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Sparse identification of chemical reaction mechanisms from limited
concentration profiles

This study presents a sparse identification approach to automate
the discovery of chemical reaction mechanisms, utilizing
experimental data to create accurate and interpretable kinetic
models while avoiding overfitting. A key advantage of the proposed
approach over conventional algorithms is that it can be applied

to cases with limited concentration profiles, which often occur

for chemical reactions involving untraceable intermediates. This
strategy expands the potential for automated mechanistic studies,
especially in situations where comprehensive reaction monitoring is
impractical.
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Sparse identification of chemical reaction
mechanisms from limited concentration profilest

*

Shun Hayashi
Automating the discovery of chemical reaction mechanisms can increase the efficiency of using
experimental data to obtain chemical knowledge. In this study, a sparse identification approach was
employed to determine reaction mechanisms, providing accurate and interpretable kinetic models while
preventing overfitting. The main advantage of the proposed approach over conventional sparse
identification algorithms is that it can be applied to cases with limited concentration profiles, which often
occur in chemical reactions involving untraceable intermediates. To demonstrate its applicability to
complex reaction mechanisms beyond the reach of classical kinetic analysis, the autocatalytic reduction
of manganese oxide ions was selected as the target reaction. Although the concentrations of only two
manganese species could be monitored via UV-vis absorption spectroscopy, the experimental data were
sufficiently represented by 11 elementary steps involving 8 chemical species. This strategy enables the
automated discovery of reaction mechanisms without relying on heuristic kinetic models, as the only
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Introduction

Understanding the mechanisms of chemical reactions is essen-
tial for the design of new synthetic processes, the exploration of
novel catalysts, and the optimization of industrial processes.*
Reaction mechanisms are determined by proposing kinetic
models, which consist of a series of elementary steps and their
associated rate constants, that reproduce temporal concentra-
tion profiles. Classic approaches involve the use of apparent
kinetic models, in which a single rate equation that serves as
a function of the concentration of the detectable species is used.
This includes traditional approaches in which logarithmic plots
of the initial reaction rates are used and modern approaches in
which graphical overlays of entire concentration profiles are
employed.”® Methods involving nonlinear fitting,® symbolic
regression,” and multiobjective optimization® have also been
developed. These approaches provide the simplest forms of
kinetic models, which are generally sufficient to explain and
predict kinetic behavior. However, understanding the reaction
mechanisms based on apparent kinetic models requires expert
knowledge and experience.

Recent advances in both experimental and computational
technologies have provided chemists with enhanced tools for
analyzing reaction mechanisms. The development of analytical
techniques has enabled in situ/operando identification of
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assumption required is the composition of the intermediates.

intermediates, providing crucial insights for manually con-
structing reaction mechanisms.® The use of both automated
experiments and reaction monitoring techniques allows for the
discovery and optimization of reactions and the collection of
kinetic data.’®™® The integration of reaction monitoring tech-
niques with conventional kinetic analysis methods enables
automated mechanistic studies.”* Computational techniques,
such as kinetic Monte Carlo simulations'>'® and quantum
chemical calculations,'”*® can also be used to identify plausible
reaction paths. Furthermore, machine learning technologies
have shown potential for predicting reactivity on the basis of
reaction and mechanism databases*' and for automatically
classifying reaction mechanisms.”” However, with respect to
discovering reaction mechanisms on the basis of experimental
data, the existing theoretical frameworks are insufficient,
particularly considering advances in data collection techniques.
Automating the exploration of reaction mechanisms requires
selecting the minimal number of elementary steps from
complexly entangled reaction networks and estimating the rate
constants from experimental data.

Recently, equation discovery, a computational approach for
extracting governing ordinary differential equations (ODEs)
from experimental data, has emerged as a powerful tool for
understanding nonlinear dynamical systems.?*** Notably, an
approach involving sparse regression, particularly sparse iden-
tification of nonlinear dynamics (SINDy), has attracted consid-
erable attention because it allows for the identification of
compact and interpretable models that capture the core
dynamics of complex systems.”® Since chemical reaction
mechanisms can be uniquely converted into ODEs or rate

© 2025 The Author(s). Published by the Royal Society of Chemistry
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equations, according to the law of mass action, sparse regres-
sion offers a promising approach for determining the reaction
mechanisms. When concentration profiles for all chemical
species are available, this approach can be applied to identify
chemical reaction mechanisms.”* However, only limited
concentration profiles are typically available, as monitoring the
concentrations of all chemical species, including dilute and
reactive intermediates, is difficult.

Inspired by the sparse identification approach, this study
presents a simple yet effective method for the data-driven
discovery of chemical reaction mechanisms from limited
concentration profiles. Since concentration profiles can be
simulated by numerically solving initial value problems of rate
equations,”® the rate constants are estimated by fitting the
simulated profiles to experimental data. The important
elementary steps are selected by eliminating those with negli-
gibly small rate constants. In summary, at the cost of numeri-
cally solving rate equations, the discovery of chemical reaction
mechanisms from limited concentration profiles can be viewed
as a sparse regression problem for determining rate constants.
To demonstrate the potential of this strategy, the mechanism of
the autocatalytic reduction of manganese oxide ions was
studied. The experimental data can be sufficiently represented
by 11 elementary steps involving 8 chemical species. The
proposed approach holds promise as a framework for model
discovery in various fields of physics where comprehensive
measurements are impractical.
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Results and discussion
Application to autocatalytic reactions

To demonstrate the applicability of the proposed method to
distinct and complex reactions that cannot be adequately rep-
resented by apparent kinetic models, an autocatalytic reaction
was selected as the target reaction. Autocatalysis, a chemical
process in which the products of a reaction amplify their own
formation rate, has attracted significant interest from
researchers across a wide range of fields. It is widely accepted
that autocatalytic processes are utilized in asymmetric
synthesis®** and systems chemistry** and play key roles in
metabolism, self-replicating systems, crystal growth, and the
origin of life.**?* The reduction of permanganate ions
([MnO,4]") with oxalic acid (H,C,0,) was used as the target
autocatalytic reaction because the mechanism was not fully
understood, although the reactions could be easily monitored
via UV-vis absorption spectroscopy.*** The reduction of Mn’”" to
Mn>" proceeds via autocatalytic processes (e.g.,, Mn”* + Mn** —
2 Mn*"); therefore, the addition of Mn>* greatly accelerates this
reaction. The presence of [Mn(C,0,);]°~ as a traceable partially
reduced intermediate has been reported.*” In this study, the
changes in the concentrations of Mn”* ([MnO,] ", 525 nm) and
Mn*" ([Mn(C,0,);]> ", 273 nm) over time were monitored (Fig. 1a
and S17). Twenty initial conditions, each with varying initial
concentrations of Mn”* and Mn** (MnSO,), were used for data
collection. The dataset was then split into eight training sets

b Composition-based assumption
of possible intermediates
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Fig.1 Discovery of kinetic models representing chemical reaction mechanisms via a sparse identification approach. (a) Temporal concentration
profiles of traceable species (Mn’* and Mn>*) were collected through spectroscopic reaction monitoring. (b) Based on the assumption regarding
the intermediate compositions, the initial model is generated by including all possible steps involving 1 or 2 reactants that satisfy mass
conservation. (c) The residual (mean relative squared error, MRSE) is evaluated by comparing the simulated concentration profiles derived from
rate equations uniquely formulated based on the kinetic models with experimental data. (d) The rate constants were optimized via an L;-
regularized regression algorithm in log space (x = logjg(k + 1)). By gradually increasing 4, the generalized model ("best”) and a model with the

minimal number of elementary steps (“core”) are obtained.
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and twelve test sets, with the initial conditions of the training
data remaining within the range of the test data (Fig. S2+).

The only requirement for our approach is the assumption of
the compositions of the intermediates, which are used to
generate the initial kinetic models. On the basis of the
compositions of five known compounds (Mn’*, Mn**, Mn*",
C,04>7, and CO,), we assumed the presence of five possible
intermediates, namely, partially reduced/oxidized species of
Mn’" and C,0,>" (Mn®*, Mn®*, Mn**, C,0,, and CO,"). The
initial kinetic model was then generated by enumerating all
possible elementary steps that satisfy mass conservation
(Fig. 1b). The following two constraints were applied: (i) only
steps involving 1 or 2 reactants were considered; (ii) certain
steps were excluded on the basis of chemical knowledge. The
first constraint is reasonable because reactions involving three
or more reactants have lower collision probabilities than do
reactions involving 1 or 2 reactants. According to the second
constraint, the steps that involve CO, as a reactant are omitted.
While knowledge of molecular structures and chemical prop-
erties is not essential for developing a kinetic model, this
information is useful for reducing the number of elementary
steps, which is crucial in the model optimization process.
Among the 64 steps prepared with this approach, the key
elementary steps were identified via sparse regression.

The kinetic models describing chemical reaction mecha-
nisms can be represented via three arrays. A set of elementary
steps can be denoted by two integer matrices: one for the left-
hand side (1) and one for the right-hand side (r) of the chem-
ical equations. The corresponding rate constants are stored in
a vector (k). The rate equations are uniquely generated from the
three arrays according to the law of mass action (eqn (1)).

A0 =2, ((rq,s —1,.)k, st(t)'q.s> )

Here, z; and Q represent the concentration of chemical species s
and the number of elementary steps, respectively. An example
of converting a reaction mechanism to rate equations is shown
in Fig. S3. Simulated concentration profiles are generated by
numerically solving the initial value problems of the rate
equations (Fig. 1c). The model's accuracy was estimated using
the mean relative squared error (MRSE), which represents the
average of the residuals between the experimental and simu-
lated concentration profiles, as shown in eqn (2).

MRSE — i Nz' ld; _ii..v' sz @)
N 5 Id, ¢ _dis’”l:z

Here, dy and zy represent the experimental and simulated
concentrations of the two traceable species, Mn’" and Mn*". N;
represents the number of kinetic data with different initial
conditions. ||-||r denotes the Frobenius norm. Since the rate
constants can have a wide range of values, the vector k was
transformed into the logarithmic-like vector x = log;o(k + 1). To
promote sparsity in the resulting models, the L;-regularized
regression algorithm (LASSO**) was also employed. The loss
function was defined as the sum of MRSE and the L;-norm of x
(IIx||1) with a regularization parameter 2 (eqn (3)).
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x = arg min(MRSE + A||x]|,) (3)

The sparse regression approach discovers the intrinsic
elementary steps from a comprehensive set of candidates. The
steps with minimal contribution can be eliminated, as the rate
constant becomes negligibly small in the L;-regularization
algorithm. Among a variety of potentially analogous reaction
paths, those involving traceable species are preferentially
selected over those consisting solely of intermediates. This is
because of the large rate constants associated with steps
involving intermediates. Therefore, this approach eliminates
redundant paths and generates models with reduced depen-
dence on intermediates. The covariance matrix adaptation
evolution strategy (CMA-ES),* a state-of-the-art optimizer for
continuous black-box functions widely used for hyperparameter
tuning in deep neural networks,* was used to solve the mini-
mization problem. By gradually increasing A, the elementary
steps with rate constants below a certain threshold are progres-
sively eliminated from the resulting models, thereby reducing
the total number of elementary steps (Ngep). Starting from the
“full” model (1 = 0), the A value is continuously increased to find
the “best” model and the “core” model (Nyp, = 6-7) (Fig. 1D).
The “best” model is defined as the model with the minimum
Ngep that satisfies the condition MRSE < MRSEg; x 1.2.

As 1 increases, the number of elementary steps decreases,
whereas the residuals for the training data increase mono-
tonically. The residuals for the test data initially showed little
change but increased after A reached 1.3 x 10~* (Nstep = 13).
This finding indicates that the full model (Ny., = 64) was
overfitted, highlighting the importance of applying the sparse
regression approach to identify generalized kinetic models. As A
is increased further, a core model with a minimal number of
elementary steps is obtained, which is beneficial for interpret-
ing the reaction mechanism. The advantage of this approach
lies in its ability to provide both the generalized model and the
minimal model from a set of all possible elementary steps.

Determination of key intermediates and elementary steps

The full models with 3, 4 or 5 intermediates were also studied to
determine which intermediates are important for constructing
the kinetic models. Among the 12 combinations, each consist-
ing of 3, 4, or 5 intermediates, the accuracy of the model was
evaluated based on the residuals for both the training and test
datasets.

The best 4 combinations shared the same three intermedi-
ates: Mn®", Mn**, and C,0,~ (Fig. 2A and S4f). Interestingly,
among the best 4 models, the model with fewer intermediates
better fits the test data, whereas the model with more inter-
mediates better fits the training data. These findings suggest
that three intermediates are sufficient to explain the experi-
mental data. The 3 worst models among the 12 models do not
include Mn®", implying that Mn®* plays an important role in
this reaction. Furthermore, for mechanisms involving 3 or 5
intermediates containing Mn®*, Mn**, and C,0,", simplified
models were generated by increasing A, and the residuals were

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Determination of key intermediates by comparison of the kinetic models. (a) The residuals (mean relative squared error, MRSE) are
estimated for 3, 4, and 5 intermediate mechanisms for the test and training datasets with A = 0. The points marked with asterisks in the legend
represent the averages of 10 calculations (Fig. S4+). (b) Residuals plotted as a function of the number of elementary steps for 3 and 5 intermediate
mechanisms containing three key intermediates, Mn®*, Mn**, and C,0,". (c) A set of elementary steps in the best model with 3-intermediate
mechanisms. The six steps marked with asterisks represent the core model.

plotted as a function of Ny, (Fig. 2B and S6-117). These plots
displayed similar trends regarding the residuals’ dependence
on Np: while the residuals remained relatively stable for N
>11-13, they increased considerably with each increase in Ngep
at smaller Ny, values. This suggests that the accuracy of the
models depends more on the number of elementary steps than
on the number of intermediates considered. While redundancy
in the reaction mechanism does not improve the model's
accuracy, omitting even a single critical reaction can lead to
a significant decrease in accuracy. The core model with three
intermediates (Mn®*, Mn**, and C,0, ) can be interpreted as
a combination of an autocatalytic reaction (Mn”* + 2 Mn*" — 3
Mn>*") and a sequential (Mn”* — Mn>*) reduction of Mn”*. This
leads to the formation of Mn**, which is subsequently reduced
to Mn*>" (Fig. 2C).

To highlight the advantages of the proposed method over
empirical approaches, the kinetic models generated in this
study were compared with previously developed models in the

1.00 T
0.95 T T T
[
5 0.90
b
% 0.85
0.80
0.75
“Full” “Best” “Core” “Full” “Best” “Core” “Full” “Best” “Full” “Best’
Netep 64 13 7 20 11 6 8 6 18 6
Mechanism 5-Intermediate 3-Intermediate Literature Numerical
Intermediate 5 3 3 0
Reactant 2 2 2 5

Fig. 3 Comparison of the kinetic models generated by considering
various mechanisms. Three models with different numbers of
elementary steps (Ngep), denoted as “full’, “best’, and “core’, were
generated by gradually increasing A. For the literature and numerical
mechanisms, the “best” and “core” models are identical. The violin plot
with a blue average line displays the R? score of the model with the test
dataset. The width of each violin indicates the density of data points,
and the whiskers represent the minimum and maximum R? scores. The
grey dotted lines show the average R? scores for the training datasets.

© 2025 The Author(s). Published by the Royal Society of Chemistry

literature and numerical models (Fig. 3 and S12-15%). The re-
ported mechanism, consisting of 7 elementary steps involving
three intermediates (Mn®‘, Mn®", and partially oxidized
C,04°7), was heuristically proposed based on existing chemical
knowledge and kinetic studies of various manganese oxide
species.’” In this study, the initial literature model was devel-
oped by incorporating an essential step (Mn’" — Mn®") into the
reported 7-step mechanism (Fig. S127). The accuracy of the best
model, which was developed based on the literature model, was
better than that of the full model, indicating that our approach
can be applied to heuristic models for estimating rate constants
and reducing redundancy. The best model developed based on
the 3-intermediate mechanism showed a better fit than the best
model of the literature mechanism did, highlighting the
importance of considering all possible elementary steps while
avoiding overfitting. The numerical mechanism denotes the
apparent kinetic model, which uses only the concentrations of
known manganese oxide species (Mn”*, Mn**, and Mn**). The
numerical model allows for the inclusion of up to five reactant
elementary steps and the displacement of the sum of the
oxidation states in each elementary step (Fig. S141). The
advantage of numerical models is that the absence of untrace-
able species enables model optimization via the conventional
SINDy method,*>*® which does not require numerically solving
ODEs. Nonetheless, the same algorithm was applied to our
approach for comparison. The numerical model poorly fit the
experimental data, suggesting the difficulty of constructing
kinetic models from only the concentrations of traceable
species. This suggests that our approach, which employs
a composition-based assumption for undetected intermediates,
is effective, as it accurately represents the underlying chemical
reaction networks.

The proposed approach transformed the determination of
reaction mechanisms into a minimization problem involving
rate constants. This strategy is theoretically applicable to kinetic
studies of all types of reactions. However, a key challenge arises
from the dimension of the minimization problem (Ngep). Since
the minimization problem was solved stochastically by CMA-ES,
the reproducible convergence could not be guaranteed,

Digital Discovery, 2025, 4, 3092-3097 | 3095
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especially in problems with large dimensions. According to ten
independent calculations, the full model with 3 intermediates
(Nstep = 20) converged to solutions with similar MRSE values,
whereas that with 5 intermediates (Ngep, = 64) showed some
variability (Fig. S4at). However, the sparse models with 3
intermediates (Ngep = 11) did not necessarily converge to
mechanisms with the same set of elementary steps (Fig. S4b¥).
Starting from the full model (Ny., = 20), seven steps were
consistently eliminated, five were retained with similar rate
constant values (coefficient of variation of log;(k + 1) < 0.02),
five were consistently retained but exhibited varying values, and
one of the remaining three was included in each model,
although the specific step varied across the ten calculations.
These imply that the proposed approach is readily applicable to
the discovery of simple mechanisms, although the resulting
sparse model was not always consistent across calculations. For
example, in a catalytic organic reaction involving two substrates
(A and B), a coupled product (A-B), a catalyst (C), and three
intermediates (A-C, B-C, and A-B-C), the total number of
possible elementary steps is 29 (Fig. S51). Therefore, the
dimensionality of the optimization problem is not a critical
constraint in this case. However, for the discovery of more
complex reaction networks, such as those found in combustion
chemistry and astrochemistry,*>** reducing the dimension
through chemical knowledge and other computational
approaches is needed.

Conclusions

In this study, we present a data-driven approach for deter-
mining kinetic models of chemical reaction mechanisms via
a sparse identification strategy. The challenge of applying the
sparse identification approach in mechanistic studies, which
involves the limited availability of concentration profiles for
traceable chemical species, was addressed by generating
simulated concentration profiles from ODEs uniquely gener-
ated from reaction mechanisms according to the law of mass
action. Starting with comprehensive models generated mecha-
nistically on the basis of the conservation of mass, this
approach provides generalized models that prevent overfitting
and minimal models that are useful for interpreting reaction
mechanisms. The application to the autocatalytic reduction of
manganese oxide ions revealed that the experimental data can
be sufficiently represented by 11 elementary steps involving 8
chemical species. This strategy enables the discovery of reaction
mechanisms without relying on heuristic kinetic models, as the
only assumption required is the composition of the interme-
diates. The approach to extract kinetic models from limited
experimental data expands the potential for automated mech-
anistic studies, especially in situations where comprehensive
reaction monitoring is impractical.

Data availability

The data supporting this article have been included as part of
the ESL.T Data for this article, including experimental data and
Python scripts, are available on Zenodo at https://doi.org/
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10.5281/zenodo.15259062 and on GitHub at
github.com/shun-hayashi/sparse-chem-react-mec.
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