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AC-mediated ternary complexes
with AlphaFold3 and Boltz-1

Nils Dunlop, † Francisco Erazo, † Farzaneh Jalalypour and Roćıo Mercado *

Accurate prediction of protein–ligand and protein–protein interactions is essential for computational drug

discovery, yet remains a significant challenge, particularly for complexes involving large, flexible ligands. In

this study, we assess the capabilities of AlphaFold 3 (AF3) and Boltz-1 for modeling ligand–mediated ternary

complexes, focusing on proteolysis-targeting chimeras (PROTACs). PROTACs facilitate targeted protein

degradation by recruiting an E3 ubiquitin ligase to a protein of interest, offering a promising therapeutic

strategy for previously undruggable intracellular targets. However, their size, flexibility, and cooperative

binding requirements pose significant challenges for computational modeling. To address this, we

systematically evaluated AF3 and Boltz-1 on 62 PROTAC complexes from the Protein Data Bank. Both

models achieve high structural accuracy by integrating ligand input during inference, as measured by

RMSD, pTM, and DockQ scores, even for post-2021 structures absent from AF3 and Boltz-1 training

data. AF3 demonstrates superior ligand positioning, producing 33 ternary complexes with RMSD < 1 Å

and 46 with RMSD < 4 Å, compared to Boltz-1's 25 and 40, respectively. We explore different input

strategies by comparing molecular string representations and explicit ligand atom positions, finding that

the latter yields more accurate ligand placement and predictions. By analyzing the relationships between

ligand positioning, protein–ligand interactions, and structural accuracy metrics, we provide insights into

key factors influencing AF3's and Boltz-1's performance in modeling PROTAC–mediated binary and

ternary complexes. To ensure reproducibility, we publicly release our pipeline and results via a GitHub

repository and website (https://protacfold.xyz), providing a framework for future PROTAC structure

prediction studies.
1 Introduction

Accurate prediction of protein–ligand and protein–protein
interactions (PLIs and PPIs) remains a central challenge in
structure-based drug discovery,1,2 one made even more pressing
by the rise of targeted protein degradation (TPD). TPD modali-
ties such as proteolysis-targeting chimeras (PROTACs) and
molecular glues (MGs) move beyond simple functional inhibi-
tion of disease drivers to harness the cell's intrinsic protein
disposal machinery, the ubiquitin–proteasome system (UPS),
offering a different mode-of-action compared to traditional
small molecule inhibitors.3–9 By facilitating the complete
removal of target proteins, including proteins previously
deemed undruggable, TPD has rapidly advanced from concept
to dozens of clinical candidates in the past two decades,
particularly in oncology.9,10

From a computational standpoint, however, modeling
PROTAC–mediated ternary complexes is difficult: a large,
eering, Section for Data Science and AI,

sity of Gothenburg, Chalmersplatsen 4,
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exible ligand must cooperatively link two proteins, sampling
a vast conformational space.1,11–13 Current computational
methods encounter difficulties in accurately predicting complex
multi-molecular assemblies, especially when large, exible
ligands mediate the interactions.2,11,14 Traditional docking-
based methods have struggled with PROTAC systems due to
the dynamic nature of PROTAC–mediated PPIs and the struc-
tural variability introduced by exible linkers.12,15,16 AlphaFold2
(AF2) marked a signicant advancement in protein structure
prediction, attaining near-native precision for monomeric
proteins17,18 and demonstrating some success in modeling
transient protein complexes.14 However, it performs poorly on
larger multimers and their interfaces,11,19,20 notably when
ligand–mediated interactions or conformational changes are
involved, as it has not been trained on these.21 Specialized co-
folding models have been created to overcome these limita-
tions,22,23 yet signicant challenges persist in achieving predic-
tive accuracy for PLIs suitable for drug discovery.

The recent release of AlphaFold3 (AF3) expands AF2's capa-
bilities by incorporating ligand and nucleic acid interactions,
learning jointly from protein-small-molecule structures, and
thus offers enhanced opportunities for biomolecular complex
prediction.2 However, the initial release of the AF3 web server24
© 2025 The Author(s). Published by the Royal Society of Chemistry
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does not support PROTACs as of this publication (July 2025),
restricting its applicability to model such ternary complexes.
Building upon the AF3 framework, Boltz-1 (ref. 25) reportedly
achieves comparable accuracy as an open-source alternative, and
has been closely followed by the release of Boltz-2 (ref. 26). Recent
advances such as Boltz-2 (ref. 26) and Protenix27 have extended the
AF3 architecture with larger training sets and new modules for
binding affinity prediction and multiple sequence alignment
(MSA) processing. However, recent independent benchmarks
indicate that while these next-generation generative models offer
incremental improvements, they continue to face limitations in
physical plausibility and binding site identication, particularly
for underrepresented binding modes.28 Given these comparable
performance levels, we focused our benchmarking on the most
widely adopted and representative frameworks at the time of our
study, AF3 and Boltz-1. However, whether powerful deep learning-
based structure predictors like AF3 and Boltz-1 can handle PRO-
TAC ternary complexes remains an open challenge due to the
structural exibility and cooperative binding these systems
require, and has not been assessed systematically.1,11,13,29

Here we provide that assessment, focusing on modeling
PROTAC–mediated ternary complexes due to their growing
signicance in drug discovery.30 Using the recently released
inference code, which accepts explicit ligand coordinates, we
benchmark AF3 against Boltz-1 on the 62 crystallographically
resolved PROTAC ternary and binary complexes currently in the
Protein Data Bank (PDB).31 Our automated pipeline generates
inputs, runs three seeds per complex, and extracts accuracy
metrics. We show that while both engines achieve near-native
structure prediction when ligand information is supplied, AF3
is consistently more accurate on ligand pose. With the best
settings, AF3 yields 33 out of 62 structures with an RMSD < 1 Å
and 46 with an RMSD < 4 Å, while Boltz-1 produces 25 and 40 for
these respective thresholds, indicating near-native accuracy for
both methods. Our pipeline and results are publicly available
via web (https://protacfold.xyz) and a GitHub repository,
providing a framework that other researchers can use for
future PROTAC structure predictions.
Fig. 1 Overview of the structure prediction workflow. The pipeline integr
ligase components using , systemat
complex structures via the respective inference engines, and automated

© 2025 The Author(s). Published by the Royal Society of Chemistry
2 Methods
2.1 Overview of structure prediction pipeline

The structure prediction pipeline, depicted in Fig. 1, integrates
several key stages: data preparation, utilization of the PRO-
TACFold automation platform, execution of structural predic-
tions with AF3 and Boltz-1, and comprehensive evaluation of
the results. The subsequent sections provide detailed descrip-
tions of each component within the workow.
2.2 Data overview

For this work, we curated a dataset of 62 PROTAC–mediated
ternary and binary complexes from the PDB.31 Each structure
contains experimentally resolved coordinates for the full PROTAC
molecule—including warhead, linker, and E3 ligase binding
moiety—as well as at least one of either the POI or the E3 ubiquitin
ligase. This collection represents all publicly available, fully crys-
tallized PROTAC ternary and binary complexes as of May 2025.
Structures with partially resolved PROTACs, such as those
capturing solely warhead, were identied but not included here.
The completeness of PROTAC crystallization was validated
through careful review of each structure's associated publication,
assisted by a Gemini-based prompt.

The nalized dataset comprises 48 ternary complexes and 14
binary complexes. Metadata extraction, including chain iden-
tiers, ligand composition, molecular weight, and resolution,
was performed using a semi-automated pipeline. Fig. 2
summarizes key dataset characteristics, presenting distribu-
tions of PROTAC size, physicochemical properties, and diversity
of protein targets.

To ensure extraction accuracy, automated assignments of POIs
and E3 ligases were cross-validated against manual labels, with
detailed results provided in Appendix F. Structures were addi-
tionally conrmed through review of the original publications,
and those not denitively identiable as PROTAC degraders were
excluded. An auxiliary set of 62 structures with incomplete or
partially resolved PROTACs, including several binary complexes,
was compiled but not analyzed further here. All curated structures
ates automated data retrieval from the PDB, identification of POI and E3
ic generation of input files for AF3 and Boltz-1, prediction of ternary
performance assessment.

Digital Discovery, 2025, 4, 3782–3809 | 3783
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Fig. 2 Overview of the 62 PROTAC complexes analyzed. (a) Histograms of selected physicochemical properties. All histograms are stacked plots
differentiating between PDB structures deposited pre- and post-2021; the resolution histogram is presented as a stacked plot differentiating
crystallography methods, X-ray diffraction or cryo-electron microscopy (cryo-EM). (b) Nested pie chart showing the distribution and count (in
parentheses) of E3 ligases and POIs represented in the dataset, where the outer ring indicates the corresponding PDB ID.
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and preprocessing les utilized in this study are openly available
on GitHub at https://github.com/NilsDunlop/PROTACFold.
2.3 Data preparation

Building upon the dataset described previously, we employed our
automation platform, https://protacfold.xyz, to systematically
extract FASTA sequences, publication details, and ligand
annotations, which allowed us to determine the POI, E3 ligase,
and whether each structure represented a PROTAC degrader.
Our detailed pipeline analysis led to the reclassication of seven
structures (5HXB, 6UUO, 6XK9, 7KHL, 7MEU, 7LPS, 8OKB),
originally identied as PROTACs in prior work.11,32 Those seven
structures were determined to be either MGs or instances of
only warhead crystallization. We categorized the nal 62-
structure dataset based on inclusion in the AF3 and Boltz-1
training data (cut-off: 2021-09-30); of these structures, 16 were
included in this training data, while 46 were not.

The recent release of AF3 and Boltz-1's inference code33,34

introduced enhanced ligand handling, enabling direct input via
either Chemical Compound Dictionary (CCD) codes35 or
SMILES strings. CCD codes are unique PDB identiers, with
each entry dening a molecule's connectivity and idealized 3D
coordinates, whereas SMILES strings offer a textual line nota-
tion for molecules. To determine the optimal input strategy for
PROTACs with these new tools, we used our automation plat-
form to systematically prepare model inputs using both repre-
sentations: canonical isomeric SMILES were generated with
3784 | Digital Discovery, 2025, 4, 3782–3809
OpenEye OEToolkits 2.0.7,36 and CCD codes were retrieved from
their respective les via the PDB GraphQL
API.31 Beyond ligand input preparation, the platform also
identies the POI and E3 ligase components using Gemini 2.5
Flash Experimental to process sequences, paper abstracts, and
ligand information, all sourced from the PDB (accuracy and
prompt details in Appendix E).

We standardized PDB complexes to ensure methodological
consistency and focus on the essential components for analysis.
This entailed removing accessory proteins and molecules beyond
the three main components of binary and ternary structures: POI,
E3 ligase, and PROTAC ligand. Components such as elongin-C,
elongin-B, extraneous DNA segments, and occasionally solvent
molecules (water or ions) were removed. For PDB entries con-
taining multiple ligands, we retained only the PROTACs while
excluding all other ligands. For each complex, the required data
(POI, E3 ligase, and PROTAC) were compiled into JSON for AF3
and YAML for Boltz-1 according to their input specications. For
AF3, we generated six JSON input les for each PDB entry, corre-
sponding to two ligand representations (CCD or canonical
isomeric SMILES) each with three random seeds (24, 37, 42). For
Boltz-1, we generated two YAML input les (CCD, SMILES) with
the three seeds specied as a runtime argument.
2.4 PROTACFold: PROTAC automation platform

To streamline and support future investigations, we developed
the web-based https://protacfold.xyz platform. PROTACFold
© 2025 The Author(s). Published by the Royal Society of Chemistry
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automates the extraction of key structural and ligand
information from the PDB, simplifying the preparation of
simulation-ready input les for AF3 and Boltz-1. Users can
input a PDB ID and specify the desired number of seeds, and
the platform then queries the PDB via its GraphQL API37 to
retrieve ligand metadata, FASTA sequences, and publication
information. Using this data, PROTACFold determines the POI
and E3 ligase components, aided by Gemini 2.5 Flash Experi-
mental. This large language model analyzes the sequence data,
abstracts, and protein/ligand annotations to robustly classify
components using a detailed prompt (Appendix E).

Following PDB information retrieval, the user is redirected to
a results page offering options to download all structures
(including accessory proteins) or the “cleaned” ternary struc-
tures only. The downloaded les include a text document con-
taining the determined POI and E3 ligase names and
sequences, the experimental assembly PDB structure, and the
AF3 JSON and Boltz-1 YAML input les. Comprehensive guides
for then setting up AF3 and Boltz-1 are available on our GitHub
repository, aiming to facilitate rapid setup and support future
research in this domain.
2.5 Predicting structures with AF3 and Boltz-1

Aer processing all input les for each of the 62 PROTAC
structures (×3 seeds), we initiate biomolecular interaction
predictions using AF3 and Boltz-1. The AF3 pipeline33 involves
compiling their Docker image, downloading ∼700 GB of public
databases for MSA, incorporating model parameters (provided
by Google DeepMind following a request for approval), and
supplying input JSON les, all congured by our batch script at
runtime. Boltz-1 setup,34 by comparison, requires only a Python
installation and specication of the cache, input YAML le, and
output folder. To ensure a fair comparison between Boltz-1 and
AF3, we congured both tools with 10 recycling steps and 25
samples during runtime, mirroring AF3's default parameters.
On an A100 GPU, a single prediction with Boltz-1 averages 5–15
minutes, while AF3, with its more extensive MSA calculation,
takes 20–30 minutes. Following prediction completion, we
aggregate the top predictions (two input strategies, CCD or
SMILES, ×3 seeds) by PDB ID and process them through our
evaluation script to consolidate all evaluation metrics into
a single CSV le.

During the initial Boltz-1 prediction runs, we identied that
its le, containing CCD information, was
outdated, lacking entries for newer ligands such as A1ANN (PDB
ID 9B9W). We thus updated the le, enabling
us to predict newer structures with Boltz-1. Furthermore, three
structures (8FY0, 8FY1, and 8FY2) were challenging to predict
with SMILES input due to the large ligand, YF8, which triggered
a value error due to the default four-character limit for atom
names in Boltz-1. This is because Boltz-1 names atoms by
combining their chemical symbol (e.g., “CL” for chlorine) with
a unique number (e.g., “118”), such that “CL118” exceeds the
default four-token limit for atom names in . To
predict these structures, we slightly modied the Boltz-1 input
parser (Appendix G).
© 2025 The Author(s). Published by the Royal Society of Chemistry
2.6 Molecular dynamics simulations

To evaluate the PROTAC binding stability, we performed
atomistic simulations of a select ternary complex in two inde-
pendent 300 ns replicas. The starting model was launched from
the AF3-predicted structure of PDB ID 9B9W, with ligand
information provided in CCD format; the structure comprised
the target protein (WDR5), an E3 ligase-recruiting protein
(DCAF1), and the PROTAC (A1ANN). The AF3-predicted binding
sites closely resembled those of the native structure, but
exhibited deviations on the POI side, and the PROTAC confor-
mation differed signicantly. Our objectives were to examine
the exibility of both the complex and PROTAC, the complex's
stability, and the key binding residues.

AmberTool's Antechamber 22.0 (ref. 38) was used to assign
atom types and generate point charges, while Parmchk2 was
used to specify missing parameters. AMBER topology and
coordinate les were generated using the tLEaP module of
AmberTools24 and converted to GROMACS format via
ACPYPE.39 The system was parameterized using the AMBER
force eld, with AMBER ff14SB for proteins, GAFF for the
PROTAC molecule, and TIP3P water. MD simulations were
performed using GROMACS 2024.40,41 The system was solvated
in a cubic box with at least a 10 Å buffer distance, and ions
were added for neutralization. Energy minimization was per-
formed in three steps using the steepest descent algorithm.
Equilibration consisted of relaxing the system at constant
pressure (1 bar) and temperature (310 K). The production
MD simulation ran for 300 ns under NPT conditions at 300 K,
employing the particle-mesh Ewald approach to estimate
long-range electrostatic interactions. The simulation time
step was set to 2 fs, and LINCS42 was used to constrain the
length of hydrogen bonds. Post-simulation analysis, including
RMSD and distance calculations, was performed using
MDAnalysis.43,44
2.7 Evaluation metrics

The accuracy of AF3 and Boltz-1 predictions was assessed by
comparing each predicted structure against its experimentally
determined reference from the PDB.31 Structural alignment was
performed by superimposing predicted and experimental
structures based on their Ca atoms using PyMol 3.1.3.45 The
quantitative assessment involved computing root mean square
deviation (RMSD) and predicted template modeling (pTM)
scores.

RMSD, representing atomic displacement, is calculated as
the square root of the mean squared distances between corre-
sponding Ca atoms following optimal alignment. An RMSD of
0 Å indicates perfect structural alignment, with values below 1 Å
considered near-native. Due to the size and inherent exibility
of PROTAC–mediated ternary complexes, a more generous
threshold of 4 Å was adopted as an indicator of good structural
alignment.46,47 RMSD calculations were performed separately
for the entire ternary complex (excluding PROTAC hydrogens),
as well as individually for the POI, the E3 ligase, and the PRO-
TAC ligand, though PROTAC ligand RMSDs could not be
computed for a few Boltz-1 predictions due to alignment
Digital Discovery, 2025, 4, 3782–3809 | 3785
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failures against experimentally incomplete ligand structures
(e.g., 6HM0, 8OOD).

pTM scores, obtained directly from the AF3 and Boltz-1
prediction outputs, complement RMSD by providing a robust
measure less sensitive to outliers. These scores range from 0 to
1, with values greater than 0.5 indicating more accurate struc-
tural folds. Additionally, interface-specic pTM scores (ipTM)
were analyzed to evaluate protein–protein interfaces.

To assess protein–protein docking accuracy, DockQ v2 (ref.
48) scores were computed, integrating three critical compo-
nents: fraction of native contacts recovered (fnat), interface
RMSD (iRMSD), and ligand RMSD (LRMSD), where the ligand
here refers to the secondary protein chain. DockQ scores range
from 0 (no similarity to reference) to 1 (perfect agreement), with
scores >0.23 indicating acceptable-quality predictions and
scores above 0.8 denoting high-quality predictions.15,49 The
formula is as follows:

DockQ ¼ 1

3

0
BBB@fnat þ 1

1þ
�
iRMSD

1:5

�2
þ 1

1þ
�
LRMSD

8:5

�2

1
CCCA:

Error bars in gures represent the standard error of the mean
(SEM) for eachmetric. Further visual inspectionwas performed for
select PROTAC complexes involving multiple binding sites (see
Fig. 7, 8 and Appendix B). Integrating these complementary
metrics enables a comprehensive evaluation of AF3 and Boltz-1
predictions. RMSD provides atomic-level accuracy assessment,
pTM measures global fold correctness, and DockQ evaluates the
quality of predicted protein–protein interfaces.
2.8 Visualization

Protein structures were visualized using PyMol 3.1.3 (ref. 45)
and VMD 1.9.4.50 VMD was also used to process structures for
MD simulation. In addition to numerical metrics, we performed
a thorough visual analysis to examine ligand placement, struc-
tural integrity, and interface quality. We generated side-by-side
visualizations of CCD vs. SMILES ligand interactions to better
understand the impact of the ligand input on predictions.
Further ligand–protein interaction diagrams were generated
using the free academic version of LigPlot+ (v2.2.9).51 The visual
analysis was essential for evaluating how well AF3 and Boltz-1
captured key interactions.
3 Results
3.1 Impact of ligand input strategy on prediction accuracy

3.1.1 Ligand input enhances AF3 prediction accuracy of
PROTAC ternary complexes. We observe signicant improve-
ment in PROTAC ternary complex prediction when including
ligand information in AF3, as evidenced by DockQ scores for
a subset of 28 select PDB structures (Fig. 3, top). Prior work11

investigated AF3's ability to predict PROTAC–mediated PPIs via
the AF3 web server;24 as only a limited number of ligands were
available on the web server, the authors attempted to predict the
3786 | Digital Discovery, 2025, 4, 3782–3809
PPIs of ternary complexes without the PROTAC as input. Fig. 3
exemplies how AF3's predictions of ternary complexes signif-
icantly improve when PROTAC ligands are included in the
prediction (as SMILES: blue bars; as CCD structures: red bars;
no PROTAC: gray bars). For 26 out of 28 PDB structures, adding
the PROTAC ligand led to predictions with improved DockQ
scores.

Furthermore, we compared these results to predictions from
Boltz-1 in analogous scenarios (Fig. 3, bottom). Boltz-1 predic-
tions also improve when the PROTAC ligand is provided,
achieving higher DockQ scores in 18 of 28 cases, but under-
performing relative to AF3 which achieved 26 better predictions.
There is a clear difference in performance when comparing the
number of acceptable structures (DockQ $ 0.23) generated;
Pereira et al.,11 for instance, only achieved ve acceptable
structures, whereas Boltz-1 and AF3 achieve 8 and 21, respec-
tively, when the PROTAC is included in the predictions. These
ndings highlight that including the PROTAC ligand is bene-
cial and that AF3 is particularly effective at leveraging the
PROTAC–ligand information to predict accurate ternary
complexes.

3.1.2 CCD input yields better predictions than SMILES.
Fig. 4 presents a direct comparison of the predictive capabilities of
AF3 and Boltz-1 for PROTAC ternary complexes, evaluating the
impact of using either CCD codes or SMILES strings as ligand
input across the 62 PDB structures identied in this work.

The general trend indicates that using CCD codes yields more
accurate ternary complex predictions than using SMILES. AF3
with CCD input achieved amean complex RMSD of 4.0 Å (Fig. 4a),
precisely meeting the acceptable threshold. The other congura-
tions resulted in slightly higher mean RMSD values: 4.45 Å for AF3
with SMILES input, 4.32 Å for Boltz-1 with CCD input, and 4.88 Å
for Boltz-1 with SMILES input. When comparing DockQ scores
(Fig. 4b), AF3 outperforms Boltz-1. AF3 achieved mean DockQ
scores of 0.395 (CCD) and 0.280 (SMILES), both surpassing the
acceptable threshold of 0.23. In contrast, Boltz-1's scores of 0.199
(CCD) and 0.154 (SMILES) did not meet this threshold. Analyzing
the PROTAC RMSD (Fig. 4c), using CCD codes in AF3 notably
reduced the PROTAC RMSD to 1.82 Å. Other congurations
resulted in slightly higher PROTAC RMSDs: 6.39 Å for AF3
(SMILES), 2.94 Å for Boltz-1 (CCD), and 9.36 Å for Boltz-1 (SMILES).
Lastly, themean pTM scores (Fig. 4d) were relatively similar across
congurations. However, AF3 exhibited slightly higher scores,
indicating a stronger prediction condence: 0.806 (AF3 CCD) and
0.777 (AF3 SMILES), compared to 0.752 (Boltz-1 CCD) and 0.756
(Boltz-1 SMILES).
3.2 Benchmarking AF3 vs. Boltz-1

3.2.1 Post-2021 structures are predicted less accurately
than training-set structures. Fig. 5 illustrates the impact of the
models' PDB training data cut-off of 2021-09-30 on predictive
performance for PROTAC ternary complexes. This assessment
compares predictions for 16 structures deposited before the cut-
off date (“pre-2021”) against the 46 structures deposited aer-
ward (“post-2021”), thus examining the models' ability to
generalize to unseen structures.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 DockQ scores comparing (top) AF3 and (bottom) Boltz-1 predictive capabilities for a subset of 28 PROTAC ternary complexes reported herein
with Pereira et al.,11 who used the AF3 web server without ligand inputs (gray bars). Higher DockQ scores indicate better complexes. CCD-based
predictions outperform SMILES and no-ligand predictions in DockQ score. The dotted line represents an acceptable threshold value of 0.23.
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Focusing on AF3, there is a clear difference between pre-2021
and post-2021 structure predictions. For pre-2021 structures,
AF3 achieved low mean RMSD values of 0.92 Å (CCD) and 1.86 Å
(SMILES) (Fig. 5a), indicating near-native predictions. In
contrast, performance dropped for structures deposited post-
2021, with mean RMSD increasing substantially to 4.93 Å
(CCD) and 5.20 Å (SMILES), both exceeding the 4 Å acceptability
threshold. A similar trend is evident in AF3's DockQ scores
(Fig. 5b). Pre-2021 structures yielded high mean DockQ scores
of 0.680 (CCD) and 0.467 (SMILES), both comfortably
Fig. 4 Comparison of AF3 and Boltz-1 predictions using CCD or SMILES
complexes identified in this work. (a) Mean protein RMSDwith a threshold
(higher is better). (c) Mean PROTAC RMSDwith a threshold of 4 Å (lower is
SEM in all panels.

© 2025 The Author(s). Published by the Royal Society of Chemistry
surpassing the 0.23 acceptable threshold. For post-2021 struc-
tures, the mean DockQ score with CCD input (0.297) remained
above the threshold, while the score obtained with SMILES
input (0.218) fell short.

Boltz-1 also shows performance gaps between pre- and post-
2021 structure predictions when evaluated by RMSD (Fig. 5e),
with some key distinctions to AF3 using CCD inputs. For pre-
2021 structures, Boltz-1's mean RMSD values were 2.71 Å
(CCD) and 2.86 Å (SMILES); in this scenario, AF3 with CCD
input (0.92 Å) outperformed Boltz-1. For post-2021 structures,
ligand inputs across various metrics, aggregated over the 62 PROTAC
of 4 Å (lower is better). (b) Mean DockQ scores with a threshold of 0.23
better). (d) Mean pTM scores (higher is better). Error bars represent the
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Fig. 5 Comparison of AF3 (top row, (a–d)) and Boltz-1 (bottom row, (e–h)) predictions for PROTAC ternary complexes, evaluating performance
based on target PDB deposition date (pre-2021 vs. post-2021) and ligand input type (CCD vs. SMILES) for the 62 PDB structures identified herein.
Across all metrics, pre-2021 structures are predicted more accurately than post-2021 by both AF3 and Boltz-1. Metrics presented are: (a and e)
mean RMSD (lower is better) with a threshold of 4 Å. (b and f) Mean DockQ scores (higher is better) with a threshold of 0.23. (c and f) Mean
PROTAC RMSD (lower is better) with a threshold of 4 Å. (d and h) Mean pTM scores (higher is better). Error bars represent SEM in all panels.
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Boltz-1 yielded mean RMSD values of 4.79 Å (CCD) and 5.47 Å
(SMILES). While both models did not meet the acceptability
threshold for post-2021 structures with CCD input, Boltz-1
demonstrated a slightly better mean RMSD (4.79 Å) compared
to AF3 (4.93 Å). Overall, both models perform comparably on
post-2021 structures in terms of RMSD. Boltz-1's DockQ scores
(Fig. 5f), however, reveal a considerable performance gap
compared to AF3 across both time periods. The pre-2021 mean
DockQ scores for Boltz-1 were 0.301 (CCD) and 0.272 (SMILES),
while the post-2021 scores dropped to 0.165 (CCD) and 0.115
(SMILES). The most signicant DockQ performance discrep-
ancy between the models is observed for pre-2021 structures
with CCD input, where Boltz-1 generates predictions with on
average 55.7% lower DockQ scores relative to AF3. While Boltz-
1's pre-2021 DockQ scores are only marginally above the 0.23
threshold, its post-2021 scores fall well below the benchmark.

PROTAC RMSD scores (Fig. 5c and g) illustrate how the
PROTAC RMSD is signicantly lower for predictions made with
CCD input (pre-2021: 1.78 Å, post-2021: 3.28 Å) compared to
SMILES input (pre-2021: 9.22 Å, post-2021: 9.40 Å). Using
SMILES input with a given method, there is no difference
between predictions made on pre- and post-2021 structures.
However, PROTAC RMSD is notably lower for predictions made
in otherwise equivalent scenarios when AF3 is than when Boltz-
1 is used. pTM scores (Fig. 5d and h) are consistent across pre-
and post-2021 structures, both for AF3 and Boltz-1, with only
3788 | Digital Discovery, 2025, 4, 3782–3809
a minor drop in performance for AF3 on unseen structures, and
a slightly lower overall performance for Boltz-1 predictions
relative to AF3.

3.2.2 AF3 outperforms Boltz-1, though accuracy varies with
POI and E3 ligase. The formation of a stable ternary complex
between a specic POI and an E3 ligase is posited to be a key
factor for PROTAC efficacy. In Appendix C we assess predictive
performance at the level of the individual POIs and E3 ligases.

AF3 consistently outperformed Boltz-1 in predicting PRO-
TAC–mediated ternary complexes, particularly in capturing the
correct interface geometry. It achieved both lower mean RMSD
values across POIs (3.65 Å vs. 4.71 Å) and more than twice the
average DockQ scores for most systems, indicating stronger
modeling of cooperative binding. AF3 produced accurate DockQ
predictions (above the 0.23 threshold) for ve POIs—including
SMARCA4 and BCL2L1, where Boltz-1 failed to achieve accept-
able scores. It also showed notably better RMSD performance
for challenging systems like WEE1, FKBP5, and BCL2L1. For E3
ligases, AF3 similarly led, achieving acceptable DockQ scores for
VHL and CRBN, while Boltz-1 failed to reach the threshold for
any E3 ligase.

Despite its overall weaker performance, Boltz-1 demon-
strated isolated strengths. It outperformed AF3 on a few difficult
POIs, including KRAS and BCL2, achieving lower RMSD values
where AF3 predictions were particularly poor. It also yielded
a higher DockQ score for PTK2 (0.653 vs. 0.468), suggesting that
© 2025 The Author(s). Published by the Royal Society of Chemistry
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in some cases, Boltz-1 can more accurately model backbone
alignment and protein–protein orientation. However, its diffi-
culty in placing ligands correctly limits its utility for modeling
cooperative ternary complexes. Overall, these ndings suggest
that while both models benet from explicit ligand input, AF3 is
currently more reliable for structure-based PROTAC design,
especially when accurate modeling of the ligand–mediated
interface is critical.

3.2.3 PROTAC RMSD grows with PROTAC size & exibility
for AF3 and Boltz-1. Initial analysis of PROTAC ternary complex
predictions suggested decreased accuracy for structures
featuring large and exible ligands. To investigate this further,
Fig. 6 visualizes the relationship between PROTAC RMSD for
AF3 and Boltz-1 predictions and various PROTAC ligand
molecular properties. To assess characteristics such as exi-
bility, size, and lipophilicity, we analyzed the following
descriptors: molecular weight (MW), heavy atom count (HAC),
rotatable bond count (RBC), lipophilicity (log P), hydrogen bond
donors (HBD), and hydrogen bond acceptors (HBA). We
observed that increased ligand size and exibility correlate with
higher PROTAC RMSD values. For both size (MW & HAC) and
exibility (RBC), this trend of increasing PROTAC RMSD with
increasing size was observed for both models. However, for
other properties, such as the number of HBD or HBA, there was
less of a correlation with PROTAC RMSD, and more of a corre-
lation with the number of data points: bins with many data
points (Fig. 2) generally displayed lower PROTAC RMSDs. The
worst performing bins across all properties correlate to where
there are few or no structures sampling that property in the
training set (pre-2021; Fig. 2). Across all properties, AF3
Fig. 6 The relationship between PROTAC RMSD values and various m
PROTAC RMSD generally grows with PROTAC size and flexibility for both
Boltz-1 across most molecular-property bins. Molecular properties inclu
hydrogen bond donors, and hydrogen bond acceptors. Each plot display
hydrogen bond acceptors averaged into six bins due to fewer data poin
predictions. The shaded areas represent SEM.

© 2025 The Author(s). Published by the Royal Society of Chemistry
generally maintains a general advantage; however, specic bins
show comparable or better performance for Boltz-1.

3.2.4 Visual analysis of ternary complex predictions. To
complement our quantitative metrics, we visually inspected pre-
dicted structures to evaluate ligand placement and the accuracy of
protein–ligand and protein–protein interfaces. We compared
predictions derived from CCD and SMILES inputs to examine how
ligand representation affects the resulting structures (Appendix B).
Representative examples of high- and low-accuracy predictions are
shown in Fig. 7 and 8, illustrating the models' strengths and
limitations on specic ternary complexes.

Fig. 7 highlights two well-predicted structures targeting FAK
(PDB ID: 7PI4) and BRD4 (PDB ID: 7KHH), both available within
the AF3 and Boltz-1 training datasets. In these cases, both
models achieved near-native predictions, yielding high DockQ
scores (AF3: 0.90, Boltz-1: 0.91) and demonstrating reliable
prediction of ligand-binding poses and protein–protein inter-
faces. Conversely, performance declined signicantly for
complexes deposited aer the training cut-off (Fig. 8), such as
those targeting BRD4 (PDB ID: 8BDX) and WDR5 (PDB ID:
9B9W). These recent structures revealed substantial deviations
in protein–protein interface predictions, resulting in notably
low DockQ scores (AF3: 0.02, Boltz-1: 0.14). Despite this, the
individual RMSD values for the POI and E3 ligase remained low
(AF3: 0.32, 0.35 Å; B1: 0.32, 0.33 Å), indicating that the primary
inaccuracies come from misprediction of the PROTAC and
ternary interface rather than errors in protein structure. This
likely reects both limited training data on complex, exible
PROTACs and the inherent constraints of static structure
prediction, which cannot fully capture novel PROTAC
olecular properties of PROTAC ligands predicted by AF3 and Boltz-1.
models, but AF3 consistently yields lower ligand placement errors than
de molecular weight, heavy atom count, rotatable bond count, log P,
s data averaged into eight bins, except for hydrogen bond donors and
ts. Blue lines represent AF3 predictions. Purple lines represent Boltz-1
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Fig. 7 Structural modeling of the VHL–PROTAC–FAK (PDB: 7PI4) and VHL–PROTAC–BRD4(BD1) (PDB: 7KHH) ternary complexes, both
successfully predicted by AF3 and Boltz-1. Leftmost figures display the experimental crystal structures and middle/right computational models
from AF3 and Boltz-1, respectively, both with CCD input. The top row shows the complex 7PI4 containing the FAK protein and VHL E3 ligase. The
bottom row shows the complex 7KHH with the BRD4(BD1) protein and VHL E3 ligase. Proteins are shown in cartoon representation, with target
proteins in marine blue and E3 ligases in gold. PROTACs are depicted as cyan sticks with transparent surfaces. Corresponding complex RMSD,
DockQ, and PROTAC RMSD metrics are shown for each prediction.
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conformational diversity. Notably, closer inspection of the 9B9W
prediction uncovered an intriguing detail: despite misalignment
at the protein interface leading to lowDockQ and high RMSD, AF3
predicted an alternative, extended PROTAC linker conformation.
This predicted conformation proved to be stable in subsequent
MD simulations (Fig. 10), suggesting that predictions with poor
initial metrics might still reect biologically relevant conforma-
tional states not captured by static crystal structures.
3.3 Low DockQ scores may reveal alternate conformations

While many predicted ternary complexes yielded low DockQ
scores and high RMSD values (Fig. 4), a detailed analysis
revealed that individual protein components (POIs and E3
ligases) were typically predicted with very high structural accu-
racy (RMSD oen <0.5 Å; Fig. 9). In other words, we observe that
poor metrics primarily arise from incorrect relative orientations
at protein–protein interfaces rather than inaccuracies in the
individual protein folds. Misalignments observed in these
predictions suggest that low DockQ scores do not necessarily
reect failed predictions, but may instead indicate alternative
binding orientations or twisted conformations at the ternary
interface. Such discrepancies could potentially be addressed
through renement techniques, such as energy minimization
3790 | Digital Discovery, 2025, 4, 3782–3809
or MD simulations, which optimize interfaces while preserving
individual structures.

The inherent conformational exibility of PROTACs, arising
from their long, rotatable-bond-rich linkers (Fig. 2), further
complicates accurate prediction of the interfaces. This is
because their exibility allows PROTACs to adopt multiple
biologically relevant conformational states that inuence their
binding modes and functional efficacy, even if only one struc-
ture is crystallized and deposited in the PDB. To better under-
stand this exibility's impact on prediction accuracy, we closely
examined several poorly predicted complexes with RMSD > 5.97
Å (AF3: 13 complexes, Boltz-1: 18 complexes), nding that the
majority (9 for AF3, 12 for Boltz-1) retained accurate individual
protein structures despite large deviations at the ligand inter-
face. Notably, most PROTACs still occupied correct binding
sites on both proteins, though their linker conformations and
relative orientations differed signicantly from experimental
observations. In specic cases (e.g., 8DSO and 9DLW; Appendix
B), AF3 predictions show slight deviations at the predicted
binding sites, while Boltz-1 shows one protein binding site
missed from the experimental structure. Furthermore, four
complexes (PDB IDs: 8QU8, 8QVU, 8QW6, 8QW7) revealed
entirely different predicted binding sites compared to
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Structural modeling of the VHL–PROTAC–BRD4(BD2) (PDB ID: 8BDX) and DCAF1–PROTAC–WDR5 (PDB ID: 9B9W) ternary complexes,
both of which AF3 and Boltz-1 failed to accurately model. Leftmost figures display the experimental crystal structures and middle/right
computational models from AF3 and Boltz-1, respectively, both with CCD input. The top row shows the complex 8BDX containing the BRD4
protein and VHL E3 ligase. The bottom row shows the complex 9B9Wwith theWDR5 protein and DCAF1 E3 ligase. Proteins are shown in cartoon
representation, with target proteins in marine blue and E3 ligases in gold. The PROTACs are depicted as cyan sticks with transparent surfaces.
Corresponding complex RMSD, DockQ, and PROTAC RMSD metrics are shown for each prediction.

Fig. 9 Comparison of mean RMSD values for PROTAC ternary complex predictions, differentiating between overall complex, POI, and E3 ligase
RMSDs. Although predicted POI and E3 RMSDs are near-native, the higher predicted complex RMSD reveals imperfect interface prediction in
ternary complexes. Performance is shown for (a) AF3 with CCD ligand input, (b) AF3 with SMILES ligand input, (c) Boltz-1 with CCD ligand input,
and (d) Boltz-1 with SMILES ligand input. Lower RMSD values indicate better agreement with experimental structures. The dashed line represents
the 4 Å acceptable threshold. Error bars represent SEM.
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experimental data, suggesting either genuine mispredictions or
the possibility of alternative biologically relevant binding
modes yet to be experimentally conrmed.
3.4 MD conrms stable DCAF1–PROTAC binding, POI
detachment, and linker exibility

To validate AF3 predictions in a particularly challenging case,
we conducted a focused case study usingMD simulations on the
© 2025 The Author(s). Published by the Royal Society of Chemistry
DCAF1–PROTAC–WDR5 ternary complex (PDB ID: 9B9W). Two
independent 300 ns simulations were conducted to evaluate the
complex's stability, conformational dynamics, and binding-site
interactions (Fig. 10).

The predicted complex closely resembled the experimental
structure, with minor deviations observed at the DCAF1 binding
site (Fig. 10a, le). However, the PROTAC exhibited an overall
conformation that differed from the experimental data,
Digital Discovery, 2025, 4, 3782–3809 | 3791
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particularly in its linker region. Key binding-site residues in the
experimental structure were identied using LigPlot+,51 high-
lighting important interactions, including hydrogen bonds with
Ser86 on the POI side and Arg246, Asp304, and His88 on the
DCAF1 side (Fig. 10a, right). Our binding analysis primarily
focused on the interactions involving Ser86 and Arg246 as key
binding sites with the POI and DCAF1, respectively. MD simu-
lations were performed using GROMACS, subjecting the pre-
dicted structure to two independent 300 ns simulations.
Throughout the simulation, PROTAC binding at the DCAF1 site
improved, allowing it to remain stable and maintain its inter-
actions (Fig. 10b, bottom).
Fig. 10 MD simulation results for the AF3-predicted DCAF1–PROTAC–W
PROTAC binding at DCAF1 (Arg246) but loss of the Ser86-ligand contac
ternary dissociation. (a) Superposition of the AF3-predicted (gold) and ex
conformational state of the PROTAC in each binding site. The key PROTA
The PROTAC ligand is shown in purple, whereas protein residues are dr
dashed lines. (b) Bond lengths between the PROTAC and key residues Ser
Arg-O70 atom of the PROTAC) are shown over the span of the simulation
two independent replicas. (d) Initial (1 ns, red), middle (150 ns, rose), and fi

Rep2: right), with proteins shown in gray.

3792 | Digital Discovery, 2025, 4, 3782–3809
Despite an initially well-predicted binding pose that closely
matched the experimental structure at the POI site, the PROTAC
gradually detached from Ser86 on the POI (Fig. 10b, top). In
Fig. 10b, a threshold of 6 Å was established to determine the
presence of a hydrogen bond with either one of the key POI
residues (Ser86) or an important residue on DCAF1 (Arg246). A
distance exceeding this threshold indicates ligand un-binding.
For Arg246, the hydrogen bond distance is measured between
the NE atom of arginine and the O70 atom of the PROTAC, as
seen in the experimental structure, and is generally <4 Å.
Similarly, for Ser86, the bond distance is calculated between the
OG atom of serine and the N36 atom of the PROTAC, with
DR5 ternary complex (PDB ID: 9B9W). MD confirms strong, sustained
t at WDR5 while the linker flexibly samples multiple poses without full
perimental (blue) POI (right) and DCAF1 (left) structures, illustrating the
C–protein interactions in the experimental binding site are highlighted.
awn in orange. Hydrogen bonds and their length are shown as green
68 (OG atom of Ser-N36 atom of the PROTAC) and Arg246 (NE atom of
time for each independent replica. (c) Protein and ligand RMSD across
nal (300 ns, cyan) positions of the PROTAC for each replica (Rep1: left;

© 2025 The Author(s). Published by the Royal Society of Chemistry
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detachment occurring when this distance surpasses the 6 Å
threshold. Although the predicted PROTAC conformation
differed from the experimental structure, it exhibited exibility
during the simulation. It was able to move freely within the
linker region (Fig. 10c), enabling it to sample multiple confor-
mations and diverse poses (Fig. 10d) while maintaining
contacts at the key binding sites. These results further
demonstrate that MD renement enables exible AF3-predicted
PROTAC complexes to access experimentally relevant confor-
mations not captured in the initial prediction.

4 Discussion
4.1 AF3 and Boltz-1 performance

This study demonstrates that both AF3 and Boltz-1 achieve high
prediction accuracy for PPIs, reecting strong capabilities in
predicting global folds and interface structures. However, when
modeling PROTAC–mediated ternary complexes with explicit
ligand information, AF3 clearly outperforms Boltz-1 in accu-
rately capturing ligand binding sites and ligand–mediated
interactions. Although Boltz-1 remains competitive with AF3 in
overall PPI prediction, it frequently deviates from experimen-
tally resolved ligand binding poses, particularly for novel
structures not included in its training set. Among the 62 ternary
complexes analyzed, AF3 produced 13 predictions with low
DockQ scores, whereas Boltz-1 yielded 18. Further inspection
suggests that these low scores oen reect alternative, poten-
tially valid conformations rather than outright prediction fail-
ures, as individual protein components typically maintain high
structural accuracy. Moreover, the observed prediction diffi-
culties were proportional to ligand size and exibility, under-
scoring the challenge posed by the inherent structural plasticity
of PROTACs and their highly exible linkers.

To evaluate optimal input strategies for PROTAC modeling,
we compared predictions generated using two ligand repre-
sentations: CCD (explicit 3D atom positions) and SMILES (2D
strings with generated 3D conformations via ETKDGv3). We
found that CCD inputs produced predictions more closely
aligned with experimental structures compared to SMILES,
likely due to CCD providing explicit conformational data
consistent with AF3 and Boltz-1 training sets and all-atom
diffusion models. However, SMILES-based predictions were
only marginally less accurate, demonstrating their practical
utility for modeling novel PROTACs lacking known atom posi-
tions, e.g., in novel PROTAC design and discovery scenarios.
Additionally, we assessed model prediction consistency using
three random seeds per structure. Both AF3 and Boltz-1 di-
splayed overall consistency, with minor deviations primarily
linked to larger, more exible POIs and E3 ligases.

To further validate model reliability, we conducted MD
simulations on a challenging predicted ternary complex (PDB
ID: 9B9W). This simulation demonstrated structural stability
over 300 ns, reinforcing the validity of AF3 predictions. Across
all 62 predicted complexes, we also examined critical residues
and molecular properties associated with PROTAC–protein
interactions, providing deeper insights into molecular deter-
minants of ternary complex formation. Both AF3 and Boltz-1
© 2025 The Author(s). Published by the Royal Society of Chemistry
performed signicantly better on complexes present in their
training datasets, particularly for pre-2021 structures predicted
with CCD inputs. Interestingly, Boltz-1 slightly outperformed
AF3 in RMSD for novel protein–protein interfaces (post-2021),
while AF3 consistently surpassed Boltz-1 in ligand binding
site accuracy (DockQ). Notably, AF3 achieved comparable
DockQ accuracy on novel complexes (0.297) to Boltz-1's average
DockQ on familiar structures (0.301), highlighting AF3's strong
generalization potential, likely because it has seen more
training data. Moreover, condence metrics (pTM and ipTM
scores) effectively predicted RMSD and DockQ outcomes, sug-
gesting their utility for evaluating predictions and guiding
experimental validations.

Both AF3 and Boltz-1 notably struggled with four KRAS
complexes (PDB IDs: 8QU8, 8QVU, 8QW6, 8QW7), missing
binding sites entirely. KRAS's extensive conformational diver-
sity, sensitivity to nucleotide binding-induced rearrangements,
and structural sensitivity to mutations make it inherently
challenging for static structure-prediction models like AF3 and
Boltz-1. Boltz-1 further demonstrated two more mispredictions:
a severely mispredicted conformation targeting BTK (8DSO) and
another missed binding site targeting DCAF1 (9DLW). Aside
from KRAS-related challenges, AF3 consistently delivered more
reliable ligand–mediated ternary complex predictions
compared to Boltz-1.

Our methodology represents a signicant improvement over
previous computational approaches by explicitly incorporating
ligands into ternary complex predictions. Prior studies
frequently overlooked ligand contributions due to limitations of
the AF3 server, restricting accurate modeling of ligand–medi-
ated PPIs. Our analysis indicated that individual protein
components (POI and E3 ligase) were usually predicted accu-
rately, but their relative orientation oen differed from experi-
mental structures, leading to interface misalignment. We
hypothesize that renement through energy minimization or
MD simulations may address these discrepancies, particularly
when ligand exibility enables multiple biologically relevant
binding conformations.
4.2 Limitations and challenges

Despite AF3 and Boltz-1's promising capabilities in predicting
protein complexes, several limitations must be acknowledged,
especially regarding PROTAC–mediated ternary complex
modeling. While our ndings demonstrate that AF3 can achieve
high structural accuracy when ligand information is provided,
certain challenges remain.

First, the limited availability of high-quality experimental
data restricts the validation scope for PROTAC predictions. Our
study focused on PDB structures where the entire PROTAC
ligand was crystallized. We identied and excluded an addi-
tional 62 PDB IDs that contained only PROTAC fragments (e.g.,
warhead, linker, or E3 ligase binder) to concentrate our analysis
on complete ternary structures. This necessarily small dataset of
complete ternary complexes inherently limits a comprehensive
assessment of AF3 and Boltz-1 performance across a diverse
range of PROTACs. Consequently, our benchmarking is
Digital Discovery, 2025, 4, 3782–3809 | 3793
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conned to these existing experimental structures, which may
not fully capture the true structural diversity of PROTAC–
mediated interactions. Furthermore, we observed that predic-
tive accuracy for both protein and ligand components tends to
decline as PROTAC structures increasingly deviate from the AF3
and Boltz-1 pre-2021 training data.

Second, while DockQ is a useful metric for evaluating
protein–protein interface accuracy, it has limitations when
applied to PROTAC–mediated ternary complexes with exible or
extended interfaces. DockQ calculates the fraction of native
contacts (fnat) by dening an interface as any pair of heavy
atoms from interacting molecules within 5 Å of each other,52

which is suboptimal for PROTAC complexes where critical
interactions may occur at longer distances. Many PROTAC
ternary complexes lack inter-protein contacts within this rigid
cut-off, leading to DockQ scores that underestimate actual
prediction quality. Furthermore, DockQ assumes a rigid-body
superposition model, which may not adequately capture the
induced-t effects and alternative conformations characteristic
of PROTAC interactions. Consequently, low DockQ scores might
reect valid alternative binding modes rather than outright
prediction failures, emphasizing the need for specialized
metrics in future work. Future evaluation pipelines should
include adapted contact-based metrics to assess PROTAC-
relevant binding more accurately. Further, a more nuanced
approach incorporating ensemble-based evaluation metrics or
energy-based scoring functions could provide deeper insight
into ternary complex stability and binding cooperativity. While
we initially considered using the updated DockQ v2 for small
molecules,48 we decided against it due to its reliance on
matching ligand names to compute three-interface DockQ
scores, which is incompatible with predictions generated using
SMILES.

Third, while AF3 and Boltz-1 provide static structural
predictions, they do not capture the dynamics of PROTAC–
mediated interactions, which can signicantly inuence
binding affinity and degradation efficacy. MD simulations
would provide a complementary validationmethod by assessing
complex stability over time, transient interactions, and
induced-t effects that these models alone cannot model.
Although our study included limited MD validation, a compre-
hensive integration of MD simulations with AF3 and Boltz-1
predictions would further rene these predictions and
improve structure-based PROTAC design.

Fourth, analysis of prediction failures reveals that both AF3
and Boltz-1 struggle most with novel PROTACs not represented
in the training data, particularly those with large molecular
weights and highly exible linkers. As shown in Fig. 6, predic-
tion accuracy decreases for PROTACs with large molecular
weight (MW), heavy atom count (HAC), and rotatable bond
count (RBC). AF3 and Boltz-1 achieved near-perfect accuracy on
pre-2021 structures (RMSD > 4 Å: 0/16, 3/16), however struggled
signicantly more with post-2021 structures (RMSD > 4 Å: 19/46,
20/46). A further analysis of success rates by release date is
provided in Appendix D. Notably, as shown in Fig. 2, post-2021
structures exhibit higher complexity with increased RBC and
3794 | Digital Discovery, 2025, 4, 3782–3809
ring counts alongside greater diversity of protein targets,
reecting recent advances in crystallization strategies.

Finally, while we propose that AF3 and Boltz-1 can be applied
to predict yet-unseen ternary complexes, our study remains
purely computational, and the ultimate test of their generaliz-
ability would require experimental validation of newly predicted
structures. Anecdotally, we observed that these models could
generate plausible ternary structures even in cases where exper-
imental crystallization has proven challenging, highlighting the
potential risk of overly condent predictions. A denitive accu-
racy benchmark would require experimentally resolved struc-
tures, such as those obtained by cryo-EM. However, given the
signicant cost and effort associated with these experimental
methods, our computational pipeline and publicly available
resources aim to reduce the experimental burden by helping
researchers prioritize and rene promising PROTAC designs.
While our approach is not a replacement for experimental
structure determination, it is a valuable tool for guiding experi-
mental efforts, enabling researchers to focus on the most prom-
ising PROTAC designs and accelerate the development of
degraders with optimized ternary complex formation.

4.3 Reproducibility of study

To ensure the reproducibility of our study and facilitate future
research, we have introduced a user-friendly PROTAC predic-
tion pipeline via a publicly accessible web platform https://
protacfold.xyz, which integrates PDB and Gemini APIs to
automate the generation of AF3 and Boltz-1 input les across
various seeds and supports further ligand analysis. Recognizing
the challenges in manual POI and E3 ligase determination,
especially for researchers new to structural biology, we incor-
porated a POI and E3 predictive pipeline developed with Gemini
2.5 Flash Experimental. Furthermore, a PyMol script automates
the extraction of evaluation metrics from AF3 and Boltz-1
predictions into tabular form.

4.4 Future work

One key area for possible future exploration is expanding upon
the training data. Recently, Boltz-2 was released,26 with an
extended training cut-off date (2023-06-01) and reported
improvements in predicting binding affinities. While AF3
performance has been reported to also exceed Boltz-2,26 further
research could investigate Boltz-2's performance in predicting
PROTAC ternary complexes released between 2021-09-30 and
2023-06-01 in the PDB, providing insights into the importance
of not only extending the training data to include additional
structures but also including MD trajectories. Such research
would pave the way for better training strategies for AF3 (ref. 53)
and Boltz models34 to better predict ligand–mediated complex
formation. Furthermore, training models on individual PRO-
TAC components (e.g., warheads) may also improve predictions,
especially around binding sites.

Another important next step will be to include conforma-
tional dynamics in the modeling pipeline. AF3 and Boltz-1 only
allow for static structural snapshots, not accounting for protein
exibility, ligand-induced conformational changes, or transient
© 2025 The Author(s). Published by the Royal Society of Chemistry
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binding. MD simulationsmay provide a better understanding of
the stability, cooperativity, and energy involved in forming
ternary complexes, especially for PROTACs with exible linkers
or multiple binding possibilities. Improving how we evaluate
predictions is also vital. Moving beyond structural superposi-
tion methods like DockQ, for instance, by integrating binding
free energy calculations, ensemble-based scoring, or MD-
derived stability assessments, could rene our ability to
distinguish between functional and non-functional PROTAC
conformations.

On the experimental front, the scarcity of high-resolution
ternary complex structures remains a signicant obstacle,
restricting the direct benchmarking of AF3 and Boltz-1 predic-
tions. While condence metrics such as pTM scores from AF2
and AF3 have successfully guided the selection of experimental
candidates for snake venom therapeutics54 and tuberculosis
vaccine components,55 assessing AF3 and Boltz-1's performance
specically for novel structures not yet represented in the PDB
remains an open challenge. Future work combining data-driven
computational predictions with systematic experimental vali-
dation will be essential to evaluate and enhance the accuracy
and generalizability of these models, ultimately expanding their
utility in structure-based drug discovery and PROTAC
development.

5 Conclusion

To systematically evaluate AF3 and Boltz-1, we developed an
automated pipeline to generate input les, predict structures,
and quantify predictive accuracy across 62 PROTAC–mediated
ternary complexes from the PDB. We explored multiple ligand
input strategies, utilizing explicit atom positions (CCD codes)
versus SMILES strings, and examined prediction variability
using three random seeds. With optimal settings, AF3 achieved
near-native accuracy (RMSD < 4 Å) for 46 of 62 complexes, while
Boltz-1 achieved this for 40 complexes. AF3 notably out-
performed Boltz-1 when explicitly modeling ligand–mediated
interactions, highlighting the advantage of including detailed
ligand conformational data during predictions. Performance
was generally superior for structures present in the training
datasets, and prediction accuracy inversely correlated with
ligand size and exibility. Although DockQ scores were useful,
they exhibited limitations when evaluating highly exible
complexes, suggesting caution when interpreting these metrics
alone.

Our ndings indicate that both AF3 and Boltz-1 are prom-
ising tools for modeling PROTAC–mediated ternary complexes,
signicantly improving on previous computational approaches.
By publicly providing our computational pipeline and predic-
tion results, we offer a reproducible framework for researchers
to design, prioritize, and optimize PROTACs and similar ther-
apeutics relying on complex ternary interactions. Nonetheless,
AF3 and Boltz-1 are static prediction models and do not fully
capture the dynamic conformational landscapes critical to
PROTAC efficacy. Future enhancements, such as retraining
© 2025 The Author(s). Published by the Royal Society of Chemistry
these models on expanded ligand–protein datasets beyond
current PDB cut-offs and integrating extensive MD simulations,
will likely further improve prediction accuracy. Experimental
validation of computationally predicted complexes also remains
essential to assess their real-world applicability in prospective
scenarios, ultimately accelerating the development of opti-
mized, ligand-based therapeutic strategies.
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Data availability

All data supporting the ndings of this study, Predicting PRO-
TAC–mediated ternary complexes with AlphaFold3 and Boltz-1, are
openly available:

� Predicted and simulated ternary complex structures, along
with associated RMSD and DockQ scores, can be accessed via
Zenodo at: https://zenodo.org/records/15848838. DOI: https://
doi.org/10.5281/zenodo.15848838.

� The full analysis pipeline, code, dataset preparation
scripts, and evaluation metrics used in this work are available
on GitHub at: https://github.com/NilsDunlop/PROTACFold.
DOI: https://doi.org/10.5281/zenodo.15848838.

� An interactive website for PDB ligand analysis and auto-
mated AlphaFold3 and Boltz-1 input generation is accessible at:
https://protacfold.xyz.

These resources enable full reproduction of the results and
support further development and application of PROTAC
ternary complex modeling.
Appendix A protein complexes studied
in this work

In Table 1, we list the PDB IDs for all 62 PROTAC–mediated
protein complexes investigated in this work. Note that while the
majority of the complexes listed are conrmed-PROTAC
complexes, a few are PROTAC analogues and/or precursors
which function via a similar mechanism to PROTACs.
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Table 1 PDB IDs referenced in this work. Asterisks in the Release date column indicate PDB IDs not included in AF3 and Boltz-1's training data; N/
A indicates binary complexes. In the Ligand column, we list the PDB chemical ID for the ligand and the popular name in parentheses (when
available). Single asterisks indicate that the ligand is a precursor to a PROTAC (in parentheses), and double asterisks indicate that the ligand is an
analog of a well-known PROTAC

PDB ID Release date POI E3 ligase Ligand

5T35 2017-03-08 BRD4 VHL 759 (MZ1)
6BN7 2018-05-30 BRD4 CRBN RN3 (dBET23)
6BOY 2018-05-30 BRD4 CRBN RN6 (dBET6)
6HM0 2019-01-16 BRD9 N/A GBW* (VZ185)
6HAY 2019-06-12 SMARCA2 VHL FX8 (PROTAC 1)
6HAX 2019-06-12 SMARCA2 VHL FWZ (PROTAC 2)
6HR2 2019-06-12 SMARCA4 VHL FWZ (PROTAC 2)
6SIS 2019-12-04 BRD4 VHL LFE** (PROTAC 1)
6ZHC 2020-08-05 Bcl-xL VHL QL8 (Bcl-xL degrader-2)
6W7O 2020-11-18 BTK cIAP1 TL7 (BCPyr)
6W74 2020-11-18 N/A BIRC2 TKY** (BCPyr)
6W8I 2020-11-18 BTK cIAP1 TKY** (BCPyr)
7KHH 2021-02-24 BRD4 VHL WEP
7PI4 2021-09-29 FAK1 VHL 7QB (GSK215)
7JTO 2021-10-06 WDR5 VHL VKA (MS33)
7JTP 2021-10-06 WDR5 VHL X6M (MS67)
6WWB 2021-11-17 BRD2 N/A YA3
7Q2J 2021-11-24 WDR5 VHL 8KH (Homer)
7Z6L 2022-09-07 SMARCA2 VHL IEI
7Z76 2022-09-14 SMARCA2 VHL IEJ
7Z77 2022-09-14 SMARCA2 VHL IFF
7ZNT 2022-09-14 BRD4 VHL IZR
7S4E 2022-10-05 SMARCA2 VHL 87A (ACBI1)
8BB2 2022-11-09 WDR5 VHL Q3X
8BB3 2022-11-09 WDR5 VHL Q3X
8BB4 2022-11-09 WDR5 VHL Q3R
8BB5 2022-11-09 WDR5 VHL Q43
8C13 2022-12-28 N/A VHL SYF (JW48)
7TVA 2023-02-15 STAT5A N/A KOO (AK-2292)
8BDS 2023-02-15 BRD4 VHL QIY (PROTAC 48)
8BDT 2023-02-15 BRD4 VHL QLX (PROTAC 51)
8BDX 2023-02-15 BRD4 VHL QIY (PROTAC 48)
8BEB 2023-02-15 BRD4 VHL QIK (PROTAC 49)
8EXC 2023-02-22 CA2 N/A X2U
8DSF 2023-03-08 N/A BIRC2 TO0 (BCCov)
8DSO 2023-03-08 BTK cIAP1 TOO (BCCov)
8OOD 2023-05-24 N/A DCAF1 VY3
8PC2 2023-11-15 FKBP5 VHL XZW (SelDeg51)
8PDF 2023-11-15 FKBP1A N/A Y5Q
8QU8 2023-12-06 KRAS VHL WYL (ACBI3)
8QVU 2023-12-06 KRAS (iso2B) VHL WYL (ACBI3)
8QW6 2023-12-06 KRAS VHL X4R
8QW7 2023-12-06 KRAS VHL X53
8OKC 2024-01-17 SARS-CoV-2 NSP5 N/A VQN
8R5H 2024-02-21 BRD4 VHL 759 (MZ1)
8RWZ 2024-03-06 BRD4 VHL 759 (MZ1)
8RX0 2024-03-06 BRD4 VHL 759 (MZ1)
8FY0 2024-04-10 Bcl-xL VHL YF8 (PROTAC 753b)
8FY1 2024-04-10 Bcl-2 VHL YF8 (PROTAC 753b)
8FY2 2024-04-10 Bcl-2 VHL YFH (PROTAC WH244)
8U0H 2024-09-04 PTPN2 N/A UB0 (CMDP-2)
8UH6 2024-09-11 PTPN2 CRBN WO8 (CMDP-1)
8WDK 2024-09-18 WEE1 VHL W6U
8RQ9 2024-09-25 BRD4 CRBN A1H2F (CFT-1297)
9BIG 2024-10-02 STAT6 N/A A1AQQ (AK-1690)
9B9H 2024-11-06 WDR5 DCAF1 A1AM2 (OICR-40333)
9B9T 2024-11-06 WDR5 DCAF1 A1ANM (OICR-40407)
9B9W 2024-11-06 WDR5 DCAF1 A1ANN (OICR-40792)
9DLW 2024-11-06 WDR5 DCAF1 A1BAF (OICR-41114)
8YMB 2025-02-12 BRD4 VHL A1LY0 (SHD913)
8S75 2025-03-12 EPHX2 N/A A1H5L (PROTAC FL412)
8S76 2025-03-12 EPHX2 N/A A1H5M (PROTAC JSF67)

3796 | Digital Discovery, 2025, 4, 3782–3809 © 2025 The Author(s). Published by the Royal Society of Chemistry
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Appendix B interface torsion analysis

Here, we extend upon Fig. 7 and 8 to further investigate a select
few of the poorly predicted structures. Fig. 11 and 12 illustrate
Fig. 11 8DSO comparing the predicted (gold) versus experimental (blue
binding interfaces. (Top) AF3 predictions. (Bottom) Boltz-1 predictions. (
binding site. (Right) E3 BIRC2 alignment; cut-out shows the PROTAC po

© 2025 The Author(s). Published by the Royal Society of Chemistry
poorly predicted structures where the extent of misalignment in
the protein–protein and protein–ligand interfaces can be visu-
ally assessed. We observed that, in most cases, the misalign-
ment can be described as a slight alteration of the torsion at the
) structures. White regions represent protein sections not involved in
Left) POI BTK alignment; cut-out shows the PROTAC pose at the POI
se at the E3 binding site.

Digital Discovery, 2025, 4, 3782–3809 | 3797
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Fig. 12 9DLW comparing the predicted (gold) versus experimental (blue) structures. White regions represent protein sections not in the binding
interfaces. (Top) AF3 predictions. (Bottom) Boltz-1 predictions. (Left) POI WDR5 alignment; cut-out shows the PROTAC pose at the POI binding
site. (Right) E3 DCAF1 alignment; cut-out shows the PROTAC pose at the E3 binding site.

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
9/

20
26

 4
:4

9:
44

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
protein–protein interface. Nevertheless, for some of these poor
predictions, we observed how Boltz-1's placed ligands incor-
rectly on both proteins.

Fig. 13–16 instead showcase examples of poorly predicted
structures due to inaccurate prediction of the ligand binding
site. In all four structures, both AF3 and Boltz-1 missed the
3798 | Digital Discovery, 2025, 4, 3782–3809
KRAS binding site entirely. Notably, these four worst-predicted
structures were all from the same study56 analyzing the design
of KRAS degraders. KRAS is a signicant oncological target that
is notoriously difficult to model due to its high structural
exibility.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 13 8QVU comparing the predicted (gold) versus experimental (blue) structures. White regions represent protein sections not involved in
binding interfaces. (Top) AF3 predictions. (Bottom) Boltz-1 predictions. (Left) POI KRAS (iso2B) alignment; cut-out shows the PROTAC pose at the
POI binding site. (Right) E3 VHL alignment; cut-out shows the PROTAC pose at the E3 binding site.

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2025, 4, 3782–3809 | 3799
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Fig. 14 8QU8 comparing the predicted (gold) versus experimental (blue) structures. White regions represent protein sections not involved in
binding interfaces. (Top) AF3 predictions. (Bottom) Boltz-1 predictions. (Left) POI KRAS alignment; cut-out shows the PROTAC pose at the POI
binding site. (Right) E3 VHL alignment; cut-out shows the PROTAC pose at the E3 binding site.

3800 | Digital Discovery, 2025, 4, 3782–3809 © 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 15 8QW6 comparing the predicted (gold) versus experimental (blue) structures. White regions represent protein sections not involved in
binding interfaces. (Top) AF3 predictions. (Bottom) Boltz-1 predictions. (Left) POI KRAS alignment; cut-out shows the PROTAC pose at the POI
binding site. (Right) E3 VHL alignment; cut-out shows the PROTAC pose at the E3 binding site.
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Fig. 16 8QW7 comparing the predicted (gold) versus experimental (blue) structures. White regions represent protein sections not involved in
binding interfaces. (Top) AF3 predictions. (Bottom) Boltz-1 predictions. (Left) POI KRAS alignment; cut-out shows the PROTAC pose at the POI
binding site. (Right) E3 VHL alignment; cut-out shows the PROTAC pose at the E3 binding site.
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Fig. 17 Comparison of mean RMSD for predicted POIs and E3 ligases. AF3 outperforms Boltz-1 in mean RMSD, yielding <4 Å accuracy for more
POIs (13 vs. 10) and matching Boltz-1 on E3 ligases, though both models struggle on a few challenging targets (e.g., KRAS, BCL2, DCAF1). The left
panels display results from AF3, while the right panels show results from Boltz-1. The top panels illustrate the mean RMSDs aggregated by POI,
and the bottom panels show the mean RMSDs aggregated by E3 ligase. POIs are categorized and color-coded into functional groups: kinases
(blue), nuclear regulators (green), signaling modulators (orange), apoptosis regulators (red), and diverse enzymes (purple). Similarly, E3 ligases are
grouped and colored as CRBN (red), VHL (green), BIRC2 (blue), and DCAF1 (purple). Error bars represent the SEM. A dashed line indicates an
acceptable RMSD threshold of 4 Å.

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2025, 4, 3782–3809 | 3803
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Appendix C performance breakdown
by POI and E3 ligase

Fig. 17 and 18 assess predictive performance by POI and E3
ligase. The analysis offers insights into the ability of each model
to capture specic structural features within various PROTAC
ternary complexes.

As shown in Fig. 17, while both models struggled with
certain POIs, their performance on specic targets varied. Boltz-
Fig. 18 Comparison of mean DockQ scores for predicted POIs and E3 l
ligases exceed the 0.23 threshold versus 3 POIs and zero E3 ligases for
show results from Boltz-1. The top panels illustrate the mean DockQ sco
scores aggregated by E3 ligase. POIs are categorized and color-coded int
modulators (orange), and apoptosis regulators (red). Similarly, E3 ligases
DCAF1 (purple). Error bars represent the SEM. A dashed vertical line indi

3804 | Digital Discovery, 2025, 4, 3782–3809
1 more accurately predicted KRAS (7.91 Å) and BCL2 (8.07 Å),
whereas AF3 was more accurate for BCL2L1 (5.20 Å) and WEE1
(10.80 Å). In total, AF3 predicted 13 POIs below the 4 Å
threshold, compared to 10 for Boltz-1. For E3 ligases, DCAF1
and VHL exhibited high RMSDs in both models, whereas CRBN
and BIRC2 were predicted relatively accurately.

The model's performance gap was more pronounced in
terms of DockQ scores (Fig. 18). AF3 had ve POIs exceeding the
0.23 threshold, compared to three for Boltz-1. AF3 produced
high-quality predictions for SMARCA4 (0.836) and BCL2L1
igases. AF3 delivers superior performance on DockQ: 5 POIs and 2 E3
Boltz-1. The left panels display results from AF3, while the right panels
res aggregated by POI, and the bottom panels show the mean DockQ
o functional groups: kinases (blue), nuclear regulators (green), signaling
are grouped and colored as CRBN (red), VHL (green), BIRC2 (blue), and
cates an acceptable DockQ score threshold of 0.23.
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(0.601), where Boltz-1 failed. For E3 ligases, AF3 achieved
acceptable scores for VHL and CRBN, while Boltz-1 failed to do
so for any E3 ligase.

Overall, AF3's average POI RMSD was lower than Boltz-1's
(3.65 Å vs. 4.71 Å), and its average DockQ score was more than
double (0.306 vs. 0.138), indicating its better performance.
Fig. 19 Temporal analysis of PPI (top) and PLI (bottom) success rate
percentage of predictions within each bucket achieving DockQ > 0.23, w
Blue and green series represent AF3 predictions using CCD and SMILES
Boltz-1 predictions using CCD and SMILES representations. The dashed l
each release date n are indicated in parentheses below the x-axis labe
represent bootstrap percentile confidence intervals. Note that computati
of PPI only includes ternary complexes.

© 2025 The Author(s). Published by the Royal Society of Chemistry
Appendix D model performance by
release date

Fig. 19 (top) shows model performance relative to the 2021-09-
30 training cut-off. Both models perform better on pre-cut-off
structures, with AF3 achieving higher success rates overall.
Performance peaks near the cut-off date and declines
s stratified by PDB structure release date. The top panel shows the
hile the bottom panel displays the percentage achieving RMSD < 2.0 Å.
ligand representations, respectively, while orange and red series show
ine marks the 2021-09-30 training cut-off. The number of PDB IDs for
ls, with means and variances computed over three seeds. Error bars
on of PLI includes binary and ternary complexes, whereas computation
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approximately linearly aerward, though AF3 consistently
outperforms Boltz-1 except for minor uctuations in SMILES-
based evaluations. Fig. 19 (bottom) presents RMSD success
rates (<2.0 Å) by release date, showing near-perfect accuracy for
both models at the cut-off, where Boltz-1 matches AF3. AF3
Chart 1 Prompt used with Gemini 2.5 Flash Experimental to annotate th

3806 | Digital Discovery, 2025, 4, 3782–3809
exhibits steady improvements within the training set, whereas
Boltz-1 peaks near the cut-off and declines for older structures
(2017–2019). The limited number of pre-cut-off PROTAC struc-
tures introduces uncertainty in these trends.
e POI and the E3 ubiquitin ligase in a given PDB structure.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 20 Confusion matrix comparing ground truth (rows) to Gemini
predictions (columns) for POI structure classification. Out of 62
structures, 61 were correctly classified (57 true positives, 4 true
negatives). 1 structure was predicted as a false negative (a POI was
present but predicted as absent). There were 0 false positives.

Fig. 21 Confusion matrix comparing ground truth (rows) to Gemini
predictions (columns) for E3 ligase structure classification. All 62 structures
were correctly classified (52 true positives, 10 true negatives).

Chart 2 Updated lines 928-936 within the Boltz-1 SMILES p
and index are always less than four characters.

© 2025 The Author(s). Published by the Royal Society of Chemistry

Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
9/

20
26

 4
:4

9:
44

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Appendix E prompt used for the
identification of the POI and E3 ligase

In Chart 1, we provide the complete Gemini-2.5 Flash Experi-
mental prompt that is used by https://protacfold.xyz/ to identify
the POI and the E3 ligase components from any PDB entry.

The prompt is automatically lled with chain-level metadata
retrieved via the PDB GraphQL API. Whenever the crystallo-
graphic publication's abstract is available, it is passed to the
model as additional context, oen supplying explicit functional
annotations that further boost classication accuracy. The
approach is highly effective, as seen in Appendix F.
Appendix F accuracy of Gemini in POI
and E3 ligase classification

As shown in Fig. 20, Gemini correctly detects the presence of
a POI in 61 out of 62 test structures (98% accuracy). Meanwhile,
its performance for E3 ligase recognition (Fig. 21) is perfect for
the same benchmark set (100% accuracy). These results
underscore an important point: when a large language model is
supplied with the right domain-specic information and given
clear, structured instructions, it can help perform tasks in
computational drug discovery pipelines that would otherwise
require domain expertise.
Appendix G Boltz-1 large ligands
SMILES parsing

Chart 2 contains the patch applied to lines 928–936 of the
function in Boltz-1. The original Boltz-1 parser

generated PDB-style atom names by appending the canonical
atom index to the element symbol; for large ligands, names
such as “CL118” could therefore exceed the four-character limit
mandated by the PDB format and crash subsequent le-writing
or routines. The revised code rst retrieves the canonical
arsing code to handle large ligand inputs by ensuring the atom symbol
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atom order , then computes
how many digits can safely follow the element symbol

. If no space remains,
the index is wrapped with modulo 10 to guarantee at least one
trailing digit; otherwise the index is zero-padded up to the
available width. The resulting string, always #4 characters, is
stored via before 3-D con-
formed generation proceeds. This modication enables Boltz-1
to parse contemporary PDB entries that contain very large
ligands without format violations or runtime errors.
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