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and Newell R. Washburn *ab

Polyurethane prepolymers are essential intermediates in the production of polyurethane foams, films, and

elastomers, with viscosity playing a critical role in formulation, processing, and manufacturing. Despite its

importance, there are no models that quantitatively predict the viscosity of a given polymer as a function

of monomer chemistry. Traditional empirical models can effectively capture viscosity trends but often

require extensive experimental datasets and provide limited interpretability, particularly when applied to

novel formulations. Here, we explored regression options for representing polymer chemistry and for

modeling the form of the temperature dependence. Monomers can be represented as a formulation in

which they are labeled by monomer name or in a physicochemical framework where they are labeled by

molecular characteristics derived from experimental measurements or computational methods. The

overall form of the temperature-dependent viscosity can be modeled through a generic regressor

function or by assuming the empirical form of the Andrade equation. A 39-sample training library was

used to evaluate both approaches, with machine learning models achieving a coefficient of

determination (r2) of 0.71 for the chemical model testing data and 0.86 in predicting the Andrade

equation parameter, which provides interpretable access to the continuous viscosity-temperature curve,

for previously untested compositions. While chemically defined models offer a direct path to high-

accuracy predictions within known compositional spaces, physicochemical informed models provide

deeper insight into structure–property relationships, facilitating extrapolation to novel materials. This

work underscores the tradeoffs between empirical and physics-informed modeling strategies and offers

a structured approach to integrating domain knowledge into predictive frameworks for complex material

systems.
1 Introduction

Polyurethane prepolymers are essential intermediates in the
synthesis of polyurethane (PUR) elastomers, serving as the
foundational components in the two-step polyaddition process.
In this process, an oligomeric polyol reacts with a diisocyanate
to form the prepolymer, which then undergoes chain extension
to produce the nal elastomer product. The prepolymer route
offers signicant advantages over direct polymerization
approaches, such as the targeted formation of so and hard
segments in separate steps, allowing for ne-tuning of
mechanical properties and processability.1,2 Among these
characteristics, viscosity plays a critical role in dictating the
gineering, Carnegie Mellon University,
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ry, University of Chicago, Chicago, IL

52–3661
practical handling and processing of the prepolymer melt, as
well as the quality of the nal elastomer. The viscosity of poly-
urethane prepolymers is highly dependent on both temperature
and shear rate, creating challenges in predicting processing
behavior across a wide range of industrial conditions. Indus-
trially, the viscosity of the prepolymer must remain within
a controlled range during blending and subsequent chain
extension, as excessive viscosity may impede mixing and reduce
product homogeneity.3–6 However, understanding the under-
lying physicochemical principles that govern the temperature-
dependent viscosity behavior remains a signicant challenge.
Traditional empirical models, while capable of capturing
trends, oen demand extensive experimental data and struggle
to generalize to novel chemical formulations.7,8 On the other
hand, theoretical approaches or fully atomistic coarse-grained
models could be used to predict polymer chain mobility and
segmental relaxation across temperature ranges, yielding highly
detailed viscosity predictions.9–11 However, such simulations are
expensive in both time and computational resources, oen
requiring days or weeks of high-performance computing for
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Schematic representation of the limitations of chemical (A–C%)
design spaces versus transformed physical parameter (Force 1–3)
spaces for models to learn from. By defining samples with continuous
physical parameters, what was an extrapolation task in the chemical
space (new chemical reagents not defined by the existing axes/model
features) can be re-framed as an interpolation task in the physical
space.

Fig. 2 Urethane reaction for varying diisocyanate amounts. (A) Pre-
polymer reaction with 2 : 1 NCO :OH stoichiometry. (B) Semi-pre-
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a single formulation. In contrast, existing data libraries
capturing rheological and compositional information can be
leveraged to build a variety of chemically or physically informed
machine learning models.12–15 These models require little to no
additional resources to train and validate, yet can be rapidly
scaled to support formulation optimization and accelerate
materials discovery when constructed with appropriate rigor.16

The need to accurately predict prepolymer viscosity has
motivated the development of both composition (chemical) and
physics-informed (physicochemical) modeling approaches.
Recent advances in machine learning–assisted modeling have
demonstrated the potential to predict viscosity evolution in
polyurethane systems across a range of chemistries and pro-
cessing routes, from composite molding to modied asphalt
binders.17–20 These studies illustrate how data-driven models,
oen coupled with rheokinetic analysis, can accelerate formu-
lation optimization and process control. Composition models,
driven primarily by formulation-specic data, offer practical
and accurate predictions within known compositional spaces.
Furthermore, design-of-experiments (DOE) approaches—such
as factorial designs and response-surface methodologies—
provide a systematic framework for exploring key formulation
factors and their interactions with minimal experimental
runs.21,22 However, empirical models lack interpretability and
fail to generalize beyond the data used in training, limiting their
utility in deeply studying the material library or for generalizing
the ndings to discover novel materials. In contrast, physics-
informed models leverage molecular-scale features (some of
which can be directly borrowed from existing empirical or
physical models), such as hydrogen bonding interactions and
molecular weight distributions, to establish amore mechanistic
understanding of structure–property relationships.23,24 By inte-
grating physicochemical insights into DOE, one can both guide
the selection of experimental factors and interpret complex
interaction effects, thereby reducing the experimental burden
while enhancing the mechanistic validity of the resulting
models. Building on this foundation, the present work extends
these concepts to prepolymer viscosity prediction by comparing
both composition-driven and physicochemical modeling
frameworks.

These models hold potential for extrapolating viscosity
predictions to novel formulations, as illustrated in the sche-
matic in Fig. 1, albeit at the cost of greater complexity in data
acquisition and feature engineering. This duality presents
a fundamental trade-off in the predictive modeling of complex
systems, demonstrated in the following analysis with PUR pre-
polymer viscosity. Balancing these contrasting objectives
requires strategic consideration of the intended application—
whether the goal is formulation optimization within a known
space or the discovery of new material combinations with
improved performance characteristics. In this study, we aim to
address this balance by presenting a dual modeling framework
that leverages both chemical and physicochemical perspectives,
offering insights into how these approaches can be strategically
integrated to optimize both prediction accuracy and
generalizability.
© 2025 The Author(s). Published by the Royal Society of Chemistry
2 Methodology
2.1 Empirical and physical modeling of PURs

A signicant factor inuencing prepolymer viscosity is the ratio
of reactive groups NCO/OH during synthesis. Prepolymers
typically have an NCO/OH ratio of 1.5–3, forming intermediates
with narrow molecular weight distributions and well-dened
end-functionalities.25 In some cases, it is advantageous to
intentionally increase this ratio beyond 3, producing semi-
prepolymers characterized by a higher weight percent of free
NCO groups (Fig. 2). These semi-prepolymers are advantageous
due to their lower viscosity, which results from a combination of
unreacted diisocyanate monomer acting as a solvent, end-
capping of chains with isocyanate functionalities, and mini-
mized chain extension during prepolymer formation. The
polymer reaction with 4 : 1 NCO :OH stoichiometry.

Digital Discovery, 2025, 4, 3652–3661 | 3653

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00287g


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
N

ov
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
8/

20
26

 7
:5

7:
16

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
stoichiometric imbalance of the functional groups (practically
the percent by weight of NCO, also referred to as prepolymer
index) along with the chemical and physical properties of the
polyol and diisocyanate determine the behavior of the viscous
prepolymer liquid. The viscosity is of critical importance
because oen the PU elastomer preparation involves mixing the
NCO-terminated prepolymer with a variety of other reagents
(e.g., chain extenders, crosslinkers, catalysts) and subsequently
transferring the reacting mixture for nal processing. In prac-
tice, the prepolymer viscosity over a range of typical processing
temperatures (40–80 °C) and shear rates (1–50 s−1) is a critical
processing variable.26,27

The chemical diversity of polyurethane prepolymers further
complicates viscosity prediction. Common polyol types (e.g.,
polyether, polyester, and polycarbonate) differ substantially in
their hydrogen bonding potential, crystallinity, and hydrolysis
resistance, impacting the mechanical and thermal performance
of the nal elastomer.1,24,28,29 Polyesters are most oen used in
elastomer formulations where the mechanical toughness that
results from their ability to form strong inter-chain hydrogen
bonds and their crystallinity is desired. Polyethers are amor-
phous and do not participate as signicantly in hydrogen
bonding, which results in a more compliant material, but they
have the advantage of being more resistant to hydrolysis than
polyester based PU elastomers. Polycarbonate polyols offer the
combination of mechanical performance and hydrolysis resis-
tance and therefore are used as building blocks for high-
toughness PUR elastomers. Other processing considerations
stem from polyesters and polycarbonates having high glass
transition temperatures (Tg) due to backbone ordering and high
polarity while polyethers have much lower Tg. During poly-
merization, the diisocyanates connect the polyols via urethane
linkages to extend the chains to higher molecular weights.
While doing so, thermodynamic and electronic dissimilarities
between the alternating segments can alter chain dynamics
with effects from intermolecular length scales to bulk network
mobility.2,30–32 These same factors that govern the physical
properties of the solid materials are also expected to inuence
melt properties, such as thermodynamics, dipole forces, and
hydrogen bonding.

The temperature-dependent viscosities of polymer melts
have been studied and modeled in a variety of different
approaches. For moderate to high molecular weight polymers,
complex viscoelastic responses dependent on shear history and
shear rate complicate the creation of models that can capture
behavior over a broad range of processing temperatures.33,34 For
low molecular weight (less than a few thousand g mol−1) and
under low-shear conditions, a rst approximation can be made
with an Arrhenius law or the related Andrade equation
describing the viscosity (h) of liquids as a function of temper-
ature (eqn (1)).

h ¼ A exp

�
B

T

�
(1)

In the equation, A is a material constant and B is the activation
energy normalized by a gas or Boltzmann constant. Subse-
quently, the Andrade equation was expanded to account for the
3654 | Digital Discovery, 2025, 4, 3652–3661
effects of free volume and conguration in higher molecular
weight systems. The third parameter C in eqn (2) introduces
a temperature reference to the threshold of congurational
entropy required for viscous ow behavior (i.e., the glass tran-
sition temperature Tg) in polymers.

h ¼ A exp

�
B

T � C

�
¼ A exp

� �B
Tg � T

�
(2)

Similarly, the incorporation of the Tg into the temperature-
dependent viscosity is also present in the WLF equation,
which relates viscosity at the glass transition temperature (hTg

)
to any temperature (T) with a shi factor (aT). The constants (C1,
C2) are specic material constants usually found experimen-
tally. The relationship is outlined in eqn (3).

log aT ¼ log hðTÞ � log hTg
; log aT ¼ �C1

�
T � Tg

�
C2 þ

�
T � Tg

� (3)

A further extension of both the Andrade and WLF equations
for polymer solution viscosity is the Mark–Houwink (MH)
equation (eqn (4)), which uses the molecular weight of the
polymer (M) and tted parameters (K, a) dened by the chem-
ical environment. When tabulated, the two parameters are oen
accompanied by the temperature at which the experiment was
conducted and thus provide an approximate temperature range
for the accuracy of using the values to predict viscosity.

h = KMa (4)

The empirical and analytical models used to describe PUR
viscosity commonly rely on descriptors such as free volume,
molecular conguration, and molecular size. However, the vast
chemical diversity of PURs, encompassing numerous polyol
backbones (e.g., polyethers, polyesters, and polycarbonates) and
a wide range of diisocyanate structures, introduces substantial
complexity into viscosity modeling. Even among industrially
standard formulations, the number of variables inuencing
viscosity is considerable, making empirical curve-tting for
each new formulation inefficient.

To address this challenge, we explored two distinct but
complementary modeling strategies. The rst approach lever-
ages composition vectors to represent each unique sample:
a chemical or “black-box” approach more traditional to
formulation optimization. These models require minimal
domain knowledge and provide high accuracy within the
compositional space on which they are trained. However, they
lack physical interpretability and cannot extrapolate to different
monomers. In contrast, the second approach aims to capture
the underlying physicochemical drivers of viscosity by explicitly
modeling the temperature-dependent response (e.g., via
Andrade equations) and relating the tted parameters to
molecular-scale features. Here, variables derived from thermo-
dynamics, electronic structure, and molecular geometry—such
as dipole moment, polarizability, and topological surface area—
are used to construct interpretable, mechanistically grounded
models. This approach is more time-intensive and requires
© 2025 The Author(s). Published by the Royal Society of Chemistry
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signicant feature engineering, but it offers a clearer link
between chemical structure and macroscopic behavior,
enabling greater generalizability to untested formulations.
Together, these approaches illustrate a strategic tradeoff
between predictive convenience and mechanistic insight. The
chemical model is well-suited for rapid screening and optimi-
zation within known design spaces, while the physicochemical
model provides a pathway for materials discovery and formu-
lation guidance when experimental data are sparse or unavail-
able. Bridging these perspectives offers a robust framework for
both empirical deployment and scientic understanding.

The goal of the training library design was to maximize the
range of polarity of the polyol backbone, the variety of chemical
structures of the diisocyanate, and the range of stoichiometries
used to prepare the prepolymer leading to a distribution of
different prepolymer chain lengths, all while staying within the
compositional bounds of industrial applications. One of each
common polyol chemistries (ether, ester, carbonate) was
incorporated into the library design. Secondly, the diisocyanate
chemical structure was varied to incorporate differing thermo-
dynamic incompatibilities throughout the dataset as well as the
reactivity of functional groups. Lastly, for a xed chemical
structure combination, a series of different %NCO by weight
formulations were made to create a series of viscosities within
a suitable range. The nal library had a total of 39 unique
prepolymers. Table 1 contains a list of each prepolymer
formulated.

Samples were made using the rst of the 2-step synthesis
procedure for PUR polymerization. The macro polyols were
heated in an 110 °C oil bath for 10 minutes before the stoi-
chiometrically predetermined amount of diisocyanate was
introduced to the mixture via syringe. The prepolymer reaction
continued for 2 hours under the same temperature conditions
and constant mechanical stirring at 200 RPM. Aer the allotted
reaction time, each prepolymer liquid was poured into a poly-
propylene centrifuge tube, capped, and placed on the bench
top.

Aer one week of ambient storage, each sample's
temperature-dependent shear viscosity was measured with
Table 1 Sample library organized by polyol composition, diisocyanate
composition, and percent excess NCO. The asterisk (*) denotes
samples withheld for physicochemical model validation

Sample IDs Polyol Diisocyanate %NCO(s)

P_44M_4 (6, 8, 10) PTMEG 4,4-MDI 4, 6, 8, 10
P_MLQ_4 (6, 8, 10) PTMEG Mondur MLQ 4, 6, 8, 10
D_44M_4 (6, 8, 10) Desmophen 2000 4,4-MDI 4, 6, 8, 10
D_MLQ_4 (6, 8, 10) Desmophen 2000 Mondur MLQ 4, 6, 8, 10
C_44M_6 (8, 10) Desmophen-C 2202 4,4-MDI 6, 8, 10
C_MLQ_4 (6, 8, 10) Desmophen-C 2202 Mondur MLQ 4, 6, 8, 10
P_TD80_4 (7, 10) PTMEG TD80 4, 7, 10
D_TD80_7 (10) Desmophen 2000 TD80 7, 10
P_TDS_4 (7, 10) PTMEG TDS 4, 7, 10
P_I_5 (9) PTMEG Desmodur I 5*, 9*
P_W_5 (9) PTMEG Desmodur W 5*, 9*
D_I_5 (9) Desmophen 2000 Desmodur I 5*, 9*
D_W_5 (9) Desmophen 2000 Desmodur W 5*, 9*

© 2025 The Author(s). Published by the Royal Society of Chemistry
a DHR Rheometer. Each sample was heated to 40 °C and poured
onto a Peltier plate which was subsequently heated to 80 °C with
a (2 °C) per min temperature ramp. While the sample was
heated, a 40 mm diameter 1° cone geometry sheared the sample
at a constant 1 s−1 shear rate with viscosity and temperature
data points acquired every 10 seconds. This low shear rate was
deliberately chosen to isolate effects driven by chemical struc-
ture and thermophysical interactions, minimizing the con-
founding effects of shear-thinning behavior or entanglement
typical of high molecular weight polymers. Each unique
formulation was synthesized and tested once to generate
a single viscosity–temperature curve, reecting the common
constraint of limited material availability in industrial
screening and formulation environments.
2.2 Modeling approaches, feature engineering, and selection

Machine learning (ML) has now become a ubiquitous tool for
modeling response surfaces when a host of candidate variables
are hypothesized to relate to the response. ML models can be
adapted with feature-selection algorithms, or more generally
regularization, that help identify a sparse set of independent
variables to use in the parametric or nonparametric tting of
the response. For the chemical model, the dataset was
expanded from 39 to 117 data points by extracting each
formulation's viscosity value in Pa s from 40–80 °C in intervals
of 10 °C and modeled with Random Forest Regression (RF) and
Gaussian Process Regression (GPR). The model was trained to
predict the viscosity of a formulation provided its temperature,
%NCO, and a composition vector containing the respective
amounts of polyol and diisocyanate reagents used during
synthesis. RFmodels were t using a grid search which spanned
the number of estimators, the max depth of the decision tree(s),
and the max features used in ensembles. The GPR covariance
matrix was t with a radial basis function (RBF) kernel to embed
similarity information into the prior distribution of the dataset.
RF and GPR were chosen as the modeling approaches because
they represent a practical middle ground in model complexity;
more expressive than linear regression but more interpretable
and easier to tune than deep learning approaches. GPR's
probabilistic nature offers meaningful uncertainty estimates,
and its mathematical transparency makes it particularly suit-
able for materials scientists with limited machine learning
experience. All models presented were t validated using K-fold
(K = 5) cross-validation and performance was evaluated using
either a 20% testing set (chemical model) or a validation set
(physicochemical model). All model performance metrics,
namely the parity coefficient of determination r2 and the root
mean squared error (RMSE), reported and represented within
gures are evaluated using the best estimator from the cross-
validation procedure. Throughout the analysis, the GPR
models consistently yielded better testing/validation set metrics
and less evidence of overtting, justifying its use as the primary
model in this study. Full tables of modeling results are available
in the SI material to this text.

Subsequently, each formulation's raw viscosity-temperature
data was t using the Andrade expression (eqn (2)), in which
Digital Discovery, 2025, 4, 3652–3661 | 3655
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A represents the viscosity of thematerial as T/N, B represents
the activation threshold for the material's viscous behavior, and
C represents the reference temperature for viscous behavior or
signicant free volume change in the polymer material (Tg). The
B-parameter for each unique sample was found by minimizing
the chi-squared statistic between the raw data collected from
the rheometer and an Andrade expression when C was set equal
to each sample's base polyol Tg i.e., polytetrahydrofuran
(PTMEG) = −80 °C, poly(ethylene adipate) diol (PEAD,
commercial name: Desmophen 2000) = −73 °C, poly(-
hexamethylene carbonate) diol (PHMCD, commercial name:
Desmophen-C 2202)=−64 °C. The A parameter was found to be
randomly distributed values about a 0.001 Pa s mean and was
not further considered during the modeling. Each error mini-
mization resulted in an r2 z 0.99 t or better for the Andrade
expression ttings. The collection of B-parameter values was
therefore used to build GPR models trained to predict this
viscosity activation energy parameter provided a physicochem-
ical feature space modeled from the known chemical structure
and stoichiometry of the prepolymer sample. To model the
physicochemical feature space, stoichiometry and relative
reactivities of the two isocyanate functional groups on the di-
isocyanate (provided by Covestro LLC) were used to convert
percent weight NCO into the average degree of polymerization
and average prepolymer molecular weight features. Density
Functional Theory (DFT) calculations and cheminformatics
computations were used to generate electronic, size, and shape
descriptors of the prepolymers.

As discussed, molecular weight is the hallmark descriptor for
viscosity in macromolecular uids and with any condensation
polymerization, the degree of polymerization given the stoi-
chiometry of the motifs can be approximated with eqn (5) using
equivalent weight ratios, assuming complete conversion. The
average degree of polymerization of the prepolymers can also be
used to approximate the molecular weight of the average pre-
polymer (PPMW) chain with eqn (6). Either of these trans-
formations could be suitable proxies for chain length.

DP ¼ 1þ eqOH=eqNCO

1� eqOH=eqNCO

(5)

PPMW = DP(Mpolyol + Mdiisocyanate) (6)

Quantum chemical calculations of ground state electronic
parameters of the repeat units of synthesized polymers have
been a popular methodology for describing the electronic
properties of chain segments.35 Motivated by the substantial
literature on the roles of phase segregation and hydrogen
bonding given the polarity of polyol backbone and hard
segment structure, each motif's dipole moment (m), polariz-
ability (a), hyperpolarizability (b), and electronic energy (EE)
were targets of DFT calculations. The repeat unit structures
were drawn directly into the AMPAC 10.1 soware, and the
energy calculations were run with the Gaussian 16W engine.
The B3LYP/6–311++G(2d,p) basis set was used for all calcula-
tions, performed in the gas phase with no implicit solvent
model, using default tight SCF convergence criteria. No
3656 | Digital Discovery, 2025, 4, 3652–3661
empirical dispersion correction was applied. All DFT calcula-
tions were executed using Gaussian 16 (Rev. C.01), with typical
CPU time per optimization under 10 minutes on a 6-core
processor.36 Electronic, shape and size cheminformatics
descriptors were also calculated with the RDKit package.37 Both
DFT and cheminformatics-based calculations were performed
on either the polyol repeat units or the urethane-terminated
prepolymer structures (Fig. 2). The calculated features were
extracted from their respective output les and tabulated
alongside the polyol Tg, DP, and PPMW in the candidate feature
space (Table 2). Lastly, the reactivities of the rst and second
isocyanate groups were provided by collaborators at Covestro
LLC.

Lastly, to reduce the dimensionality of the models built from
the physicochemical feature space (Table 2) and improve model
interpretability, we removed co-linear features and only kept the
top ranking of the remaining aer a SHapley Additive Expla-
nations (SHAP) analysis. The co-linear removal consisted of
taking every pair of features with > 0.8 Pearson scores and di-
scarding the one with the lower co-linearity to the response
variable. The SHAP analysis was subsequently performed on the
remaining dataset to extract feature importance within a t
model. SHAP values provide a model-agnostic method for
quantifying the marginal contribution of each feature to the
prediction of the output parameter by computing the average
effect of including each feature across all permutations of the
feature set.38 This analysis allowed us to rank features by their
global importance and identify the subset most strongly inu-
encing model predictions. Using this approach, we iteratively
down-selected the original high-dimensional feature library
down to just the top three dominant physicochemical descrip-
tors. These selected features captured the essential structure–
property relationships governing viscous ow activation in the
prepolymers and were sufficient to retain high model perfor-
mance while enabling interpretation grounded in molecular
behavior. For completeness, SHAP analysis was also performed
on the chemical model to evaluate the contribution of temper-
ature and formulation-specic components (e.g., specic polyol
identity) to the prediction task. While these results are inher-
ently less interpretable due to categorical input encoding, they
are provided in the SI.

3 Results

The chemical model was trained using RF and GPR on an
expanded dataset of 117 data points, each representing the
viscosity of a formulation at one of ve temperatures ranging
from 40 °C to 80 °C. Each input vector encoded the formula-
tion's %NCO value, temperature, and a chemically dened
composition vector corresponding to the quantities of polyol
and diisocyanate reagents. The best GPR estimator achieved an
r2 test value of 0.71 and a RMSE of 17.27 Pa s, Fig. 3 (RF r2 =

0.57, RMSE = 20.82 Pa s. The model consistently tracked the
temperature-dependent viscosity across the composition space,
with poor model performances observed in isolated high/low
viscosity regimes (r2 = −0.61 h > 25 Pa s, r2 = 0.68 h < 25 Pa
s) and isolated high/low temperature regimes (r2 = 0.31T > 60 °
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Candidate feature space utilized during GPR modeling. All DFT and cheminformatics (ChemI) features were calculated for both polyol
and diisocyanate repeat units

Feature Description Source

Tg Glass transition temperature of the base polyol Data sheet
DP Degree of polymerization of the prepolymer Stoichiometry
PPMW Molecular weight of the prepolymer Stoichiometry
m Dipole moment DFT
a Polarizability DFT
b Hyperpolarizability DFT
EE Electronic energy DFT
TPSA Topological polar surface area ChemI
ISF Inertial shape factor ChemI
RG Radius of gyration ChemI
MV Molar volume ChemI
Log P Partition coefficient ChemI
k1 Reactivity of the rst isocyanate group Covestro LLC
k2 Reactivity of the second isocyanate group Covestro LLC

Fig. 3 Predicted versus measured viscosity values for the GPR
chemical model using 5-fold cross-validation. Each point represents
a unique formulation–temperature combination across a 39-sample
library expanded to 117 data points. The input features to the model
include %NCO, temperature, and a composition vector encoding the
identity and composition of polyol and diisocyanate reagents. Black
and red (training and testing data, respectively) vertical bars indicate
one standard deviation of the predicted distribution for each point,
reflecting the Bayesian uncertainty provided by the GPR model. The
inset highlights model resolution and uncertainty behavior in the low-
viscosity regime (#25 Pa s), which is particularly relevant to processing
conditions.
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C, r2 = 0.29T < 60 °C). The gure inset highlights the resolution
of the model at lower viscosities when training data is sampled
from all available data, which are most relevant to processing
conditions and where the majority of the data resides. Dimen-
sionality reduction was also used to obtain results for polyol-
only and diisocyanate-only chemical spaces, yielding poor
performances. Full results of the sparse chemical models are in
the SI materials in Table A1.

In a complementary approach, we introduced the physico-
chemical feature space into the model framework to attempt to
capture mechanistic structure–property relationships with the
© 2025 The Author(s). Published by the Royal Society of Chemistry
h(T) response. Following feature selection (Fig. A1) and 5-fold
cross-validation, this model achieved a moderate testing
performance rtest

2 = 0.73, RMSE = 16.58 Pa s (RF rtest
2 = 0.60,

RMSE = 20.12 Pa s) utilizing temperature, PPI, PolyLogP, k2,
and IsoDM suggesting viscosity behavior can be captured with
the right combination of temperature, size, polyol and isocya-
nate physicochemical features. However, it generalized poorly
to withheld validation sets (H12MDI and IPDI), yielding an rval

2

of−0.60, RMSE= 9.04 Pa s (RF rval
2 of−0.33, RMSE= 8.22 Pa s).

This discrepancy reects a key limitation of models trained
directly on discrete viscosity data: they risk overtting and fail to
capture the latent physical and chemical drivers of viscous ow.
Motivated by this, we next turn to modeling a material's acti-
vation energy which provides a more generalizable and inter-
pretable framework for predicting viscosity across diverse
chemistries.

To develop a more generalizable model, the raw viscosity–
temperature proles of each of the 39 unique prepolymers were
t to a general exponential express of Andrade form. The B
parameter, from the least squares t of raw viscosity-
temperature data, corresponding to the activation threshold
for viscous ow, was used as the regression target. The models
were trained to predict this B value using a sparse set of three
physicochemical features identied via SHAP analysis (Fig. 4).
The beeswarm–style plot indicates the importance of the
average prepolymer molecular weight PPMW, the topological
polar surface area of the polyol repeat unit Polyol TPSA, and the
inertial shape factor of the isocyanate motif Iso ISF. At this time
during modeling all other features were disregarded due to
sufficient correlation with other features or because their
presence did not increase model performance.

Performance of the physicochemical model is summarized
in Fig. 5. On the training set, composed of prepolymers
excluding those based on IPDI and H12MDI, the model ach-
ieved an rtrain

2 = 0.96 RMSE = 24.76 °C (RF rtrain
2 = 0.98 RMSE

= 15.71 °C). On the validation set, which included previously
unobserved IPDI- and H12MDI-based formulations, the model
retained strong performance rval

2 = 0.86 RMSE = 65.89 °C (RF
rval

2 = 0.78 RMSE = 83.53 °C), indicating successful
Digital Discovery, 2025, 4, 3652–3661 | 3657
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Fig. 4 SHAP beeswarm plot showing the impact of physicochemical
features on the viscosity model output. Each point represents a unique
data point and prepolymer formulation; color indicates the feature
value from low (blue) to high (red). Features are sorted by overall
importance (top to bottom). Positive SHAP values indicate a feature
pushes predictions higher, while negative values indicate a downward
effect.

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
N

ov
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
8/

20
26

 7
:5

7:
16

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
extrapolation beyond the training distribution. The model's
sparse physical feature set provides interpretable insight into
the molecular mechanisms underlying viscosity activation. The
dominant role of PPMW is consistent with empirical relation-
ships such as the Mark-Houwink-Sakurada equation, which
links molecular weight to viscosity through entropic constraints
on chain mobility. Polyol TPSA captures the contribution of
polar, hydrogen-bonding surface area to interchain interac-
tions, effectively differentiating polyether, polyester, and poly-
carbonate polyols (further demonstrated by the clustering in
this feature in Fig. 4). Iso ISF reects differences in diisocyanate
geometry (between aromatic and aliphatic diisocyanate struc-
tures) and polarity that may inuence segmental rigidity and
inter-chain orientation.
Fig. 5 Parity plots for GPR-predicted B values from the Andrade mo
performance on samples excluding IPDI- and H12MDI-based diisocyana
H12MDI prepolymers. Each B value corresponds to the activation energ
prepolymer using the Andrade equation. The GPR model was trained on
PPMW, the topological polar surface area of the polyol Polyol TPSA, and t
predictive uncertainty estimated by the GPR posterior. The high pari
extrapolate from physicochemical structure to macroscopic viscous act
prediction output for h(T)= f(B) and themeasured viscosity data for an exa
9%. The same formulation can be seen as a red scatter point in the valid

3658 | Digital Discovery, 2025, 4, 3652–3661
4 Discussion

This study demonstrates a dual modeling framework for pre-
dicting the temperature-dependent viscosity of polyurethane
(PUR) prepolymers, balancing empirical accuracy with physi-
cochemical interpretability. Chemistry-based models trained
directly on compositional vectors and temperature offer high
predictive power within known design spaces. These models are
ideal for formulation optimization, where the goal is to inter-
polate within a well-characterized dataset demonstrated by high
training and testing scores in the chemical model. However,
physicochemical models abstract away from categorical iden-
tiers and instead learn from molecular-scale descriptors,
enabling predictions grounded in chemical theory and mecha-
nistic understanding. This duality reects a broader tension in
materials informatics: should models prioritize practical accu-
racy or generalizability?

The chemical model, trained using GPR and RF on an
expanded dataset of 117 data points, achieved a high degree of
accuracy with no feature engineering and minimal pre-
processing of the dataset. Its success highlights the value of
structured composition vectors and serves as a benchmark for
rapid screening applications. However, such models are
fundamentally limited in their ability to extrapolate to new
chemistries or uncover mechanistic trends (Fig. 1). To address
these limitations, we transformed the modeling task using the
Andrade equation, reducing each prepolymer's viscosity–
temperature prole to a single activation parameter B, which
encodes the energy barrier for ow. This scalar response vari-
able, grounded in physical chemistry, was then modeled using
a sparse set of three physicochemical descriptors selected using
SHAP-based feature importance ranking from an initial high-
dimensional library that included DFT- and cheminformatics-
derived descriptors.
del using the sparse physicochemical feature set. (Left) Training set
tes. (Middle) validation set predictions for previously unseen IPDI and
y extracted from fitting the viscosity–temperature profile of a unique
a three-dimensional feature space: the prepolymer molecular weight
he inertial shape factor of the isocyanate Iso ISF. Error bars indicate the
ty across both sets highlights the model's ability to interpolate and
ivation behavior. The final panel (right) shows the model's continuous
mple formulation from the validation set; Polyester Polyol-IPDI-pNCO
ation parity plot in the middle panel.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Each nal model feature carries physical signicance.
PPMW captures chain size and entropic resistance to ow and
aligns with classical scaling laws such as the Mark–Houwink–
Sakurada equation, where polymer viscosity scales sublinearly
with molecular weight (0.5# a# 0.8). Polyol TPSA, a geometric
proxy for polar surface area, captures hydrogen bonding
potential and inter-chain interactions, distinguishing poly-
ether, polyester, and polycarbonate architectures. Iso ISF,
a shape-based descriptor, quanties the anisotropy of the di-
isocyanate motif and reects how steric factors and segmental
symmetry inuence packing, rigidity, and ultimately viscous
resistance. Collectively, these three features span chain length,
intermolecular cohesion, and molecular geometry—dimen-
sions that directly inuence viscous activation.

The resulting GPR model trained on this physicochemical
feature space demonstrated strong generalizability, achieving r2

= 0.96 on the training set and r2 = 0.86 on a validation set
comprising previously untested diisocyanate chemistries
specically H12MDI and IPDI. Its ability to interpolate across
untrained regions of this dened chemical space suggests that
the model captures the latent structure–property relationships
governing viscous ow in aliphatic and cycloaliphatic di-
isocyanates. However, other chemical diversity and physico-
chemical gaps may still exist in the model e.g., capturing the
nature of highly polar or highly exible polyol backbones in
PDMS-based or natural oil-based polyols are likely to result in
predictive failure. The SHAP-based feature selection further
emphasizes this boundary: polarizability, hydrogen bonding
capacity, and backbone rigidity emerged as dominant factors
inuencing viscosity, highlighting the need to sample more
chemically diverse formulations. This limitation represents
a clear opportunity for future dataset expansion aimed at
improving model robustness across broader formulation
spaces.

By comparing these two approaches—the empirical chem-
ical model and the physicochemical model—we highlight the
trade-offs surrounding generalizability. The chemical model is
quick to deploy, requires no feature engineering, and performs
well within the bounds of known compositions. In contrast, the
physicochemical model requires domain knowledge, descriptor
curation, and greater upfront effort, but yields models that not
only generalize beyond the initial library but also offer mecha-
nistic insight into how structure governs ow, all the while
providing the investigator with a tted parametric equation for
the prepolymer viscosity–temperature dependence h(T) = f(B).

5 Conclusions

This work illustrates how integrating empirical machine
learning with physically informed modeling can offer a more
holistic framework for materials prediction. Rather than posi-
tioning empirical and physics-based strategies as mutually
exclusive, we demonstrate how they can compliment one
another, serving distinct but complementary roles in the
development and new formulation screen in complex datasets.
By constraining statistical learning to physical regimes, and by
re-framing noisy experimental data through canonical
© 2025 The Author(s). Published by the Royal Society of Chemistry
thermodynamic models, we show that even small, sparse
datasets can be leveraged to uncover meaningful structure–
property relationships that extend beyond the training set. This
dual approach offers a scalable, interpretable pathway forward
for predictive modeling in complex chemical systems. In the
context of these broader developments, our results contribute
a complementary perspective by explicitly uniting empirical and
physics-informed strategies for prepolymer viscosity prediction.
While prior work has successfully applied machine learning to
related polyurethane systems, our dual-framework approach
provides a pathway to generalize across diverse formulations
while retaining interpretability grounded in rheological
principles.

While promising, this study also carries important limita-
tions. Each formulation was synthesized and tested once,
resulting in a small sample size with pseudo-replication intro-
duced by temperature increments. The viscosity measurements
were performed at a constant low shear rate, restricting appli-
cability to Newtonian ow regimes. Additionally, although our
library included chemically diverse diisocyanates it did not
include more complex polyols, chain extenders, or additives/
llers that are oen encountered in industrial formulations.
These constraints reect the realities of early-stage formulation
and screening, where material throughput is limited, but they
also dene clear directions for expanding and validating this
dual-modeling framework in future work.
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33 U. Šebenik and M. Krajnc, Inuence of the So Segment
Length and Content on the Synthesis and Properties of
Isocyanate Terminated Urethane Prepolymers, Int. J. Adhes.
Adhes., 2007, 27(7), 527–535.

34 E. Głowi�nska and J. Datta, A Mathematical Model of
Rheological Behavior of Novel Bio-based Isocyanate-
© 2025 The Author(s). Published by the Royal Society of Chemistry
Terminated Polyurethane Prepolymers, Int. J. Adhes. Adhes.,
2015, 60, 123–129.

35 Y. Zhao, R. J. Mulder, S. Houshyar and T. C. Le, A Review on
the Application of Molecular Descriptors and Machine
Learning in Polymer Design, Polym. Chem., 2023, 14(29),
3325–3346.

36 P. Xu, T. Lu, L. Ju, L. Tian, M. Li and W. Lu, Machine
Learning Aided Design of Polymer with Targeted Band Gap
Based on DFT Computation, J. Phys. Chem. B, 2021, 125(2),
601–611.

37 RDKit: Open-source Cheminformatics, https://www.rdkit.org.
38 S. M. Lundberg and S. I. Lee, A Unied Approach to

Interpreting Model Predictions, in Advances in Neural
Information Processing Systems 30 (NeurIPS 2017). Curran
Associates, Inc., 2017, pp. 4765–4774.
Digital Discovery, 2025, 4, 3652–3661 | 3661

https://www.rdkit.org
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00287g

	Machine learning of polyurethane prepolymer viscosity: a comparison of chemical and physicochemical approaches
	Machine learning of polyurethane prepolymer viscosity: a comparison of chemical and physicochemical approaches
	Machine learning of polyurethane prepolymer viscosity: a comparison of chemical and physicochemical approaches
	Machine learning of polyurethane prepolymer viscosity: a comparison of chemical and physicochemical approaches
	Machine learning of polyurethane prepolymer viscosity: a comparison of chemical and physicochemical approaches

	Machine learning of polyurethane prepolymer viscosity: a comparison of chemical and physicochemical approaches
	Machine learning of polyurethane prepolymer viscosity: a comparison of chemical and physicochemical approaches
	Machine learning of polyurethane prepolymer viscosity: a comparison of chemical and physicochemical approaches
	Machine learning of polyurethane prepolymer viscosity: a comparison of chemical and physicochemical approaches
	Machine learning of polyurethane prepolymer viscosity: a comparison of chemical and physicochemical approaches
	Machine learning of polyurethane prepolymer viscosity: a comparison of chemical and physicochemical approaches
	Machine learning of polyurethane prepolymer viscosity: a comparison of chemical and physicochemical approaches


