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tion of chemical reaction
mechanisms from limited concentration profiles†

Shun Hayashi *

Automating the discovery of chemical reaction mechanisms can increase the efficiency of using

experimental data to obtain chemical knowledge. In this study, a sparse identification approach was

employed to determine reaction mechanisms, providing accurate and interpretable kinetic models while

preventing overfitting. The main advantage of the proposed approach over conventional sparse

identification algorithms is that it can be applied to cases with limited concentration profiles, which often

occur in chemical reactions involving untraceable intermediates. To demonstrate its applicability to

complex reaction mechanisms beyond the reach of classical kinetic analysis, the autocatalytic reduction

of manganese oxide ions was selected as the target reaction. Although the concentrations of only two

manganese species could be monitored via UV-vis absorption spectroscopy, the experimental data were

sufficiently represented by 11 elementary steps involving 8 chemical species. This strategy enables the

automated discovery of reaction mechanisms without relying on heuristic kinetic models, as the only

assumption required is the composition of the intermediates.
Introduction

Understanding the mechanisms of chemical reactions is essen-
tial for the design of new synthetic processes, the exploration of
novel catalysts, and the optimization of industrial processes.1

Reaction mechanisms are determined by proposing kinetic
models, which consist of a series of elementary steps and their
associated rate constants, that reproduce temporal concentra-
tion proles. Classic approaches involve the use of apparent
kinetic models, in which a single rate equation that serves as
a function of the concentration of the detectable species is used.
This includes traditional approaches in which logarithmic plots
of the initial reaction rates are used and modern approaches in
which graphical overlays of entire concentration proles are
employed.2–5 Methods involving nonlinear tting,6 symbolic
regression,7 and multiobjective optimization8 have also been
developed. These approaches provide the simplest forms of
kinetic models, which are generally sufficient to explain and
predict kinetic behavior. However, understanding the reaction
mechanisms based on apparent kinetic models requires expert
knowledge and experience.

Recent advances in both experimental and computational
technologies have provided chemists with enhanced tools for
analyzing reaction mechanisms. The development of analytical
techniques has enabled in situ/operando identication of
Science, National Museum of Nature and
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y the Royal Society of Chemistry
intermediates, providing crucial insights for manually con-
structing reaction mechanisms.9 The use of both automated
experiments and reaction monitoring techniques allows for the
discovery and optimization of reactions and the collection of
kinetic data.10–13 The integration of reaction monitoring tech-
niques with conventional kinetic analysis methods enables
automated mechanistic studies.14 Computational techniques,
such as kinetic Monte Carlo simulations15,16 and quantum
chemical calculations,17,18 can also be used to identify plausible
reaction paths. Furthermore, machine learning technologies
have shown potential for predicting reactivity on the basis of
reaction and mechanism databases19–21 and for automatically
classifying reaction mechanisms.22 However, with respect to
discovering reaction mechanisms on the basis of experimental
data, the existing theoretical frameworks are insufficient,
particularly considering advances in data collection techniques.
Automating the exploration of reaction mechanisms requires
selecting the minimal number of elementary steps from
complexly entangled reaction networks and estimating the rate
constants from experimental data.

Recently, equation discovery, a computational approach for
extracting governing ordinary differential equations (ODEs)
from experimental data, has emerged as a powerful tool for
understanding nonlinear dynamical systems.23,24 Notably, an
approach involving sparse regression, particularly sparse iden-
tication of nonlinear dynamics (SINDy), has attracted consid-
erable attention because it allows for the identication of
compact and interpretable models that capture the core
dynamics of complex systems.25 Since chemical reaction
mechanisms can be uniquely converted into ODEs or rate
Digital Discovery
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equations, according to the law of mass action, sparse regres-
sion offers a promising approach for determining the reaction
mechanisms. When concentration proles for all chemical
species are available, this approach can be applied to identify
chemical reaction mechanisms.26 However, only limited
concentration proles are typically available, as monitoring the
concentrations of all chemical species, including dilute and
reactive intermediates, is difficult.

Inspired by the sparse identication approach, this study
presents a simple yet effective method for the data-driven
discovery of chemical reaction mechanisms from limited
concentration proles. Since concentration proles can be
simulated by numerically solving initial value problems of rate
equations,27–29 the rate constants are estimated by tting the
simulated proles to experimental data. The important
elementary steps are selected by eliminating those with negli-
gibly small rate constants. In summary, at the cost of numeri-
cally solving rate equations, the discovery of chemical reaction
mechanisms from limited concentration proles can be viewed
as a sparse regression problem for determining rate constants.
To demonstrate the potential of this strategy, the mechanism of
the autocatalytic reduction of manganese oxide ions was
studied. The experimental data can be sufficiently represented
by 11 elementary steps involving 8 chemical species. The
proposed approach holds promise as a framework for model
discovery in various elds of physics where comprehensive
measurements are impractical.
Fig. 1 Discovery of kinetic models representing chemical reaction mech
profiles of traceable species (Mn7+ and Mn3+) were collected through spe
the intermediate compositions, the initial model is generated by incl
conservation. (c) The residual (mean relative squared error, MRSE) is eval
rate equations uniquely formulated based on the kinetic models with
regularized regression algorithm in log space (x = log10(k + 1)). By gradu
minimal number of elementary steps (“core”) are obtained.

Digital Discovery
Results and discussion
Application to autocatalytic reactions

To demonstrate the applicability of the proposed method to
distinct and complex reactions that cannot be adequately rep-
resented by apparent kinetic models, an autocatalytic reaction
was selected as the target reaction. Autocatalysis, a chemical
process in which the products of a reaction amplify their own
formation rate, has attracted signicant interest from
researchers across a wide range of elds. It is widely accepted
that autocatalytic processes are utilized in asymmetric
synthesis30 and systems chemistry31 and play key roles in
metabolism, self-replicating systems, crystal growth, and the
origin of life.32–34 The reduction of permanganate ions
([MnO4]

−) with oxalic acid (H2C2O4) was used as the target
autocatalytic reaction because the mechanism was not fully
understood, although the reactions could be easily monitored
viaUV-vis absorption spectroscopy.35,36 The reduction of Mn7+ to
Mn2+ proceeds via autocatalytic processes (e.g., Mn7+ + Mn2+ /

2 Mn2+); therefore, the addition of Mn2+ greatly accelerates this
reaction. The presence of [Mn(C2O4)3]

3− as a traceable partially
reduced intermediate has been reported.37 In this study, the
changes in the concentrations of Mn7+ ([MnO4]

−, 525 nm) and
Mn3+ ([Mn(C2O4)3]

3−, 273 nm) over time weremonitored (Fig. 1a
and S1†). Twenty initial conditions, each with varying initial
concentrations of Mn7+ and Mn2+ (MnSO4), were used for data
collection. The dataset was then split into eight training sets
anisms via a sparse identification approach. (a) Temporal concentration
ctroscopic reaction monitoring. (b) Based on the assumption regarding
uding all possible steps involving 1 or 2 reactants that satisfy mass
uated by comparing the simulated concentration profiles derived from
experimental data. (d) The rate constants were optimized via an L1-
ally increasing l, the generalized model (“best”) and a model with the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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and twelve test sets, with the initial conditions of the training
data remaining within the range of the test data (Fig. S2†).

The only requirement for our approach is the assumption of
the compositions of the intermediates, which are used to
generate the initial kinetic models. On the basis of the
compositions of ve known compounds (Mn7+, Mn3+, Mn2+,
C2O4

2−, and CO2), we assumed the presence of ve possible
intermediates, namely, partially reduced/oxidized species of
Mn7+ and C2O4

2− (Mn6+, Mn5+, Mn4+, C2O4
−, and CO2

−). The
initial kinetic model was then generated by enumerating all
possible elementary steps that satisfy mass conservation
(Fig. 1b). The following two constraints were applied: (i) only
steps involving 1 or 2 reactants were considered; (ii) certain
steps were excluded on the basis of chemical knowledge. The
rst constraint is reasonable because reactions involving three
or more reactants have lower collision probabilities than do
reactions involving 1 or 2 reactants. According to the second
constraint, the steps that involve CO2 as a reactant are omitted.
While knowledge of molecular structures and chemical prop-
erties is not essential for developing a kinetic model, this
information is useful for reducing the number of elementary
steps, which is crucial in the model optimization process.
Among the 64 steps prepared with this approach, the key
elementary steps were identied via sparse regression.

The kinetic models describing chemical reaction mecha-
nisms can be represented via three arrays. A set of elementary
steps can be denoted by two integer matrices: one for the le-
hand side (l) and one for the right-hand side (r) of the chem-
ical equations. The corresponding rate constants are stored in
a vector (k). The rate equations are uniquely generated from the
three arrays according to the law of mass action (eqn (1)).

czsðtÞ ¼
XQ
q

 �
rq;s � lq;s

�
kq

YS
s

zsðtÞlq;s
!

(1)

Here, zs and Q represent the concentration of chemical species s
and the number of elementary steps, respectively. An example
of converting a reaction mechanism to rate equations is shown
in Fig. S3.† Simulated concentration proles are generated by
numerically solving the initial value problems of the rate
equations (Fig. 1c). The model's accuracy was estimated using
the mean relative squared error (MRSE), which represents the
average of the residuals between the experimental and simu-
lated concentration proles, as shown in eqn (2).

MRSE ¼ 1

Ni

XNi

i

kdi;s0 � zi;s0 kF2
kdi;s0 � di;s

0 k
F
2

(2)

Here, ds0 and zs0 represent the experimental and simulated
concentrations of the two traceable species, Mn7+ and Mn3+. Ni

represents the number of kinetic data with different initial
conditions. k$kF denotes the Frobenius norm. Since the rate
constants can have a wide range of values, the vector k was
transformed into the logarithmic-like vector x = log10(k + 1). To
promote sparsity in the resulting models, the L1-regularized
regression algorithm (LASSO38) was also employed. The loss
function was dened as the sum of MRSE and the L1-norm of x
(kxk1) with a regularization parameter l (eqn (3)).
© 2025 The Author(s). Published by the Royal Society of Chemistry
x ¼ arg min
x
ðMRSEþ lkxk1Þ (3)

The sparse regression approach discovers the intrinsic
elementary steps from a comprehensive set of candidates. The
steps with minimal contribution can be eliminated, as the rate
constant becomes negligibly small in the L1-regularization
algorithm. Among a variety of potentially analogous reaction
paths, those involving traceable species are preferentially
selected over those consisting solely of intermediates. This is
because of the large rate constants associated with steps
involving intermediates. Therefore, this approach eliminates
redundant paths and generates models with reduced depen-
dence on intermediates. The covariance matrix adaptation
evolution strategy (CMA-ES),39 a state-of-the-art optimizer for
continuous black-box functions widely used for hyperparameter
tuning in deep neural networks,40 was used to solve the mini-
mization problem. By gradually increasing l, the elementary
steps with rate constants below a certain threshold are progres-
sively eliminated from the resulting models, thereby reducing
the total number of elementary steps (Nstep). Starting from the
“full”model (l = 0), the l value is continuously increased to nd
the “best” model and the “core” model (Nstep = 6–7) (Fig. 1D).
The “best” model is dened as the model with the minimum
Nstep that satises the condition MRSE < MRSEfull × 1.2.

As l increases, the number of elementary steps decreases,
whereas the residuals for the training data increase mono-
tonically. The residuals for the test data initially showed little
change but increased aer l reached 1.3 × 10−4 (Nstep = 13).
This nding indicates that the full model (Nstep = 64) was
overtted, highlighting the importance of applying the sparse
regression approach to identify generalized kinetic models. As l
is increased further, a core model with a minimal number of
elementary steps is obtained, which is benecial for interpret-
ing the reaction mechanism. The advantage of this approach
lies in its ability to provide both the generalized model and the
minimal model from a set of all possible elementary steps.
Determination of key intermediates and elementary steps

The full models with 3, 4 or 5 intermediates were also studied to
determine which intermediates are important for constructing
the kinetic models. Among the 12 combinations, each consist-
ing of 3, 4, or 5 intermediates, the accuracy of the model was
evaluated based on the residuals for both the training and test
datasets.

The best 4 combinations shared the same three intermedi-
ates: Mn6+, Mn4+, and C2O4

− (Fig. 2A and S4†). Interestingly,
among the best 4 models, the model with fewer intermediates
better ts the test data, whereas the model with more inter-
mediates better ts the training data. These ndings suggest
that three intermediates are sufficient to explain the experi-
mental data. The 3 worst models among the 12 models do not
include Mn6+, implying that Mn6+ plays an important role in
this reaction. Furthermore, for mechanisms involving 3 or 5
intermediates containing Mn6+, Mn4+, and C2O4

−, simplied
models were generated by increasing l, and the residuals were
Digital Discovery
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Fig. 2 Determination of key intermediates by comparison of the kinetic models. (a) The residuals (mean relative squared error, MRSE) are
estimated for 3, 4, and 5 intermediate mechanisms for the test and training datasets with l = 0. The points marked with asterisks in the legend
represent the averages of 10 calculations (Fig. S4†). (b) Residuals plotted as a function of the number of elementary steps for 3 and 5 intermediate
mechanisms containing three key intermediates, Mn6+, Mn4+, and C2O4

−. (c) A set of elementary steps in the best model with 3-intermediate
mechanisms. The six steps marked with asterisks represent the core model.
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plotted as a function of Nstep (Fig. 2B and S6–11†). These plots
displayed similar trends regarding the residuals' dependence
on Nstep: while the residuals remained relatively stable for Nstep

> 11–13, they increased considerably with each increase in Nstep

at smaller Nstep values. This suggests that the accuracy of the
models depends more on the number of elementary steps than
on the number of intermediates considered. While redundancy
in the reaction mechanism does not improve the model's
accuracy, omitting even a single critical reaction can lead to
a signicant decrease in accuracy. The core model with three
intermediates (Mn6+, Mn4+, and C2O4

−) can be interpreted as
a combination of an autocatalytic reaction (Mn7+ + 2 Mn2+ / 3
Mn3+) and a sequential (Mn7+ /Mn3+) reduction of Mn7+. This
leads to the formation of Mn3+, which is subsequently reduced
to Mn2+ (Fig. 2C).

To highlight the advantages of the proposed method over
empirical approaches, the kinetic models generated in this
study were compared with previously developed models in the
Fig. 3 Comparison of the kinetic models generated by considering
various mechanisms. Three models with different numbers of
elementary steps (Nstep), denoted as “full”, “best”, and “core”, were
generated by gradually increasing l. For the literature and numerical
mechanisms, the “best” and “core”models are identical. The violin plot
with a blue average line displays the R2 score of themodel with the test
dataset. The width of each violin indicates the density of data points,
and the whiskers represent theminimum andmaximum R2 scores. The
grey dotted lines show the average R2 scores for the training datasets.

Digital Discovery
literature and numerical models (Fig. 3 and S12–15†). The re-
ported mechanism, consisting of 7 elementary steps involving
three intermediates (Mn6+, Mn4+, and partially oxidized
C2O4

2−), was heuristically proposed based on existing chemical
knowledge and kinetic studies of various manganese oxide
species.37 In this study, the initial literature model was devel-
oped by incorporating an essential step (Mn7+ /Mn6+) into the
reported 7-step mechanism (Fig. S12†). The accuracy of the best
model, which was developed based on the literature model, was
better than that of the full model, indicating that our approach
can be applied to heuristic models for estimating rate constants
and reducing redundancy. The best model developed based on
the 3-intermediate mechanism showed a better t than the best
model of the literature mechanism did, highlighting the
importance of considering all possible elementary steps while
avoiding overtting. The numerical mechanism denotes the
apparent kinetic model, which uses only the concentrations of
known manganese oxide species (Mn7+, Mn3+, and Mn2+). The
numerical model allows for the inclusion of up to ve reactant
elementary steps and the displacement of the sum of the
oxidation states in each elementary step (Fig. S14†). The
advantage of numerical models is that the absence of untrace-
able species enables model optimization via the conventional
SINDy method,25,26 which does not require numerically solving
ODEs. Nonetheless, the same algorithm was applied to our
approach for comparison. The numerical model poorly t the
experimental data, suggesting the difficulty of constructing
kinetic models from only the concentrations of traceable
species. This suggests that our approach, which employs
a composition-based assumption for undetected intermediates,
is effective, as it accurately represents the underlying chemical
reaction networks.

The proposed approach transformed the determination of
reaction mechanisms into a minimization problem involving
rate constants. This strategy is theoretically applicable to kinetic
studies of all types of reactions. However, a key challenge arises
from the dimension of the minimization problem (Nstep). Since
the minimization problem was solved stochastically by CMA-ES,
the reproducible convergence could not be guaranteed,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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especially in problems with large dimensions. According to ten
independent calculations, the full model with 3 intermediates
(Nstep = 20) converged to solutions with similar MRSE values,
whereas that with 5 intermediates (Nstep = 64) showed some
variability (Fig. S4a†). However, the sparse models with 3
intermediates (Nstep = 11) did not necessarily converge to
mechanisms with the same set of elementary steps (Fig. S4b†).
Starting from the full model (Nstep = 20), seven steps were
consistently eliminated, ve were retained with similar rate
constant values (coefficient of variation of log10(k + 1) < 0.02),
ve were consistently retained but exhibited varying values, and
one of the remaining three was included in each model,
although the specic step varied across the ten calculations.
These imply that the proposed approach is readily applicable to
the discovery of simple mechanisms, although the resulting
sparse model was not always consistent across calculations. For
example, in a catalytic organic reaction involving two substrates
(A and B), a coupled product (A–B), a catalyst (C), and three
intermediates (A–C, B–C, and A–B–C), the total number of
possible elementary steps is 29 (Fig. S5†). Therefore, the
dimensionality of the optimization problem is not a critical
constraint in this case. However, for the discovery of more
complex reaction networks, such as those found in combustion
chemistry and astrochemistry,41,42 reducing the dimension
through chemical knowledge and other computational
approaches is needed.

Conclusions

In this study, we present a data-driven approach for deter-
mining kinetic models of chemical reaction mechanisms via
a sparse identication strategy. The challenge of applying the
sparse identication approach in mechanistic studies, which
involves the limited availability of concentration proles for
traceable chemical species, was addressed by generating
simulated concentration proles from ODEs uniquely gener-
ated from reaction mechanisms according to the law of mass
action. Starting with comprehensive models generated mecha-
nistically on the basis of the conservation of mass, this
approach provides generalized models that prevent overtting
and minimal models that are useful for interpreting reaction
mechanisms. The application to the autocatalytic reduction of
manganese oxide ions revealed that the experimental data can
be sufficiently represented by 11 elementary steps involving 8
chemical species. This strategy enables the discovery of reaction
mechanisms without relying on heuristic kinetic models, as the
only assumption required is the composition of the interme-
diates. The approach to extract kinetic models from limited
experimental data expands the potential for automated mech-
anistic studies, especially in situations where comprehensive
reaction monitoring is impractical.
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29 M. Á. d. C. Servia, K. K. Hii, K. Hellgardt, D. Zhang and
E. A. d. R. Chanona, Simplest Mechanism Builder
Algorithm (SiMBA): An Automated Microkinetic Model
Discovery Tool, arXiv, 2024, preprint, arXiv:2410.21205,
DOI: 10.48550/arXiv.2410.21205.

30 C. Girard and H. B. Kagan, Nonlinear effects in asymmetric
synthesis and stereoselective reactions: Ten years of
investigation, Angew. Chem., Int. Ed., 1998, 37, 2922–2959.

31 R. F. Ludlow and S. Otto, Systems chemistry, Chem. Soc. Rev.,
2008, 37, 101–108.

32 A. J. Bissette and S. P. Fletcher, Mechanisms of autocatalysis,
Angew. Chem., Int. Ed., 2013, 52, 12800–12826.

33 K. Ruiz-Mirazo, C. Briones and A. De La Escosura, Prebiotic
systems chemistry: New perspectives for the origins of life,
Chem. Rev., 2014, 114, 285–366.

34 A. I. Hanopolskyi, V. A. Smaliak, A. I. Novichkov and
S. N. Semenov, Autocatalysis: Kinetics, Mechanisms and
Design, ChemSystemsChem, 2021, 3, e2000026.

35 H. F. Launer, The kinetics of the reaction between potassium
permanganate and oxalic acid. I, J. Am. Chem. Soc., 1932, 54,
2597–2610.

36 H. F. Launer and D. M. Yost, The Kinetics of the Reaction
between Potassium Permanganate and Oxalic Acid. II, J.
Am. Chem. Soc., 1934, 56, 2571–2577.

37 S. J. Adler and R. M. Noyes, The Mechanism of the
Permanganate-Oxalate Reaction, J. Am. Chem. Soc., 1955,
77, 2036–2042.

38 R. Shrinkage, Regression Shrinkage and Selection via the
Lasso, J. Roy. Stat. Soc. B, 1996, 58, 267–288.

39 N. Hansen and A. Ostermeier, Completely derandomized
self-adaptation in evolution strategies, Evol. Comput., 2001,
9, 159–195.

40 I. Loshchilov and F. Hutter, CMA-ES for Hyperparameter
Optimization of Deep Neural Networks, arXiv, 2016,
preprint, arXiv:1604.07269, DOI: 10.48550/arXiv.1604.07269.

41 T. Lu and C. K. Law, Toward accommodating realistic fuel
chemistry in large-scale computations, Prog. Energy
Combust. Sci., 2009, 35, 192–215.

42 H. M. Cuppen, L. J. Karssemeijer and T. Lamberts, The
kinetic Monte Carlo method as a way to solve the master
equation for interstellar grain chemistry, Chem. Rev., 2013,
113, 8840–8871.
© 2025 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.48550/arXiv.2410.21205
https://doi.org/10.48550/arXiv.1604.07269
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00293a

	Sparse identification of chemical reaction mechanisms from limited concentration profilesElectronic supplementary information (ESI) available:...
	Sparse identification of chemical reaction mechanisms from limited concentration profilesElectronic supplementary information (ESI) available:...
	Sparse identification of chemical reaction mechanisms from limited concentration profilesElectronic supplementary information (ESI) available:...
	Sparse identification of chemical reaction mechanisms from limited concentration profilesElectronic supplementary information (ESI) available:...
	Sparse identification of chemical reaction mechanisms from limited concentration profilesElectronic supplementary information (ESI) available:...

	Sparse identification of chemical reaction mechanisms from limited concentration profilesElectronic supplementary information (ESI) available:...
	Sparse identification of chemical reaction mechanisms from limited concentration profilesElectronic supplementary information (ESI) available:...
	Sparse identification of chemical reaction mechanisms from limited concentration profilesElectronic supplementary information (ESI) available:...
	Sparse identification of chemical reaction mechanisms from limited concentration profilesElectronic supplementary information (ESI) available:...


