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e transfer learning on the formal
coupling of amines and carboxylic acids to form
secondary alkyl bonds

Eunjae Shim, a Ambuj Tewari, bc Paul M. Zimmerman *a and Tim Cernak *ad

Tailoring a reaction condition to suit new substrates can be labor-intensive. While machine learning can aid

this endeavor, conventional strategies require large datasets to make useful predictions. Active transfer

learning (ATL) tackles this problem by leveraging previously collected reaction data and adaptively

selecting reagent combinations. Here, ATL is prospectively applied to find improved reagent

combinations for C(sp3)–C(sp3) cross-couplings between activated amines and carboxylic acids. The

formation of carbon–carbon bonds from amines and acids is a powerful complement to the classic

amide coupling, but the formation of sterically congested secondary alkyl groups studied here

represents a challenge for catalysis. Our results demonstrate ATL consistently improved yields within

three batches of experiments, making the method of practical utility for chemical space exploration

studies, such as drug discovery.
Introduction

Reaction condition selection is a fundamental task in experi-
mental chemical synthesis. For simple, robust reactions with
multiple precedents (e.g., Boc deprotection), one of a few well-
known reaction conditions will oen give satisfactory results
(Fig. 1A). Reactions with more complex recipes, like Suzuki
coupling, make it more difficult to prioritize reaction condi-
tions, as many conditions exist and no single condition is ideal
for every substrate pair.1–3 For new reaction methods that have
not yet been generalized, all combinations of analogous
reagents are potentially viable candidates to promote coupling
of distinct substrate pairs. Navigating such a vast space of
reaction conditions requires substantial time and resources, so
methods that streamline this exploration are needed.4,5

Reaction condition exploration with challenging substrates
could be constructively guided by machine learning, which has
recently shown promise in quantitative predictions of chemical
reaction outcomes.6–19 Conventional algorithms, however, fall
short in regions with sparse data. Therefore, adaptive learning
methods which rene predictivity through iterative experi-
mentation have emerged.20–24 For instance, Bayesian optimiza-
tion (BO) has become popular for optimizing the reaction of
specic substrate pairs (see SI Section 2 for a survey of recent
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efforts in this area). However, currently, BO methods that
leverage previously collected datasets, which may be informa-
tive, remain rare,25 presenting a need to develop new strategies.

Accordingly, we recently proposed active transfer learning
(ATL), whichmerges active learning and transfer learning.26 ATL
starts by transferring27,28 a source model trained on prior data to
identify promising regions in the target space for exploration.
The active learning29 step of ATL renes this model by iteratively
evaluating reactions it deems most important to improving
yield, enhancing the understanding of the reactivity landscape
beyond the source model. Our previous application of ATL
investigated a dataset of Pd-catalyzed cross-couplings with
various classes of nitrogen nucleophiles. The combination of
relevant knowledge transferred from a nearby reactivity domain
through the source model and its iterative renement was
shown to identify viable reaction conditions for target nucleo-
philes faster than either learning strategy—active or transfer—
alone. Key to ATL's efficiency was exploration within a focused
region in the reaction condition space where themost impactful
reagent, the catalyst, was prioritized in the source dataset.
Based on this nding, the current work prospectively applies
ATL on a recently developed amine-acid coupling, which
includes a large unexplored space of plausible reaction condi-
tions, to couple challenging substrate pairs.

Cross-coupling reactions between amines and acids,30–35

which are the two commercially available building blocks with
the broadest diversity,36–39 are a promising class of trans-
formations to complement the classic amide coupling.40–42 One
example is the nickel-catalyzed C(sp3)–C(sp3) cross-coupling
between activated amines and carboxylic acids (Fig. 1B) which
provides access to the most prevalent bond among organic
Digital Discovery

http://crossmark.crossref.org/dialog/?doi=10.1039/d5dd00309a&domain=pdf&date_stamp=2025-11-05
http://orcid.org/0000-0002-4085-9659
http://orcid.org/0000-0001-6969-7844
http://orcid.org/0000-0002-7444-1314
http://orcid.org/0000-0001-5407-0643
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00309a
https://pubs.rsc.org/en/journals/journal/DD


Fig. 2 Initial efforts to use activated 2-aminoindane 10 as a coupling
partner. (A) Isolated yields of reactions conducted at 0.15 mmol scale.
(B) Assay yields determined by ultrahigh performance liquid chroma-
tography-mass spectrometry (UPLC-MS) of 0.01 mmol scale reac-
tions. NHPI: N-hydroxyphthalimide. TPP+: 2,4,6-triphenylpyridinium.

Fig. 1 (A) Representative challenges of reaction condition selection.
(B) Reductive amine-acid coupling that forms C(sp3)–C(sp3) bond.31

(C) Previous substrate scope screen reveals sterically congested
products as a challenge. (D) ATL was used to explore the reaction
condition space, identifying modifications for increasingly challenging
substrate pairs. NHPI: N-hydroxyphthalimide.
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compounds: the C–C bond.31 Under our previous best reaction
condition – which used NiBr2$dme as precatalyst and 4,40-bi-
s(triuoromethyl)-2,20-bipyridine (L1) as ligand with manga-
nese as the reductant – diverse pairings of 8 activated amines
and 12 activated acids showed >30% conversion for half of the
Digital Discovery
96 desired products,31 yet challenging sterically congested
substrates oen gave little or no product (Fig. 1C). To identify
improved reaction conditions for challenging substrate pairs
where at least one coupling site is a secondary sp3-carbon atom,
ATL was prospectively applied, building on previous optimiza-
tion data for formation of 3 (Fig. 1D).
Results

Before turning to ATL, preliminary experiments were conducted
to understand the reactivity of sterically hindered amines.
Initially, we attempted to forge a secondary–secondary alkyl
bond by coupling 1 with an indan-2-yl pyridinium salt (10)
under 12 reaction conditions rationally selected (no ATL) by
varying ligands and precatalysts. The reaction condition iden-
tied with the highest assay yield was repeated at 0.15 mmol
scale, conrming that a switch in nickel precatalyst counterion
from Br to Cl while using previously optimal ligand L1,
improved the isolated yield from 37% to 45% yield (Fig. 2A).

Subsequent experiments with NiCl2$dme that surveyed eight
ligands to couple N-Boc-alanine-derived substrate 11 with 10
were low yielding (Fig. 2B). The low yields were hypothesized to
be caused by differences in the rate of formation or the stability
of resulting radicals following deamination of 2 and 10 and
decarboxylation of 1 and 11. Therefore, additives and new
solvents were also considered necessary to further improve the
outcome.

Accordingly, a list of additives known to impact
decarboxylation,43–45 [e.g., trimethylsilyl chloride (TMSCl) and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Overview of ATL. (A) Reaction condition search space. (B)
Representation of each reagent class. (C) Source dataset structure
uses 3, 9, and 8 as products. (D) Schematic description of one ATL
iteration.

Fig. 4 Application of ATL for (A) coupling 11with 12 and (B) coupling 1
with 10. Reactions were conducted at 0.05 mmol scale and their assay
yields are shown, except those in entry 1. aIsolated yield from reaction
conducted at 0.15 mmol scale. NHPI: N-hydroxyphthalimide. TPP+:
2,4,6-triphenylpyridinium.
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NaI] and deamination46 (MgCl2, Zn, Li and tetra-
butylammonium salts) in nickel-catalyzed cross-electrophile
couplings30,47 was curated. The salt cations and anions were
treated independently and mix-and-matched to nalize the list
of 14 additives to consider. Additionally, nine solvents that are
either commonly used (DMA, NMP) for relevant trans-
formations or ethereal solvents were selected as candidates.
Along with ve precatalysts and 29 N,N0-bidentate ligands
available in our laboratory, a combined search space of 18 270
reagent combinations was dened (Fig. 3A). To winnow these
possibilities to those most likely to improve yields, ATL was
applied. Particularly, a practical scenario with a short timeline
was adopted, targeting just three iterations of ATL. This was
viewed as a reasonable benchmark timeframe that could
meaningfully impact a chemistry discovery program.

Before applying ATL, 72 additional reactions of form 11 + 10
/ 8 were performed experimentally, sampling ligand, additive
and solvent combinations since the newly introduced variables
(additives and solvents) were not systematically explored in the
previous study. These reactions were carried out using three
sets of high-throughput experiments, designed using simple
rules. Ligand-additive pairs that worked well in one set were
kept for the next round, while we continued to test different
solvents and additives. In the later stages of this initial testing,
we aimed to both improve reaction performance and under-
stand patterns of reactivity. Reactions conducted up to this
point with variations in all reagent classes make the combined
dataset suitable as a source for ATL (Fig. 3C).

To initiate ATL, source reactions were represented by
concatenating vectors of physical descriptors for substrates,
ligands, and solvents, with one-hot encoded nickel precatalysts
© 2025 The Author(s). Published by the Royal Society of Chemistry
and additive ions (Fig. 3B, see SI Section 5 for details). The
source model, based on random forest classiers, was then
trained to be simple (depth one) for initial transferability and
better adaptability, to select initial experiments in the target
space (Fig. 3D; see pages S19, S20 and S46 for further details on
model hyperparameters). Although using regressors is a viable
alternative, predicting whether a reaction condition improves
outcome (a classication) is preferrable for a small number of
experimental iterations. As such, we continue to use classiers
as we did in our previous study.26

However, experiments recommended can vary across
different models due to the randomness involved in random
forests. To reduce the uncertainty involved in experiment
selection, 100 different source models were trained. Then, each
model voted for N reactions (with an ensemble of 100 source
models, the set of reaction conditions suggested by using
different N values does not vary signicantly, see Tables S5 and
S15; the voting scheme does not necessarily lead to better model
performance) with highest predicted probabilities to improve
reaction outcome (i.e., greedy selection; which we previously
found to be more efficient than other strategies that involve
uncertainty26). The reactions with the most votes were con-
ducted as the next batch of experiments. Subsequently, 100 new
models were trained on the newly collected reaction data and
combined into the previous models, updating the overall
knowledge of the target reactivity. The process of ranking,
experiment, and model update corresponds to one iteration of
the ATL protocol.
Digital Discovery
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Fig. 5 (A) Best results from each of the three batches of six reactions
suggested by ATL. Assay yields of reactions conducted at 0.05 mmol
scale are shown. (B) Assay yields of 14 from each ATL iteration per-
formed using HTE. (C) Portion of descriptors used by models after
each iteration to make a prediction. NHPI: N-hydroxyphthalimide.
TPP+: 2,4,6-triphenylpyridinium.
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For an initial case study, 11 and 4-methylbenzyl pyridinium
salt 12 were selected as target substrates. In principle, the
source model's knowledge of reaction conditions for 1 and 2
will be useful due to the structural and electronic similarity to
11 and 12, respectively. Under the previously reported condi-
tion, 11 and 12 react to give 8 in 55% yield (Fig. 4A entry 1),
supporting the hypothesis that the reactions are similar. The
transferred source model recommended experiments that all
included the ligand L1, perhaps due to this ligand being used in
the largest number of successful reactions in the source dataset
(Fig. S6). For the remaining conditions, magnesium additives
paired with two different solvents were suggested, possibly due
to their positive impact on forming 8 in the source dataset
(entries 2–4). However, none of the three reactions in the rst
iteration gave higher assay yield. Therefore, trees that suggested
those conditions were removed from the source random forests
to rene its predictive ability. The updated model chose three
additives (entries 5–7), and a control with no additives was also
conducted (entry 8). The latter gave a higher assay yield (65%)
than the initial yield of 55% (entry 1). The efficacy of using no
additive may be due to the high chemical similarity of the target
substrates to 1 and 2: our previous report showed that the latter
substrates did not benet from additives under the optimized
condition.31

Next, the coupling of cyclic substrates 1 and 10 (Fig. 4B) was
revisited in an attempt to form C–C bonds between two
secondary alkyl carbons.48–50 Few such cross-coupling reactions
are known, due to the challenging sterics, yet would generate
complex and highly desirable sp3-rich products. The rst batch
of six reaction conditions was determined using the source
model, which suggested conditions with varying additive
anions and solvents. In the second iteration of ATL the models
suggested varying the additives while using the previous best
solvent, THF. The best assay yield observed across the two
iterations was 33% (entries 2–3). The third iteration of ATL xed
the additive to TMSCl, the best from the second round, and
queried combinations of nickel precatalysts and solvent. As
a result, three reaction conditions returned higher assay yields
than the previously reported optimized condition (48% being
the highest, entry 4). With the help of the source dataset, ATL
suggested changes to three reaction components, which
increased the yield from 37% to 48% within three iterations.

Substrate pairs with one cyclic and one acyclic secondary
moiety were considered next. The previous condition gave
a 13% assay yield of 8 from 11 and 10 (Fig. 5A, entry 1; c.f.,
Fig. 2B where NiCl2$dme and L1 gave an 8% assay yield) clearly
shows that this is a challenging substrate pair. To improve the
reaction, the ATL model rst suggested coupling of 11 with 10
using different nickel precatalysts and solvents. With NiI2 and
NiCl2$dme providing assay yields higher than 13%, the next two
batches of reactions proposed by ATL continued to examine the
two precatalysts with various additives, mostly using dioxane as
co-solvent (Tables S21–S22). Enhanced yields were observed at
all iterations, arriving at a 37% assay yield when NiCl2$dme was
used with MgBr2 as additive in a mixture of acetonitrile and
dioxane co-solvents. To provide a comparison to baseline
methods, the total 98 reactions for this substrate pair were
Digital Discovery
retrospectively analyzed, showing ATL to be the best model (see
Fig. S20).

As a nal test case for ATL was examined using 1-(2,6-
dimethylphenoxy)propyl-2-pyridinium salt (13, derived from the
drug mexiletine), which has a vicinal ethereal oxygen that can
impact radical stability, act as a chelator, and has higher steric
bulk than other pyridinium salts studied. These factors make
the coupling with 1 particularly challenging – the previous
reaction condition returned 7% assay yield. High-throughput
experimentation (HTE)51–55 studies were conducted in 24-well
reactor blocks to survey the reaction space. While other
© 2025 The Author(s). Published by the Royal Society of Chemistry
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numbers of reactions could reasonably be considered from
a theoretical standpoint, the practicality of running experi-
mental studies in standard HTE labware makes batches of 6 or
24 reactions highly practical.56 Initially, all three reagent
components except the ligand were surveyed but returned
minimal improvements over the 7% benchmark (Fig. 5B, iter-
ation 1). Subsequently, using precatalysts that were successful
in the rst iteration, ATL focused on identifying suitable addi-
tives. In fact, the ATL models queried nearly all additive
candidates (Table S11). This illustrates the distinctive reactivity
of 1 with the drug-derived substrate 13, since it implies the
difficulty of prioritizing a few additives among the additives
investigated in the source dataset. More sophisticated featuri-
zation of additives may be useful for similar situations in future
applications.57 Nonetheless, no signicant improvement was
observed (Fig. 5B, iteration 2). In the last iteration, the le half
of the plate surveyed combinations of nickel sources and
solvents using KBr as additive. Among them, nine entries
returned greater than 10% assay yields, including yields greater
than 20% in three wells (Fig. 5B, iteration 3). Further tuning of
stoichiometries at 0.15 mmol scale improved the yield to 43%
(Table S14), demonstrating ATL's utility in the early stages of
reaction development when partnered with downstream
optimization.

Lastly, to understand the learning behaviors of ATL, the
models in Fig. 5B were analyzed in terms of their use of
chemical descriptors (Fig. 5C; see SI Fig. S19–S21 for Shapley
value analyses). The source model makes predictions primarily
based on ligand features (purple bars) which suggests their
importance to reactivity and also explains why L1 was recom-
mended in all experiments. The target models were therefore
relied upon to delineate other reagent components. The rst
target models learned how the solvent and nickel source affect
reactivity (blue bars). Similarly, the next round of target models
supplemented understanding of how additives impact reaction
outcome (green bars). The three models, when combined, make
predictions based on descriptors spanning all reagent classes
(similar learning behavior is observed for case studies 11 + 10
and 1 + 10; see Fig. S16 and S18). This is a possible explanation
for the consistent observation of highest yields in the third
iteration. Accordingly, the ‘(number of variables – 1)-th’ itera-
tion could be a reasonable rule of thumb to estimate when
meaningful enhancements may appear using ATL.
Discussion

Reaction optimization involves iterative experimentation that
leverages prior knowledge as well as knowledge gained from
each batch of experiments. Our formulation of ATL is a new
technique that can be used for this purpose, operates on small
data, and iteratively renes the models' knowledge. In this
sense, ATL is related to BO methods (see SI Section 2 for
examples of their prospective applications). However, ATL has
unique distinctions that contribute to the eld of machine
learning for reaction improvement and thus merits further
evaluation.
© 2025 The Author(s). Published by the Royal Society of Chemistry
One signicant advantage of ATL is its incorporation of
source model transfer to use previously collected reactions from
a different domain that are relevant to the target reactions of
interest. The transfer does not simply borrow the source model
and use it in the target domain because the two domains are not
similar enough for the optimal source model to effectively
prioritize reaction conditions for the target. To transfer only the
most relevant information across this reactivity gap, simplied
source models are used (the importance of model simplication
has been studied in ref. 26). This connection between reactivity
domains allows iterative application of ATL to new targets,
where accumulated reaction data helps to expand reaction
scope beyond what could be accomplished without support
from statistical models. More importantly, in our case studies,
the source model narrowed down the ligand search space from
29 to one, or from 18 270 to 630 potential reaction conditions,
saving considerable experimental effort.

Another useful feature of ATL is the observed consistency in
the iteration in which the reaction condition with highest
improvement is identied. The consistency of predictions arises
from the model's adaption to the target reactivity domain,
where improved reaction conditions are more likely to be sug-
gested once all reagent types have been studied. This provides
the practitioner a sense of how long the campaign would take
for one target substrate. Simultaneously, the consistency acts as
a stopping criterion that prevents superuous experiments.

Nonetheless, ATL possesses inherent limitations. In order
for the transferred source model to be useful, the source reac-
tions need to be ‘relevant’ to the target.4 Failure to secure
effective transfer may result in decreased model performance,
leading to wasted resources. Although there currently is no
quantitative method for judging their relevance,58 an expert
chemist's intuition on the plausibility of applying source reac-
tivity information to the target can be an effective qualitative
measure. The other limitation roots from ATL's current use of
classiers. As the model is trained to classify whether a new
reaction condition will have higher yield than the previously
optimized condition, distinguishing those with signicant yield
benet from those that give minimal increment is difficult.
Dynamically increasing the classication threshold or incor-
porating regressors are plausible strategies that may address
this issue.

Conclusion

In conclusion, ATL was prospectively applied to expand the
applicability of the nickel-catalyzed amine-acid C(sp3)–C(sp3)
coupling of challenging sterically-congested secondary
substrates.31 Improved results were consistently obtained
within three rounds of experiments for four substrate pairs
where one or both coupling sites included a secondary carbon,
accessing complex sp3-rich products. These amine-acid
couplings complement the amide coupling of amines and
acids. An ether-containing substrate derived from the drug
mexiletine (13) initially coupled in 7% yield was obtained in
43% yield following three rounds of ATL, with subsequent
optimization of stoichiometries. In discovery settings where
Digital Discovery
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chemical knowledge is limited and the full combinatorial set of
discrete reagents is inaccessible, ATL is a powerful tool for
initial optimization for challenging substate pairs, particularly
when relevant prior data is available.
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