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Transition state (TS) geometries of chemical reactions are key to understanding reaction mechanisms and
estimating kinetic properties. Inferring these directly from 2D reaction graphs offers chemists a powerful
tool for rapid and accessible reaction analysis. Quantum chemical methods for computing TSs are
computationally intensive and often infeasible for larger molecular systems. Recently, deep learning-
based diffusion models have shown promise in generating TSs from 2D reaction graphs for single-step
reactions. However, framing TS generation as a diffusion process, by design, requires a prohibitively large
number of sampling steps during inference. Here we show that modeling TS generation as an optimal
transport flow problem, solved via E(3)-equivariant flow matching with geometric tensor networks,
achieves over a hundredfold speedup in inference while improving geometric accuracy compared to the

state-of-the-art. This breakthrough increase in sampling efficiency and predictive accuracy enables the

Received 27th June 2025 . ) . . .
Accepted 20th October 2025 practical use of deep learning-based TS generators in high-throughput settings for larger and more
complex chemical systems. Our method, GoFlow, thus represents a significant methodological
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1 Introduction

Transition states (TS) of chemical reactions determine the
activation energy and consequently the reaction rate. They are
saddle points on the potential energy surface of a reaction and
lie on the minimum energy path (MEP) between reactants and
products.** Knowing their geometry is crucial for under-
standing reaction mechanisms and identifying dominant
pathways in reaction networks. Thus, providing chemists with
an efficient, accurate, and user-friendly method capable of
determining the TS structure directly from the 2D reaction
graph would significantly accelerate laboratory research and
workflows, and thereby reduce costs.

TSs are high-energy structures that are extremely short-lived
and exist only on the order of femtoseconds.? To better under-
stand chemical reactions, for decades, quantum mechanical
calculations have been the only way of accessing TS structures.
Density functional theory (DFT) has commonly been used as the
method of choice.* TS search algorithms generally fall into two
categories: single-ended methods mostly start from the 3D
geometries of the reactants,” while double-ended methods
utilize both reactant and product geometries for determining
the TS.® These quantum chemical methods are, however,
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computationally highly demanding, for example, using =35%
of the computational resources of the Swiss National Super-
computing Center in 2017.” They also suffer from convergence
difficulties, often yielding TSs that do not lie on the minimum
energy pathway.®

Several reaction datasets containing optimized TS geome-
tries have been developed in recent years.*** One notable
example is RDB7,® which builds on the work of Grambow et al.*
In their approach, small organic molecules were sampled as
reactants from GDB-7,'* and their optimized geometries were
used as starting points for a growing string method and
subsequent saddle point optimization to identify TSs. The main
aim of such reaction datasets is to enable researchers to develop
machine learning (ML) based algorithms for estimating TS
geometries and barrier heights. ML algorithms identify patterns
from thousands of chemical reactions that are predictive of the
TS geometries, and thus avoid running expensive quantum
chemical calculations.

Multiple deep learning (DL) based algorithms have been
proposed for predicting TS structures. Some of them rely on
the 3D geometry of the reactant and product as input, in
addition to the 2D graphs,'*® while others take only the 2D
graph as input.”** Generating 3D geometries of reactants and
products can be computationally costly, with current studies
relying on external quantum chemistry calculations that
provide relaxed 3D coordinates.'™'®' Furthermore, current
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methods perform post-processing using quantum chemical
methods on the generated TS structures.>*”** In both cases,
high-throughput applications cannot rely on these expensive
calculations.

Kim et al.*® recently introduced TsDiff, the current state-of-
the-art (SOTA) approach for generative modeling of TS geome-
tries leveraging only the 2D reaction graph as input, encoded as
a condensed graph of reaction.”® TsDiff relies on diffusion
modeling®* of the distribution of possible TS geometries with an
E(3)-invariant, distance-based graph neural network (GNN) as
encoder.” While achieving remarkable results, framing the
problem as a diffusion process requires a large number of
denoising steps during inference. TsDiff in particular uses
annealed Langevin dynamics for inference, requiring 5000
sampling steps per reaction, considerably slowing down infer-
ence. Duan et al.*® have recently shown improved TS prediction
performance on the Transition1X (T1X) dataset' using a deter-
ministic optimal transport based model that, given a TS struc-
ture guess, produces a single TS prediction. However,
deterministic methods require knowledge of the reactant and
product geometries, which correspond to a particular TS, which
we do not assume.

Another important drawback of current deep learning
approaches for the generation of TS coordinates arises from
overfitting and lack of generalization capabilities. Previous
studies found GNNs and, in general, DL-based reaction
prediction models to consistently generalize poorly,*** or
perform significantly worse on several possible out-of-
distribution dataset splits,>* even though the test reactions
shared many common reaction mechanisms with the training
reactions.>*

In this paper, we address the current limitations of effi-
ciency, necessity of additional quantum-mechanical calcula-
tions, and missing out-of-distribution generalization ability.
Specifically, we frame the TS structure generation problem as an
optimal transport flow process with an E(3)-equivariant
geometric tensor network® as graph encoder, taking as input
only the 2D reaction graphs. Using a flow matching-based
algorithm* for fitting the velocity field, and the efficiency of
geometric tensor networks, increases sampling efficiency
during inference by more than a hundredfold, compared to the
SOTA. Second, we analyze out-of-distribution generalization
capabilities of our generative model using splits based on the
clustered reaction cores and the magnitude of the barrier
height, in addition to random splitting. Current literature for TS
prediction using DL has so far only used random splits.”*™** We
demonstrate that our approach, GoFlow, outperforms previous
methods in terms of generalization capability. Together with its
improved in-distribution performance at a fraction of the cost
of current approaches, we establish GoFlow as the new state-of-
the-art in generative TS models.

2 Methods

2.1 Problem setup

Given the 2D graphs of reactant and product molecules of
single-step reactions, our objective is to predict the most likely
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TS geometry of the reaction. The 2D reaction graphs are given in
SMILES notation.

Initial atom and bond features ({h};{e;},) are extracted using
RDKit.?* The model outputs cartesian coordinates r;e R*® per
atom 1.

2.2 Condensed graph of reaction

We encode chemical reactions using the condensed graph of
reaction (CGR).>>*”?® The CGR is a representation that encodes
chemical reactions as a single graph by superimposing the
molecular graphs of reactants and products. Each atom and
bond in the CGR carries dual labels, indicating its state before
and after the reaction, which allows the model to capture
changes in bonding, charge, hybridization, etc.

It has been shown to be highly effective for both TS geometry
prediction,™ and reaction property prediction.>**

2.3 Flow matching

Let po(x) be an easy-to-sample distribution, in our case
N(0,1), and p4(x) be the target data distribution that we want
to model. Flow matching considers a continuous path of
probability distributions p,x) for ¢ € [0, 1] such that p,
smoothly interpolates between p, and p;. This path is induced
by a time-dependent vector field v/(x). Samples x, evolving
along this path follow the ordinary differential equation
(ODE):*
dx,

T v, (x)

where x; ~ p;. The vector field v,(x) and the probability path p,(x)
are linked via the continuity equation:

dpdx) = =V X (px)v(x)).

The goal is to train a parameterized neural network u(x, t) to
approximate the true, often intractable, vector field v,(x).

A key challenge is that v,(x) depends on the marginal prob-
ability path p,(x), which is typically unknown. Instead of directly
matching the marginal vector field v,(x), conditional flow
matching (CFM) defines a simpler target vector field based on
conditional paths.*

Consider a specific pair of samples x, ~ po and x; ~ p;. We
can define a path x, connecting them, for instance, a simple
linear interpolation, also called the optimal transport (OT) path:

x, = (1 = )xo + 1x1.
The vector field corresponding to this specific conditional
path is simply the time derivative

V(x| X0, X1) =

— = X1 — Xp.
dt 1 0

Crucially, this target vector field (x; — X,) is independent of ¢
and x, along the path and does not require knowledge of p,(x).
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The OT CFM objective trains the model uy(x, ¢) by mini-
mizing the expected squared error against this conditional
target vector field, averaged over time ¢ and pairs (xo, x1):

P(6) = Enyo | lta((1 = 0% + 11,0) = (11 = o)

with ¢t ~ U([0,1]),po ~ Xo,p1 ~ x;. Minimizing this objective
results in uy(x, t) approximating the marginal vector field v,(x).>®

Once the model uy(x, t) is trained to approximate the vector
field v,(x), it can be used for generating new samples from the
target distribution p4(x). This is achieved by numerically simu-
lating the probability flow ODE. Starting with an initial sample
xo drawn from the base distribution py(x), we integrate the
differential equation

% = uy(x,, 1)

forward in time from ¢ = 0 to ¢ = 1. Standard numerical ODE
solvers, such as Euler or Runge-Kutta methods, can be
employed for this simulation; in this work, we employ Euler's
method. The resulting state x; at ¢ = 1 is then considered
a sample approximating the target distribution p,(x).

2.4 E(3)-equivariance

Capturing molecular 3D structure and symmetry is crucial for
data-efficient prediction of properties like energy, forces, and
dipoles.**?> E(3)-equivariant GNNs achieve this by respecting
the symmetries of the Euclidean group E(3), namely 3D rota-
tions, reflections, and translations.*

Let X = ({r;}»{h;};) represent the input molecule, with coor-
dinates r,eR3 and initial features h,. Let @ be the network
function mapping X to output features F = @(X). An E(3)
transformation g € E(3) acts on the coordinates as g x r. We
denote the transformed input as g x X=({g x r};,{h;},).

Let Vbe the space of output features F and GL(3) the group of
invertible linear transformations on it. The network @ is E(3)-
equivariant if there exists a representation p: E(3) — GL(V)
such that for all g € E(3) and all inputs X:

(g x X) = p(g)P(X).

This means that transforming the input geometry by g
results in a predictable transformation p(g) of the output
features. For instance, rotating the input molecule causes the
predicted force vectors to rotate accordingly.

Scalar outputs, such as energy, must be E(3)-invariant,
a special case where p(g) is the identity transformation, p(g) =
I, for all g.

Implementations often use spherical harmonics (e.g. up to L
= 2) as bases for features, which transform via Wigner D-
matrices under O(3) rotations. Tensor products are key opera-
tions for maintaining equivariance. Examples include SE(3)-
Transformers, NequIP, and MACE"**?* known for their
expressiveness but potentially high computational cost.

In this work, we adapt and use the E(3)-equivariant Geometric
Tensor Network (GotenNet) architecture.* GotenNet aims to
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bridge this gap between expressiveness and efficiency, particu-
larly addressing the computational overhead associated with
traditional tensor product based methods. It achieves E(3)-
equivariance without explicitly relying on tensor products with
Clebsch-Gordan coefficients for its core message passing.

GotenNet works with different types of features, capturing
geometric information. Nodes have invariant scalar features #;
and steerable features X\ that behave as spherical harmonics
up to a degree L,y Edges also have invariant scalar features ¢;
and initial geometric tensors r; derived directly from the rela-
tive positions of connected atoms using spherical harmonics.

Specifically, the authors introduce multiple equivariant
modules, such as geometry-aware tensor attention and hierar-
chical tensor refinement. They modify transformer-based
architectures by refining edge representations through high-
degree steerable features, which enable the attention mecha-
nism to leverage geometric relationships in determining node
interactions. For details, we refer the reader to the paper.>* The
key point is that GotenNet does not use high-degree tensor
product operations, thus improving efficiency, while still
capturing essential geometric information.

2.5 Sample aggregation

We introduce a novel aggregation method that reduces variance
and significantly improves the accuracy of predicted geome-
tries, without requiring changes to the training algorithm.

During inference, we sample multiple TS geometries for each
reaction. Let S be the number of samples and let Rse RN*?
denote the matrix of atomic coordinates for the final geometry
of the s-th sample, where N is the number of atoms. The coor-
dinates for the i-th atom in sample s are r;;€ R?.

To choose the final prediction, we first compute the median
atomic position t; for each atom i across the S samples, where
atoms are identified by their atom mapping number:

;= median{r,;} fori=1,..,N

These median positions form the aggregate median geom-
etry Re RV*3,

Finally, we choose the sample R; whose geometry is closest
to the median geometry R. The distance d; for each sample is
calculated as the Frobenius norm of the difference between the
sample's coordinates and the median coordinates:

N
Z [y — T2
i=1

dy = R, — Rl| =

The index s* of the best sample is found by minimizing this
distance:

s* = argmingd,

The final predicted geometry Ry, is then the geometry of
the sample with index s*:

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Note that we do not access the ground truth TS geometry for
selecting the final sample out of the ensemble. This procedure
is named AggregateSamples in Algorithm 1. We choose median
over mean aggregation, to omit sampling low probability
conformers in case of multimodal distributions.

2.6 Adaptations

We introduced several adaptations to flow matching and
GotenNet for our problem of TS geometry prediction, which we
highlight below. The training and inference procedures are
described in Algorithm 1.

(1) To incorporate time awareness into the GotenNet archi-
tecture for flow matching, we add sinusoidal time embeddings
to the initial node and edge features.

(2) To obtain an optimal transport path, we first align the
randomly initialized atomic positions with the ground truth
positions. We align their center of mass (CoM) and rotationally
align the positions using the Kabsch algorithm to find the
optimal rotation matrix.*” These steps are performed in the
Align function of Algorithm 1.

(3) We employ the previously proposed median sample
aggregation method during inference.

(4) We initialize node and edge features using CGR-based
embeddings. This procedure is described in detail in Algo-
rithm 2.

(5) In an additional experiment we initialize the atomic
positions at ¢ = 0 with the reactant geometry plus Gaussian
noise (u = 0, 0> = 0.25). With this modification, we expect to
better model chiral TSs.

Algorithm 1 Training and Inference

Require: Molecular graph batch % with target positions x; €
RN x3

Require: GotenNet fy parameterized by 6
1: function TRAINSTEP (%)

2 Xo ~ A47(0,1) > Sample initial positions
3: t~([0,1]) > Sample time uniformly
4 X8 Align(xg,x;, %) > CoM and Kabsch align
5 Vv x?hg" —X > Ground truth velocity field
6: X, (1—1)-x0+1- x?hgn > Interpolate positions
7 V< fo(x¢,t,9B) > Predict velocity field
8 Z < RMSD(¥,v) > Compute loss
9 6 + Update(6,Vy.%) > Update with Adam

10: return .
11: end function

12: function INFERENCE (%, steps, samples)

13: for s = 1 to samples do

14: xp ~ A(0,1) > Sample initial positions
15: xr < ODESolve(fy,Xo, [0, 1], steps)

16: end for

17: xr < AggregateSamples(x7) > Median aggregation
18: return xr

19: end function

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Algorithm 2 CGR Embedding

Atom types z € ZVN

Reactant RDKit node features n; € RN *Fnode
Product RDKit node features np € RN *Frode
Reactant edge types t, € ZF

Product edge types t, € ZE

Atom type linear embedding layer Eatom
Node feature linear embedding layer L4
Edge type linear embedding layer Eeqqe
Edge MLP MLP, g,

Require:
Require:
Require:
Require:
Require:
Require:
Require:
Require:
Require:

function ATOMCGREMBEDDING(z, nr, np)
€atom < Eatom (2)
€node r < Liode (nr)

€node p <~ Lnode (np)

1:

2 > Embed atom types
3

4

5: h; < eatom + €node_r

6

7

8

9

> Embed reactant node features
> Embed product node features

hy <= enode p — €node r
h;o4e + Concat(hy,hy)
: return h; 4.
: end function

10: function EDGECGREMBEDDING (tr, tp)

11: €edge r < Eedge(tr) > Embed reactant edge types
12: €edge p < Eedge(tp) > Embed product edge types
13: €concat — Concat(eedge rs€edge p)

14: hegge ¢ MLPegge (€concat)

15: return hegge

16: end function

2.7 Experimental setup

We evaluate GoFlow on the task of TS geometry prediction and
compare it with the current state-of-the-art algorithm TsDiff.
For training and testing, we use an NVIDIA A100 GPU.

We perform ablation studies on the number of ODE inte-
gration steps, the number of samples to be aggregated during
inference, the number of trainable parameters, and three
different dataset splitting strategies.

We also evaluate the median absolute deviation in the
performance metrics, using an ensemble of 8 models, each
trained and evaluated separately using different initialization
seeds.

2.7.1 Hyperparameters. GotenNet is trained with the same
hyperparameters as reported by the authors.”* We add edges
between atoms within a cutoff radius of 10 A, and between
atoms that are within a 3-hop neighborhood, following the
authors of TsDiff."® For details, see the SI.

2.7.2 Dataset. We evaluate and compare our method to
TsDiff on the RDB7 (ref. 9) dataset, which comprises 11 926 gas-
phase reactions involving H, C, N, and O with molecules con-
taining up to seven heavy atoms. An evaluation of GoFlow on
T1X dataset,'” a recomputation of RDB7, is also performed and
results reported in detail in the SI. Geometries and vibrational
frequencies for RDB7 were obtained at the B97-D3/def2-mSVP
and wB97X-D3/def2-TZVP levels of theory. We split the dataset
into training, validation, and test sets in an 80%, 10%, and 10%
ratio using different splitting strategies (see Section 2.8). For
T1X we use the official split. We use RDKit to extract the
following atomic features from SMILES strings: aromaticity,
formal charge, hybridization, number of bonds per atom,

Digital Discovery, 2025, 4, 3492-3501 | 3495
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degree, and ring membership. We adopt the same pre-
processing pipeline as Kim et al.*®

2.7.3 Baseline. We compare our method to TsDiff.'* TsDiff
is a diffusion-based deep learning model designed to predict
TS geometries directly from the 2D molecular graphs of the
reactant and product, encoded as CGR, G,x,. They approximate
the true TS distribution p(Cy|Gxn) by training a model to
reverse a forward diffusion process, where noise is incremen-
tally added to the TS coordinates C, over discrete time steps
t. The model learns to predict the score function V.dog p(C,
|Grxn)- TO compare it to our method, we trained it on RDB7.°
Contrary to the authors,'® we avoid data augmentation in our
work.

2.8 Evaluation

We split the data into training, validation, and test sets using
three splitting strategies and evaluate the model's performance
on each. Previous work mostly uses random splits,"*™** which is
problematic for multiple reasons.??

Firstly, it does not account for extrapolation capabilities to
out-of-domain samples, which might vary among different
model classes, such as when comparing equivariant to invariant
models or different generative methods. Secondly, the reactants
in the dataset were generated using graph enumeration,** which
can result in highly similar reactions ending up in both the
training and validation/test sets.

For our ablation studies, we train and test using the random
split strategy only, assuming it to be a sufficiently good heuristic
for evaluating single-parameter changes on our model. In the
following, we summarize the three splitting strategies
employed.

(1) Random split. Randomly assign reactions to training,
validation, or test set.

(2) Reaction core split. Extract the reaction core (ie.,
template), the set of atoms for which adjacent bond types are
changed during the reaction, and group all reactions by their
common core. Randomly assign a core to the training, valida-
tion, or test set. Thus, different sets do not contain reactions of
the same core.

(3) Barrier height split. Add reactions in the upper and lower
10% of the barrier heights to the validation or test sets. The rest
is added to the training set.

2.8.1 Metrics. The accuracy of the generated geometries is
measured using the mean absolute error of the interatomic
distances (D-MAE), root mean square deviation (RMSD), and the
angle error. For precise definitions, see the SI.

Compared to previous work, we do not report minimum-
over-samples (MOS) metrics such as the matching score or the
average minimum RMSD (AMR)'3*** for the evaluation of
model performance on RDB7. However we perform an evalua-
tion using a MOS approach in the SI to showcase the future
potential of steering-based approaches.** MOS metrics take
several independently generated candidate geometries for the
same reaction and report the minimum RMSD (or D-MAE) to
the ground truth among them. While we evaluate our predic-
tions against the ground truth TS geometry on the test set, we
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avoid minimum-over-samples metrics in our main evaluation
on RDB?7 for two reasons:

First, in a real application, the ground truth TS geometry is
unknown, so the user cannot identify the “best” sample post
hoc. Second, they can give a misleadingly optimistic picture of
model accuracy - for example, even a poor model (or random
guessing) can achieve an artificially low AMR if enough samples
are generated, simply by chance.

Instead, we report metrics computed on the single geometry
that would actually be returned to the user in practice, such as
the median prediction from multiple samples of the model.
This yields error estimates that better reflect the accuracy
a chemist could expect when using the model prospectively,
without the benefit of knowing which sample is closest to the
truth.

Furthermore, we introduce a metric, called steric clash error,
with which we aim to identify gross structural deviations in
nonbonded interactions. Steric clashes, while barely affecting
the D-MAE when most of the molecule's geometry is predicted
correctly, result in unrealistically high repulsive energies and
thus unrealistic activation energies.*” Vost et al. demonstrated
in recent work* that conditioning diffusion models on
conformer quality significantly improves steric clash test results
in generated molecules. The recent Boltz-1 architecture for
biomolecular structure prediction also uses physical constraint
potentials, including steric clash constraints, during infer-
ence.* In this work, we use the steric clash error to analyze the
results only.

To accomplish this, we use a simplified Lennard-Jones (LJ)
interaction potential, where we omitted the London dispersion
force term, set ¢ = 0.25 kcal mol™%, ¢ = 0.7 A, and are thus left

with Viy = ( ).”2 We set the steric clash of edges with

10 xr
distances greater than 0.7 A to zero. Thus, we only consider

interatomic distances close to or smaller than the shortest bond
lengths (of hydrogen molecules) in our dataset.

3 Results and discussion

We first compare GoFlow with TsDiff (Table 1). When using
GoFlow with 25 samples and 25 ODE steps, a D-MAE of 0.108 A,
RMSD of 0.18, and an angle error of 3.63° is obtained. This is
notably lower than the values for TsDiff (D-MAE of 0.164 A,
RMSD of 0.29, and angle error of 4.77°). GoFlow with 25
samples has an inference time of 125 ms, compared to 1544 ms
of TsDiff for a single sample. We also report metrics for GoFlow
using 1 sample and 25 ODE steps (see Table 1 first entry) for
comparison. In this scenario, GoFlow still outperforms TsDiff
for all metrics while being even faster with a run time of 10 ms,
more than a hundred times faster than TsDiff. Initializing the
atomic positions at ¢ = 0 with reactant geometries plus
Gaussian noise also improved the RMSD.

We also plot the distribution of the obtained D-MAEs on the
random split test set in Fig. 1. The bell-shaped distribution
features a tail to the right, indicative of outliers with high error
that increase the overall D-MAE, and a low peak close to 0.05 A.
In comparison, the low peak of TsDiff is shifted to the right, and

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Comparing GoFlow to TsDiff. Performance metrics of
GoFlow, with 25 ODE steps and 1 sample (GoFlow-1), 25 ODE steps
and 25 samples (GoFlow-25) during inference, and initializing atomic
positions with the reactant positions plus noise (GoFlow-25-R,
everything else being the same as GoFlow-25). We report the median
of 8 training and subsequent test runs with median absolute deviation
for GoFlow-25. Metrics are the mean absolute error of interatomic
distances (D-MAE), root mean square deviation (RMSD), angle error,
and inference runtime per reaction

Method D-MAE (A) RMSD (A) Angle (°) Runtime (ms)
GoFlow-1 0.118 0.20 3.65 10
GoFlow-25 0.108 £+ 0.006 0.18 + 0.005 3.63 + 0.28 125+ 0
GoFlow-25-R  0.104 £ 0.002 0.17 4+ 0.002 3.56 + 0.08 130 £+ 0
TsDiff 0.164 0.29 4.77 1544
71 1 D-MAE - GoFlow
D-MAE - TsDiff
6_
5 4
>
Pl
0 41
c
a
3 4
2 4
1 4
0
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Distance (A)

Fig. 1 Distributions of the mean absolute error of interatomic
distances (D-MAE) in angstroms for GoFlow and TsDiff. Inference
performed with 25 ODE solver steps and 25 samples per run.

the tail is much more pronounced, producing more predictions
with a high D-MAE. Fig. 1 thus highlights the improved
prediction accuracy reported in the current study, with both
a lower number of high D-MAE (low-quality) predictions, and
a lower D-MAE for high-quality predictions.

Evaluations of GoFlow on T1X are reported in the SI.

3.1 Ablation studies

We found that the number of ODE steps and the number of
samples significantly impacted model performance.

The results in Table 2 show that increasing the number of
ODE steps and keeping the number of samples at 25, reduces
the D-MAE, the angle error, and steric clashes. At 25 ODE steps,
the model achieves the lowest D-MAE (0.107 A), the smallest
angle error (3.68°), and a low steric clash error (14 kecal mol %),
indicating an optimal balance. Increasing the number of
samples and keeping the ODE steps at 25 (Table 3) shows the
lowest angle error when using 10 samples and the lowest D-MAE
when using 50 samples, while the steric clash remains equally

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Metrics of a model sampling 25 times during inference,
aggregated by choosing the sample closest to the median atomic
positions of all samples. We report the mean absolute error of the
interatomic distances (D-MAE), angle error, and the steric clash score

Steric clash

# ODE steps D-MAE (A) Angle (°) (keal mol )
1 1.263 52.56 9351
0.182 9.37 2815
5 0.125 5.02 362
10 0.111 3.94 59
25 0.107 3.68 14
50 0.107 3.70 7

Table 3 Metrics of the model using 25 ODE steps while varying the
number of samples during inference. We report the mean absolute
error of the interatomic distances (D-MAE), angle error, and the steric
clash score

Steric clash

# Samples D-MAE (A) Angle (°) (keal mol ™)
1 0.119 3.77 4
3 0.117 3.76 12
5 0.113 3.66 22
10 0.107 3.64 21
25 0.107 3.68 14
50 0.105 3.70 14

Table 4 Metrics of models during inference, with 25 ODE integration
steps and 50 samples, as the dimensionality of the latent space (atom
basis) and thus the number of parameters is increased

# Parameters Atom basis D-MAE (A) Angle (°)
04 M 64 0.163 5.94
1.4 M 128 0.124 4.26
52M 256 0.102 3.49
9.3 M 344 0.105 3.56
204 M 512 0.114 3.90

low in both cases. This shows that the ODE steps are crucial to
reducing steric clashes.

Furthermore, we conducted ablation studies on the number
of trainable parameters of the model by increasing the dimen-
sionality of the atom basis latent space. The results are shown in
Table 4. We found the model with 5.2 M parameters to yield the
best results. However, the model with 1.4 M parameters still
achieved a D-MAE of 0.124, compared to the 0.164 D-MAE of
TsDiff, which has 2.7 M trainable parameters.

3.2 Out-of-distribution generalization

We trained and tested GoFlow and TsDiff on different dataset
splits to evaluate their out-of-distribution generalization capa-
bility. The performance of all tested models degraded on the
more challenging reaction core split and barrier height split,
compared to the random split. The barrier height split was the
most challenging for both models. The results are shown in Table
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Table 5 Performance comparison between GoFlow (with 25 ODE
steps, 25 samples) and TsDiff models across three different dataset
splitting strategies. In the reaction core split, reactions are clustered by
their reaction core, with distinct clusters assigned to either training or
validation/test sets. The barrier height split reserves reactions in the top
and bottom 10% of barrier heights exclusively for validation/test sets.
The random split randomly assigns reactions to either set

etho i - A A ngle
Method Split D-MAE (A RMSD (A Angle (°
GoFlow Random 0.108 0.18 3.63
Reaction core 0.138 0.22 5.00
Barrier height 0.149 0.22 5.63
TsDiff Random 0.164 0.29 4.77
Reaction core 0.174 0.30 5.51
Barrier height 0.191 0.32 6.39
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Fig. 2 Distributions of the reaction template (core) cluster sizes. The
first 3 bars from left to right show the total number of reactions, unique
templates, and templates that contain one reaction only.

5, and the distribution of reaction cores (templates) is shown in
Fig. 2. Importantly, even on the challenging reaction core or
barrier height splits, GoFlow outperforms TsDiff, with the D-MAE
observed for the more difficult splits with GoFlow still being
significantly lower than the performance of TsDiff on random
splits. This is especially noteworthy, since the reaction core split
requires the model to generalize to unseen reaction types, making
it applicable to new reaction types. The results furthermore
suggest that it is essential for the trained model to cover the full
range of barrier heights expected in a practical setting.

3.3 Computational efficiency

We performed sampling on a single NVIDIA A100 GPU. For
GoFlow, the inference time per reaction on the test set was
0.01 s for 1 sample and 0.13 s for 25 samples, while for TsDiff it
was 1.54 s per sample using a batch size of 200 in all cases. This
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order-of-magnitude speedup is due to using the optimal trans-
port (linear) velocity field for flow matching, which requires
substantially fewer sampling steps per reaction and the
GotenNet architecture not using higher-order tensor product
operations. In our case, it is 625 forward passes per reaction for
the best performing model with 25 ODE solver and 25 sampling
steps, compared to the 5000 steps of TsDiff. We also note that
we did not parallelize the sampling steps of GoFlow, which
would further speed up inference time significantly.

3.4 Error modalities

We highlight three error modalities in Fig. 3.

3.4.1 High D-MAE. In Fig. 3(a) we show an example with
a high D-MAE of 0.5 A. We observe an inaccurate dihedral angle
when comparing the GoFlow predicted TS with the DFT TS. The
distances between the two molecules in the TS are also inac-
curately predicted. Although the D-MAE is high, a very low steric
clash value of 1.4 kcal mol " is obtained.

3.4.2 Chirality. Fig. 3(b) shows a chiral reaction for which
the wrong enantiomer TS was predicted, resulting in a high
RMSD.

3.4.3 Steric clash. In Table 2, we see that increasing the
number of ODE steps drastically reduces the steric clash error.
Fig. 3(c) shows an example molecule with a severe steric clash of
almost 7000 kcal mol ™, but a low D-MAE of 0.16 A. Although
most of the geometry is accurately predicted, an oxygen atom is
positioned too close to a carbon atom, which results in low D-
MAE but high steric clash. This renders the structural infor-
mation unsuitable for downstream applications, such as barrier
height predictions,” which would yield unrealistically high
energy values.

In particular, these errors show that relying solely on metrics
such as the D-MAE for performance evaluation, which is
currently common practice,"*® is insufficient. D-MAE is insen-
sitive to steric clashes, and because distances are preserved
under reflections, it also fails to capture chirality errors.

Moreover, the identified error modalities appear to occur
more frequently in reactions that trained chemists would clas-
sify as unlikely or unphysical. Examples include reactions
involving unstabilized carbenes (Fig. 3(a) and (b)), energetically
unfavorable polycycles (Fig. 3(c)), or zwitterions, the latter being
present in unusually many products in the dataset. This
observation highlights the importance of chemically informed
dataset curation for developing robust TS prediction models.

3.5 Downstream applications

The predicted geometries can be used as input to downstream
applications, for example, as guess structures for quantum
mechanical calculations of the TS or for predicting reaction
properties.

3.5.1 Transition state optimization. To assess the potential
of GoFlow for initializing TS optimizations instead of running
expensive reaction path searches such as Nudge-Elastic Band
(NEB) searches, we performed quantum mechanical optimiza-
tion of the predicted TS geometries for the first 300 reactions in
our test set. All calculations were run using ORCA 6.0 at the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Visualization of three types of error modalities. (a) High D-MAE: predicted structure with a D-MAE of 0.5 A, resulting from an inaccurate
dihedral angle (circled in green) and inaccurate distances between formaldehyde and azacyclobutyl-2-ylidene. Despite these inaccuracies, the
steric clash remains low at 1.4 kcal mol™. (b) Chirality: the model incorrectly predicts the opposite enantiomer. This error type does not impact
D-MAE values, as distances are preserved under reflections. (c) Steric clash: predicted structure with a severe steric clash score of almost
7000 kcal mol™, despite a low D-MAE of 0.16 A. While most of the geometry is accurately predicted, the oxygen atom is positioned too close to

a carbon atom, which renders the structure physically implausible.

wB97X-D4/def2-TZVP level of theory. TS optimization resulted
in 280 successfully optimized geometries with exactly one
imaginary vibrational frequency for GoFlow, compared to 269
for TsDiff.

The optimized geometries of GoFlow were significantly lower
in energy, with the mean of individual differences in the TS
energy being 4.76 kcal mol ™, and requiring less optimization
steps to reach the TS (median of 26 for GoFlow versus 35 for
TsDiff). In subsequent intrinsic reaction coordinate (IRC)
calculations, 225 of the 280 optimized geometries for GoFlow
converged to the correct reactants and products, and 216 of 269
for TsDiff. Matches in those reactants and products were
determined by converting the IRC geometries to SMILES strings
and comparing those. These results, summarized in Table 6,
indicate that GoFlow provides effective starting points for
quantum mechanical TS optimization, and outperforms TsDiff.

© 2025 The Author(s). Published by the Royal Society of Chemistry

Moreover, out of the 225 IRC validated geometries by
GoFlow, 136 had lower single-point energies than their refer-
ence structure. Of those 136, 21 had an energy that was more
than 0.1 kcal mol ™" lower than the reference energy, and for 13
it was more than 1 kcal mol ™" lower. In the SI we show one such
example, as well as the distributions of atomic force
magnitudes.

The distribution of atomic force magnitudes of the non-
optimized TS structures is highly similar for both methods.
GoFlow has slightly more atoms at the low-force end of the
distribution. This is consistent with GoFlow reaching converged
TSs slightly more often and with fewer optimization cycles.

3.5.2 Barrier height prediction. Karwounopoulos et al*
recently showed significant improvements in barrier height
prediction on the RDB7 and RGD1 (ref. 8) datasets, when using
auxiliary 3D information of the TS as input to their model, in
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Table 6 Quantum chemical validation for the first 300 reactions in the
random split test set. We report the following metrics: success rate,
which is the percentage of reactions for which the optimized geom-
etry has a single imaginary frequency. IRC Match, which is the
percentage of those single imaginary frequency geometries whose
IRC calculations resulted in the correct reactants and products in
terms of their SMILES strings. Optimization cycles, which is the median
number of geometry optimization cycles

Method Success rate IRC match Optimization cycles
GoFlow 94% 80.4% 25
TsDiff 92% 80.3% 35

addition to the 2D CGR. Those 3D geometries were generated
with either TsDiff or GoFlow and encoded using MACE*
descriptors. Using GoFlow geometries compared to TsDiff
resulted in improved barrier height predictions for both
datasets.

4 Conclusion

We proposed GoFlow, an E(3)-equivariant flow-matching-based
method for predicting transition state geometries, using only
the 2D reaction graph as input. It drastically increased the
inference speed while significantly improving the quality of the
generated geometries compared to existing methods. We
analyzed out-of-distribution performance and showed that,
similarly to reaction property prediction methods, performance
decreases for challenging dataset splits. While GoFlow provides
better out-of-distribution  performance than previous
approaches, our results still indicate a large potential for future
work to improve upon. Nevertheless, we successfully demon-
strated its potential to create guess structures for quantum-
mechanical transition state optimizations, bypassing full reac-
tion path searches, and to serve as input to machine learning
models for reaction property prediction.
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