilize
different frameworks that mainly focus on how to fully extract
drug and protein latent features such as semantic features,
graph features, and meta-path features. In addition,
transformer-based and BERT-based prediction frameworks
have been rapidly developed. The ESM2 and BERT-related
modules have shown their powerful feature extraction
Digital Discovery
capabilities directly from protein sequences. Although most
methods have achieved high performance on multiple public
datasets, there is still much room for improvement to meet the
requirements of real-world applications. In this paper, we
propose a novel deep learning model, named MAARDTI, for
predicting DTIs. To the best of our knowledge, this is the rst
attempt to fuse multi-perspective attention to enhance feature
representations. This approach allows us to efficiently explore
a large parameter space and ne-tune critical hyperparameters,
resulting in a model that demonstrates superior performance
across multiple benchmark datasets. The identication of
optimal hyperparameters is crucial for achieving high perfor-
mance in our proposed model. In this study, we employ grid
search to systematically identify the best hyperparameters for
our proposed model. Our optimization process begins with the
denition of a comprehensive parameter space, which includes
key hyperparameters such as learning rate, batch size, number
of layers, dropout rates, and fusion weights. This step ensures
© 2025 The Author(s). Published by the Royal Society of Chemistry
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that we not only cover a wide range of possibilities but also
focus on the most effective congurations. The optimized
hyperparameters signicantly contribute to the high perfor-
mance of MAARDTI. For instance, the selected learning rate of 1
× 10−4 and fusion weights a = 0.5 and b = 0.5 are found to be
particularly effective in balancing model complexity and
training efficiency. The choice of these hyperparameters also
plays a crucial role in capturing local dependencies within the
protein and drug sequences. We conducted a series of experi-
ments with the balanced dataset DrugBank and two imbalanced
datasets Davis and KIBA. For imbalanced datasets, we introduce
the PolyLoss function, which focuses the model more on diffi-
cult samples and thus can improve the classication perfor-
mance of minority class samples. The comparative experiments
using extensive test data demonstrate that our model outper-
forms the state-of-the-art methods. Our model shows
outstanding results in three public datasets, achieving AUC
values of 0.8975, 0.9248, and 0.9330 in DrugBank, Davis and
KIBA, respectively. It is worth noting that the KNN algorithm
obtained the second-best performance in the precision metric
in the KIBA dataset. This could be attributed to several factors.
Firstly, the KIBA dataset may possess distinct local patterns that
align well with the KNN algorithm's strength in capturing local
similarities. Secondly, the algorithm's non-parametric nature
and simplicity allow it to avoid overtting, especially when the
dataset is of moderate size and the feature space is relatively
simple. However, this also suggests potential limitations in the
KIBA dataset, such as a lack of complex global patterns or
insufficient sample diversity, which might not fully challenge
more sophisticated models. Moreover, the results of the abla-
tion experiments show that the MAAR module, which exploits
the drug–protein relationships via channel and spatial atten-
tion, can improve the prediction performance. Compared with
other existing multi-attention or dual-attention methods,
MAARDTI is unique in its comprehensive consideration of
channel and spatial attention, as well as deep fusion of drug
and protein features, which gives it stronger generalization
ability and prediction performance when dealing with complex
DTI prediction problems.

Although our proposed model has improved prediction
performance, it still has some limitations. These include: (i) our
model can only predict whether a protein and a drug interact
without gaining insights into the underlying interaction
mechanism. (ii) The potential of the multi-perspective attention
mechanism for interpretability requires further exploration. (iii)
While our optimization strategy proved effective, there is always
room for improvement. The integration of automated hyper-
parameter tuning tools could streamline the optimization
process and potentially uncover even more optimal congura-
tions. (iv) The current single feature framework could limit the
predictive performance of the model. Other embedding
methods could be explored in future work. For example, pre-
trained protein language models have been shown to
strengthen sequence latent representations, which can be
combined with other sequence semantic information to obtain
a more comprehensive representation. For drugs, graph repre-
sentations, drug ngerprints, and drug motif representations
© 2025 The Author(s). Published by the Royal Society of Chemistry
can increase the diversity of feature representations to further
improve the reliability of prediction. In the future, we would
also like to apply MAARDTI on AI-based virtual screening of
therapeutic targets for hit identication and drug reproposing,
followed by validation through wet-lab experiments.
Conclusion

In this paper, we report a novel computational model, called
MAARDTI, for predicting DTIs. We combine multi-attention
features with a multi-perspective attention aggregation
module to improve subspace feature representation while the
bi-contextual refocusing block is used to detect the latent inter-
relationship of drugs and proteins. The comparison with the
state-of-the-art methods demonstrates that our method has
signicantly improved performance. These outstanding results
show that our proposed model MAARDTI can better capture the
protein and drug latent features. We hope that this approach
can help researchers to speed up drug screening and improve
the success rate of drug discovery.
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