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and Bernardete Ribeiroa

The Ames mutagenicity test serves as a cornerstone for evaluating the mutagenic potential of chemical

compounds, which is critical in drug discovery and safety assessments. However, existing computational

methods struggle to utilize the contribution of individual bacterial strains used in the Ames test, limiting

the accuracy of overall mutagenicity predictions. To address this, we introduce Meta-GTMP, a few-shot

learning framework that combines graph neural networks (GNNs) and Transformers to integrate the local

molecular graph structure with the global information in graph embedding representations for

mutagenicity prediction using limited labeled data. A multi-task meta-learning strategy further optimizes

the model parameters across individual strain-specific few-shot tasks, leveraging their complementarity

to predict the overall Ames result. Computational experiments conducted on the ISSSTY v1-a dataset

demonstrate that Meta-GTMP outperforms standard graph-based models, achieving notable

improvements in sensitivity (+6.82%) and ROC-AUC score (+2.50%). Laboratory validation tests using six

chemically diverse compounds with unknown mutagenicity labels confirmed the model's effectiveness,

achieving high accuracy in distinguishing mutagenic and non-mutagenic samples. Importantly, Meta-

GTMP makes explainable predictions through a node-edge attribute masking strategy, identifying

significant molecular substructures responsible for mutagenicity. These insights are essential in drug

discovery, positioning Meta-GTMP as a robust and explainable tool for using mutagenicity predictions to

enhance the identification, selection and rational design of safer and more effective potential drug

candidates.
1 Introduction

The integrity of the genetic material in cells can be compro-
mised by a variety of chemical agents. This phenomenon,
known as genotoxicity is a crucial aspect to consider when
evaluating the safety of new chemical entities and potential
drug candidates. In drug discovery, strict regulations regarding
genotoxicity ensure the safe usage of new and already existing
substances.1 One effective approach to assess the risk of geno-
toxicity relies on the Ames mutagenicity test, which measures
the ability of chemical compounds to induce genetic mutations
in DNA. The Ames test is an experimental in vitro assay designed
to detect genetic mutations induced by a given compound
across various strains of bacteria. It serves as a preliminary
screening tool in drug discovery to estimate the mutagenicity of
Systems of the University of Coimbra,

3030-790 Coimbra, Portugal. E-mail:

a António Xavier, Universidade Nova de

the Royal Society of Chemistry
drug candidates and can be valuable in the regulatory process
prior to the compound registration and approval.2,3

The primary concept of the Ames test is to identify chemical
compounds capable of causing DNA mutations that revert the
inability of certain amino acid dependent bacteria to survive
and grow without supplementation of these amino acids, by
regaining the ability to synthesize them.2 Typically, a minimum
of ve different histidine-dependent Salmonella typhimurium
strains are used for the Ames test. For four of these strains
(TA98, TA100, TA1535, and TA1537, TA97 or TA97a), growth in
the absence of histidine is restored upon base-pair substitution
or frameshi mutations in the histidine genetic marker.
However, these strains have limited sensitivity in detecting
certain types of mutagens, such as oxidants and cross-linking
compounds.4 For this reason, another strain (the histidine-
dependent S. typhimurium strain TA102 or the tryptophan-
dependent Escherichia coli WP2) is also included in the test.5

Mutations in the histidine or tryptophan markers of the strains
TA102 or E. coliWP2, respectively, can be reverted by transitions
or transversions.6 According to the OECD guidelines, the Ames
test is considered positive and a compound mutagenic if it
causes a signicant increase in revertant colonies in at least one
Digital Discovery, 2025, 4, 3515–3532 | 3515
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of the bacterial strains. A negative result, indicative of a non-
mutagenic compound, requires no signicant increase across
tested doses for all the bacterial strains.4 The result may also be
inconclusive if no clear positive or negative response is obtained
for individual strains.7

Recent research in the eld of computational toxicology has
been focused on the development of quantitative structure–
activity relationship (QSAR) models to predict the mutagenic
properties of chemical compounds8–10 including several
machine learning (ML) approaches.11–14 Nonetheless, the lack of
structure–activity relationships and the limited access to high
quality labeled data are holding back computational genotox-
icity from reaching higher predictive levels.15 In addition, the
individual impact of different bacterial strains used in the Ames
test has not been extensively studied. Hence, most in silico
methods only consider the overall Ames result for small drug
repositories, overlooking the outcomes of individual experi-
ments conducted for each strain.16–18 To bridge this gap,
molecular property predictors have introduced multi-task
learning strategies such as few-shot learning or meta-learning
to model multi-target properties with limited data.19–21

In the last decade, deep learning (DL) methods have gained
prominence as valuable methods for QSAR modeling and
molecular property prediction in drug discovery.22,23 This trend
can be attributed to the ability of DL to model complex and
high-dimensional non-linear functions, and advancements that
have made DL methods more robust to low-data environments
and able to generalize for challenging predictive tasks.24 Few-
shot learning has shown a great potential as a data-efficient
strategy used to adapt DL methods in scenarios where data is
limited and with high class imbalance, without having a nega-
tive impact on performance. This meta-learning approach25 has
proved to be pivotal in QSAR studies to predict multiple
chemical properties across few-shot tasks with few labeled
compounds.26–28 However, the development of data-driven DL
models to predict mutagenic properties and replicate the Ames
test experiment still remains a key area for improvement in drug
discovery.

Compounds can be represented by molecular graphs, with
atoms described as a set of nodes and chemical bonds as
edges.29 Graph-based DL methods such as graph neural
networks (GNNs) use molecular graphs to learn node-edge
representations using neighborhood aggregation and to
generate graph-level embeddings for molecular property
prediction.30–33 Although GNNs can discriminate local infor-
mation, they encounter difficulties in capturing the long-range
dependencies important for compound classication. In
computational drug discovery, Transformer networks account
for the global-semantic structure within molecular embeddings
and preserve the long-range structural information.34–36 Recent
advancements in molecular property discovery have led to the
development of hybrid DL approaches including graph-based
networks using Transformers.37–39 These methods hold great
potential for molecular representation learning to predict the
chemical properties of drug candidates.

The research question we propose to answer is whether it is
possible to adapt these DL methods using a few-shot meta-
3516 | Digital Discovery, 2025, 4, 3515–3532
learning framework to model the Ames test and predict the
mutagenic properties of chemical compounds with limited
data. To address this challenge, a few-shot GNN Transformer
model, Meta-GTMP is proposed to explore the local and the
global information within molecular graph embeddings for
Ames mutagenicity prediction, as depicted in Fig. 1A. Meta-
GTMP consists in a few-shot meta-learning framework that
jointly learns across different few-shot tasks specic for each
bacterial strain involved in the Ames test. The proposed
approach leverages the complementarity among the ve
different Ames test strains to iteratively update model param-
eters and predict the overall Ames mutagenicity result with just
a few labeled compounds, as shown in Fig. 1B. In this work, we
conduct a performance comparison with the standard graph-
based methods in Ames mutagenicity prediction by removing
the Transformer component of the Meta-GTMP framework. The
results obtained show that Meta-GTMP achieves the best overall
performance compared to the graph-based baselines, while
providing explainable insights into the mutagenicity predic-
tions using a node-edge attribute masking strategy. In this
study, we sequentially masked individual atoms (nodes) and
chemical bonds (edges) in each molecule to observe the
changes in Meta-GTMP predictions and highlight the key
molecular substructures that are likely to inuence their
mutagenic and non-mutagenic properties. Finally, to validate
the computational results, laboratory experiments were con-
ducted using six candidate compounds encompassing a diverse
range of chemical structures, each with unknown mutagenic
labels. This experimental validation step was crucial in reaf-
rming the model's ability to accurately distinguish between
mutagenic and non-mutagenic samples. The results of these
experiments unequivocally demonstrated the effectiveness of
Meta-GTMP in identifying compounds with mutagenic
potential.
1.1 Problem formulation

In Ames mutagenicity prediction, the main objective is to
determine whether the individual results obtained across each
one of the ve Ames bacterial strains produce a mutagenic or
non-mutagenic overall result. In this specic problem, chemical
compounds are classied considering six differentmutagenicity
labels, one for each bacterial strain and one for the overall Ames
result. Typically, DL-based approaches describe input mole-
cules using Simplied Molecular Input Line Entry System
(SMILES) representations, which consist in 1D sequences
describing individual atom and chemical bond information
within a drug compound. Nonetheless, since the 1D sequence is
not a natural representation to describe the spatial relation
among atoms via chemical bonds, some important structural
information of drugs can be lost, degrading the predictive
performance. Therefore, the Meta-GTMP model converts input
SMILES into a more complex representation, a 2D molecular
graph. To dene molecular graphs, we use the notation G = (V,
E), where V refers to a set of nodes and E describes the set of
edges. Edges are denoted by e = (v, u), where v and u are adja-
cent nodes connected in a neighborhood N(V) with u ˛ N(V) (see
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Overview of Meta-GTMP. (A) Depiction of the GNN-Transformer for Amesmutagenicity prediction. Molecules are described bymolecular
graphs G = (V, E), where V is the set of nodes and E the set of edges. Edges are represented by e = (v, u), where v and u are adjacent nodes in
a neighborhood N(V). Input node and edge features include specific molecular attributes: atom number, atom chirality and bond type, bond
direction. Molecular graphs G serve as input to a graph isomorphism network (GIN) with LGIN = 5 layers to generate graph embeddings hG. The
GNN iteratively computes the AGGREGATE, COMBINE, and UPDATE steps, performed simultaneously for all nodes v ˛ V. At the final GNN layer
LGIN, graph embeddings hG are obtained with a mean-pooling READOUT operation. The Transformer takes graph embeddings hG as 1D feature
vectors with an embedding size of 300, which are converted into a sequence of patch tokens xp. Transformer embeddings hT obtained by the
linear projection of individual patches are propagated across multi-head self-attention (MSA) layers. Transformer blocks include MSA layers
followed by MLP, preceded by layer normalization (LN) and residual connections. A linear layer followed by sigmoid activation uses the output
Transformer embedding hT to obtain the prediction for each strain and for the overall Ames mutagenicity (condensed in a value ˛ {0, 1}). (B)
Graphical schematic of the few-shot meta-learning framework for Ames mutagenicity prediction. The two-module framework is composed by
two distinct parts: a GNN module f and a Transformer (TR) module g with parameters q and q0, respectively. For each bacterial strain involved in
the Ames test, few-shot tasks t consist of a random task-specific support set Stwith a set of positive samples k+ and negative samples k− provided
for training, and the remaining n data points for each task t are used as a disjoint query set Qt provided for evaluation. The Meta-GTMP model
considers five different meta-training tasks for each bacterial strain used in the Ames test and leverages their complementarity in a joint learning
procedure to predict the overall mutagenicity in a meta-testing task. The updated parameters from meta-training are used to initialize Meta-
GTMP and predict the overall mutagenicity result in a final meta-testing task using a random support set of size (k+, k−) for k-shot experiments
with limited data.

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2025, 4, 3515–3532 | 3517
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Fig. 1A). The input features for nodes (atoms) and edges (bonds)
(h0v,h

0
e) in molecular graphs G are: atom number, atom chirality

and bond type, bond direction. In this work, we focus on pre-
dicting the Ames mutagenicity of a limited amount of chemical
compounds, so that ffqðGÞ; gq*ðhGÞg : S0f0; 1g˛Y ; where S is
the space of molecular graphs G, hG are the output graph
embeddings from a GNN fq, gq* is a Transformer (TR), and Y are
the mutagenicity labels for each bacterial strain and for the
overall Ames mutagenicity result.

1.2 Meta-GTMP framework

A few-shot meta-learning framework was developed to optimize
a GNN-Transformer architecture and leverage the contribution
of multiple Ames bacterial strains for Ames mutagenicity
prediction. This meta-learning framework is used to optimize
two neural network models: a graph isomorphism network
(GNN) fq with parameters q and a Transformer (TR) gq* with
parameters q*. Both models are trained using a meta-learning
framework across few-shot tasks t ˛ {1., nstrains} for each
bacterial strain used in the Ames test, with nstrains = 5. In meta-
training, models fq and gq* are trained across few-shot tasks
using a random support set St of molecular graphs GSti

and
evaluated on a disjoint query set Qt of molecular graphs GQtj

: In
meta-testing, the updated parameters are used to initialize the
GNN-Transformer model and generalize to new chemical
compounds and predict the overall Ames mutagenicity result.
This strategy leverages the complementarity among ve
different bacterial strains involved in the Ames test by the
means of integrating information of individual predictive tasks
with a joint learning procedure to infer the overall Ames
mutagenicity result with a limited number of chemical
compounds (see Fig. 1A and B). More details of the Meta-GTMP
framework are provided in the Methods and in the Supple-
mentary material sections.

1.3 Mutagenicity data and evaluation strategy

Data was collected using a public compound repository known
as ISSSTY v1-a, which includes publicly available information
on the mutagenic effects of chemical compounds on different
bacterial strains in Ames test experiments. This dataset, which
includes information on the mutagenicity of 7367 compounds,
was collected and organized by the Istituto Superiore di Sanità
(ISS).40,41 Compounds are classied according to their muta-
genic or non-mutagenic activity for ve different target prop-
erties corresponding to each one of the bacterial strains
involved in the Ames mutagenicity test and for a nal target
property corresponding to the overall Ames mutagenicity result.
In this work, we evaluate the ability to perform the binary
classication of compounds using a k-shot meta-learning
framework taking into account ve meta-training tasks for
each one of the bacterial strains used in the Ames test and one
nal meta-testing task for the overall Ames result. In meta-
training, a support set of size k is randomly sampled to serve
as an input to the Meta-GTMP model and update model
parameters for each bacterial strain: {TA98, TA100, TA102
(WP2), TA1535, and TA1537} across few-shot tasks t ˛ {1.,
3518 | Digital Discovery, 2025, 4, 3515–3532
nstrains}, with nstrains= 5. Then, both models are used to evaluate
the mutagenicity of a disjoint query set of compounds using the
remaining n samples for that task with a few gradient descent
steps. In meta-testing, a support set of k examples is randomly
sampled for the overall Ames test task t= nstrains + 1= T= 6 and
models are initialized using the updated parameters frommeta-
training. Next, both models are evaluated using a disjoint query
set of new compounds with the remaining n samples for this
nal test task, to predict the overall Ames mutagenicity result
(see Fig. 1B). ROC-AUC is used as the major metric to evaluate
model performance translating the ability of Meta-GTMP to
predict the Ames mutagenicity and correctly classify
compounds in imbalanced scenarios. In addition, we also
report the Sensitivity (Sn), Specicity (Sp), Precision (Pr), Accu-
racy (Acc) and F1 score (F1s). Sn and Sp evaluate the ability to
identify mutagenic and non-mutagenic compounds, respec-
tively. Pr is the proportion of correctly predicted mutagenic
compounds and Acc is the percentage of correct predictions.
F1s is the harmonic mean of Sn and Pr. We conduct k-shot
experiments with random support sets of size (5 +,5−) and (10
+,10 −) for k = 5 (5-shot) and k = 10 (10-shot), respectively.
These computational experiments are repeated 30 times, using
random support sets each time, to obtain a robust estimate of
Meta-GTMP performance. To address class imbalance, we
implement a weighted binary cross-entropy loss to avoid
majority-class bias during training and improves performance
based on a imbalanced set of strain-specic tasks (see Methods
section). More details about the data and performance metrics
are provided in the SI Material section.
2 Results
2.1 Computational results of Meta-GTMP and graph-based
baselines

To provide a comparative baseline, we report the computational
results of Meta-GTMP alongside GNN baseline methods,
including a graph isomorphism network (GIN),20,42 a graph
convolutional network (GCN)43 and GraphSAGE.44 The GNN
baselines are derived by removing the Transformer component
of Meta-GTMP, retaining the core GNN structure. All models are
pre-trained using GNNmodels of Hu et al. (2020)30 for improved
initialization. In addition, the GNN baselines also use a few-
shot meta-learning framework and standard binary cross-
entropy loss. All models take into account the positive and
negative samples for each strain and for the overall Ames result.
Here, we consider nstrains = 5 few-shot tasks for meta-training
for each Ames bacterial strain: {TA98, TA100, TA102, TA1535,
and TA1537} and 1 nal task in meta-testing to predict the
overall mutagenicity result. Tables 1 and 2 show the mean and
standard deviations of performance results obtained by Meta-
GTMP and GNN baselines across 30 experiments with (5 +,5
−) (5-shot) and (10 +,10−) (10-shot) random support sets on the
overall test task. The D (metric) column shows the difference in
results of Meta-GTMP and the best GNN baseline for each
performance metric. The scatter plots overlaid with boxplots in
Fig. 2 show the averagemetric scores and standard deviations in
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Averagemetric scores obtained across 30 computational experiments in the 5-shot setting considering all five strains (All-strains) for the
binary classification on the overall Ames test task. All models are trained and tested using a few-shot meta-learning framework in the 5-shot
setting

5-Shot (5 +,5 −)

Metric GIN GCN GraphSAGE Meta-GTMP (GIN + TR) D (metric)

Specicity (Sp) 0.9997 � 0.0011 0.9234 � 0.0615 0.9703 � 0.0291 0.9815 � 0.0098 −0.0182
Sensitivity (Sn) 0.8444 � 0.0152 0.7912 � 0.0481 0.7377 � 0.0369 0.9126 � 0.0106 +0.0682
Precision (Pr) 0.9999 � 0.0001 0.9933 � 0.0049 0.9972 � 0.0025 0.9985 � 0.0007 −0.0014
Accuracy (Acc) 0.8550 � 0.0141 0.8002 � 0.0412 0.7535 � 0.0331 0.9173 � 0.0092 +0.0623
F1-score (F1s) 0.9156 � 0.0089 0.8799 � 0.0279 0.8475 � 0.0235 0.9536 � 0.0054 +0.0380
ROC-AUC 0.9221 � 0.0073 0.8573 � 0.0150 0.8540 � 0.0142 0.9471 � 0.0021 +0.0250

Table 2 Average metric scores obtained across 30 computational experiments in the 10-shot setting considering all five strains (All-strains) for
the binary classification on the overall Ames test task. All models are trained and tested using a few-shot meta-learning framework in the 10-shot
setting

10-Shot (10 +,10 −)

Metric GIN GCN GraphSAGE Meta-GTMP (GIN + TR) D (metric)

Specicity (Sp) 0.9923 � 0.0079 0.8931 � 0.0621 0.9475 � 0.0486 0.9854 � 0.0133 −0.0069
Sensitivity (Sn) 0.8513 � 0.0190 0.8197 � 0.0449 0.7659 � 0.0395 0.9038 � 0.0109 +0.0525
Precision (Pr) 0.9994 � 0.0007 0.9910 � 0.0048 0.9953 � 0.0040 0.9989 � 0.0010 −0.0005
Accuracy (Acc) 0.8607 � 0.0176 0.8246 � 0.0387 0.7781 � 0.0342 0.9093 � 0.0095 +0.0486
F1-score (F1s) 0.9193 � 0.0110 0.8965 � 0.0259 0.8651 � 0.0237 0.9489 � 0.0056 +0.0296
ROC-AUC 0.9218 � 0.0096 0.8564 � 0.0184 0.8567 � 0.0136 0.9446 � 0.0035 +0.0228
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5-shot (Fig. 2A) and 10-shot (Fig. 2B) settings on the nal overall
test task.

Meta-GTMP demonstrates a signicant and consistent
improvement over all GNN baselines, in particular over the GIN
model, across multiple performance metrics in the 5-shot and
10-shot settings. These results underscore the accuracy and
robustness of Meta-GTMP, especially in the context of few-shot
learning with the limited data available and high class imbal-
ance of the Ames dataset. Meta-GTMP achieves substantial
improvements for different metrics. In terms of Sensitivity (Sn),
it outperforms GIN by +6.82% in the 5-shot setting and +5.25%
in the 10-shot setting. Sn is a crucial metric for mutagenicity
prediction, as it minimizes the false negatives, ensuring the
accurate identication of mutagenic compounds. In addition,
Meta-GTMP shows improvements of +6.23% and +4.86% in
Accuracy (Acc) across 5-shot and 10-shot settings, out-
performing all GNN baselines in making correct predictions.
The model also exceeds GIN in F1-score (F1s), with improve-
ments of +3.80% in the 5-shot and +2.96% in the 10-shot
settings, highlighting its balanced performance between preci-
sion (Pr) and recall. Overall, the key improvements in ROC-AUC
scores, by +2.50% in 5-shot and +2.28% in 10-shot experiments,
demonstrate the superior performance of Meta-GTMP in
discriminating between the mutagenic and non-mutagenic
compounds with limited and highly imbalanced data. The
robustness of Meta-GTMP predictions is further demonstrated
by signicantly lower variances across performance metrics,
including Sn and ROC-AUC, compared to the GNN baselines. In
the 5-shot setting, the Meta-GTMP standard deviation in Sn is
© 2025 The Author(s). Published by the Royal Society of Chemistry
0.0106 compared to 0.0152 for GIN, and for ROC-AUC is 0.0021
compared to 0.0073 for GIN. Similar trends are observed in the
10-shot setting, with Meta-GTMP exhibiting smaller standard
deviations across metrics, such as Sn (0.0109 vs. 0.0190 for GIN)
and ROC-AUC (0.0035 vs. 0.0096 for GIN).

The Ames dataset presents notable challenges due to this
highly imbalanced positive-negative class distribution across
the ve bacterial strains and for the nal overall Ames result
(see Table 7). The ve bacterial strains used for meta-training
exhibit a predominance of negative (non-mutagenic) samples
over the positive (mutagenic) samples. For instance, strain TA98
contains 2782 negatives compared to 1676 positives, strain
TA1535 has 2103 negatives versus 436 positives, and strain
TA1537 has 1779 negatives compared to the 365 positives. In the
overall Ames meta-testing task, while the class imbalance
persists, there are 3103 positives and only 231 negative samples.
As a result, the GIN model as well as other GNN baselines
performances reect the inability to address the issue of class
imbalance effectively during meta-training and meta-testing
stages. The binary cross-entropy loss does not penalize errors
on the minority class (positive), while the errors on the majority
class (negative) are overemphasized across meta-training tasks.
This imbalance causes GIN to overt to the negative class,
leading to an increased Specicity (Sp) and Pr at the expense of
the Sn, Acc and ROC-AUC score in the nal meta-testing task.
Consequently, GIN misclassies the mutagenic compounds as
non-mutagenic and fails to minimize the false negatives,
reducing its practical utility in real-world drug discovery
Digital Discovery, 2025, 4, 3515–3532 | 3519
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Fig. 2 Analysis of Meta-GTMP performance across 30 few-shot experiments with random support sets for Ames mutagenicity prediction. (A)
Scatter plots overlaid with boxplots showing the comparison of metric scores obtained by the Meta-GTMP model and graph-based baselines in
5-shot experiments with 30 random support sets of size (5 +,5 −). (B) Scatter plots overlaid with boxplots showing the comparison of metric
scores obtained by the Meta-GTMP model and graph-based baselines in 10-shot experiments with 30 random support sets of size (10 +,10 −).
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scenarios where the accurate prediction of mutagenic
compounds is critical.

Meta-GTMP addresses these limitations by considering
a weighted binary cross-entropy loss (see the Methods section)
that assigns higher penalties to the errors on the minority class.
Hence, this approach ensures a balanced learning across meta-
training tasks to effectively generalize for the overall Amesmeta-
testing task. In real-world mutagenicity prediction, the sensi-
tivity is oen critical because failing to identify a mutagenic
compound (false negatives) poses signicant risks that can lead
to more severe downstream consequences in drug development
and in drug safety evaluations. Therefore, the Meta-GTMP
higher Sn (+6.82%, 5-shot), Acc (+6.23%, 5-shot) and ROC-
AUC (+2.50%, 5-shot) ensures that mutagenic compounds are
less likely to be overlooked, addressing a key limitation of GIN
and other GNN baselines. By prioritizing certain compounds for
experimental testing, while minimizing false negatives, Meta-
3520 | Digital Discovery, 2025, 4, 3515–3532
GTMP can signicantly reduce the costs and time spent in
drug discovery, preserving high standards of safety and efficacy.
These results highlight the potential of Meta-GTMP as a valu-
able tool to accelerate drug discovery and development, setting
a novel approach to infer the mutagenic and non-mutagenic
properties of drug candidates.

2.2 Computational results of single-task Meta-GTMPmodels

In our computational experiments, we test the ability of Meta-
GTMP to predict the overall Ames mutagenicity considering
a single strain as the meta-training task. The main goal is to
evaluate the performance of single task (ST) models for each
bacterial strain used in the Ames test to determine which strain
has the most signicant contribution to model the Ames
mutagenicity. In this sense, we conduct computational experi-
ments to compare the performances of Meta-GTMP models
which use a single meta-training task for each strain involved in
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Average metric scores for binary classification on the overall Ames test task across 30 computational experiments in the 5-shot setting
by single-task Meta-GTMP models (ST)

5-Shot (5 +,5 −)

Metric ST1-TA98 ST2-TA100 ST3-TA102 ST4-TA1535 ST5-TA1537 D (All − strains)

Specicity (Sp) 0.9205 � 0.0155 0.8223 � 0.0603 0.9686 � 0.0296 0.8918 � 0.0461 0.8499 � 0.2192 −0.0129
Sensitivity (Sn) 0.8106 � 0.0149 0.9050 � 0.0207 0.6598 � 0.0684 0.6479 � 0.0933 0.6622 � 0.1105 −0.0076
Precision (Pr) 0.9929 � 0.0012 0.9859 � 0.0043 0.9967 � 0.0028 0.9883 � 0.0031 0.9863 � 0.0151 −0.0018
Accuracy (Acc) 0.8180 � 0.0130 0.8994 � 0.0153 0.6808 � 0.0623 0.6644 � 0.0842 0.6751 � 0.0895 −0.0179
F1-score (F1s) 0.8924 � 0.0086 0.9436 � 0.0092 0.7919 � 0.0503 0.7788 � 0.0667 0.7868 � 0.0683 −0.0100
ROC-AUC 0.8655 � 0.0039 0.8636 � 0.0201 0.8142 � 0.0252 0.7698 � 0.0280 0.7561 � 0.0631 −0.0816

Table 4 Averagemetric scores for binary classification on the overall Ames test task across 30 computational experiments in the 10-shot setting
by single-task Meta-GTMP models (ST)

10-Shot (10 +,10 −)

Metric ST1-TA98 ST2-TA100 ST3-TA102 ST4-TA1535 ST5-TA1537 D (All − strains)

Specicity (Sp) 0.8507 � 0.0760 0.8629 � 0.0255 0.9594 � 0.0381 0.8696 � 0.0521 0.8233 � 0.1208 −0.0260
Sensitivity (Sn) 0.8546 � 0.0294 0.8847 � 0.0197 0.7406 � 0.0481 0.6639 � 0.0624 0.7173 � 0.0532 −0.0191
Precision (Pr) 0.9879 � 0.0057 0.9891 � 0.0018 0.9963 � 0.0032 0.9865 � 0.0046 0.9834 � 0.0095 −0.0026
Accuracy (Acc) 0.8544 � 0.0230 0.8833 � 0.0168 0.7552 � 0.0427 0.6776 � 0.0555 0.7243 � 0.0422 −0.0260
F1-score (F1s) 0.9161 � 0.0148 0.9339 � 0.0102 0.8487 � 0.0305 0.7919 � 0.0452 0.8282 � 0.0316 −0.0150
ROC-AUC 0.8527 � 0.0256 0.8738 � 0.0040 0.8500 � 0.0113 0.7667 � 0.0194 0.7703 � 0.0368 −0.0708
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the Ames test. In Tables 3 and 4, we show the mean and stan-
dard deviations of performance results for single-task Meta-
GTMP models using information of each individual strain
across 30 experiments with (5 +,5−) (5-shot) and (10 +,10−) (10-
shot) random support sets. The D (All − strains) column
quanties the differential between the top-performing single-
task Meta-GTMP models and Meta-GTMP considering all ve
Fig. 3 Scatter plots overlaid with boxplots showing the comparison be
models for each individual strain and the Meta-GTMP model considerin
tational experiments in the 5-shot and 10-shot settings.

© 2025 The Author(s). Published by the Royal Society of Chemistry
strains for meta-training (see Tables 1 and 2). In Fig. 3, scatter
plots overlaid with boxplots show the difference between the
ROC-AUC scores obtained across 30 experiments byMeta-GTMP
considering all ve bacterial strains (All-strains) as meta-
training tasks and by single-task Meta-GTMP models using
a single meta-training task for one single bacterial strain in 5-
shot and 10-shot experiments.
tween ROC-AUC scores obtained by the single-task (ST) Meta-GTMP
g all Ames test strains in meta-training (All-strains) across 30 compu-
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Table 3 shows that single-task Meta-GTMP models for TA98
or TA100 strains outperform the other single-task models
exhibiting higher ROC-AUC results in 5-shot experiments. It is
interesting to note that individual strains with higher class
imbalance or limited data such as TA1535 and TA1537 are ex-
pected to negatively affect predictive performance. ROC-AUC
results for 10-shot experiments (see Table 4), show that indi-
vidual strains with a higher number of labeled compounds and
a lower class imbalance, TA98 and TA100 achieve more robust
Fig. 4 Workflow of the explainability study using the Meta-GTMP predic
representing compounds serve as input to the GNN embeddingmodule o
level embeddings hG at the last GIN layer LGIN = 5. Here, for each node
features to zero and the modified graph is used to obtain a modified grap
he are masked by setting the edge embedding features to zero and the m
modified graph embeddings hmv

G ; hme
G serve as input to the Meta-GTMP

predmv
ames;pred

me
ames: The node and edge scores sv, se, for each node

predmv
ames;pred

me
ames: with the ground-truth labels labelames for the overall

followed by sigmoid activation and visualized using a color gradient (blu
node (atom) or edge (bond) scores.

3522 | Digital Discovery, 2025, 4, 3515–3532
results in Ames mutagenicity prediction (see Fig. 3). However,
by comparing the performance of single-task models with our
multi-task Meta-GTMP approach (All-strains), we observe that
single-task models for individual strains are missing crucial
information to discriminate mutagenic and non-mutagenic
compounds. In 5-shot and 10-shot experiments, the Meta-
GTMP model considering all the ve Ames bacterial strains
(All-strains) as meta-training tasks outperforms all the single-
task models, suggesting that taking into account the unique
tions and a node-edge attribute masking strategy. Molecular graphs G
f Meta-GTMP to obtain node and edge embeddings (hv, he) and graph-
v, node embeddings hv are masked by setting the node embedding

h embedding hmv
G : In the same way, for each edge e, edge embeddings

odified graph is used to obtain a modified graph embedding hme
G : The

Transformer prediction module to obtain the predicted probabilities
v and edge e masked, are obtained by the absolute difference of
Ames test task. These scores are normalized using a min–max scaling
e for nodes, red for edges) with more intense colors denoting higher

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Visual representation of the atom and chemical bond normalized scores in mutagenic and non-mutagenic predictions for five selected
compounds (3 mutagenic: 1,6-dinitrophenanthrene (A), 9-aminoanthracene (B), 3,9-dinitrofluoranthene (C); 2 non-mutagenic: diazinon (D),
17b-trenbolone (E)). The node-edgemasking explainability results are obtained using the predictions of Meta-GTMP for the overall Ames test task
and the mutagenicity labels in the 5-shot setting. The highlighted areas for each compound indicate the regions of higher scores or importance
to determine the mutagenic or non-mutagenic activity, with the blue color gradient used for atoms and the red color gradient used for chemical
bonds.

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2025, 4, 3515–3532 | 3523
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contribution of each individual strain and their complemen-
tarity has a positive impact in the predictive performance,
leading to more accurate and robust models of mutagenic
toxicity.

The multi-task Meta-GTMP model effectively integrates
diverse strain-specic data, overcoming the challenges posed by
the positive-negative class imbalance for individual bacterial
strains. By incorporating data from strains such as TA98 and
TA100, which have a larger number of samples and lower class
imbalance, and from strains like TA1535 and TA1537, which are
more limited in data and highly imbalanced, Meta-GTMP learns
complementary dependencies that the single-task models fail to
capture. The integration of this strain-specic information
provides more robust and accurate predictions for the overall
meta-testing task. The ability of Meta-GTMP to leverage the
individual contributions of each strain helps to mitigate the
negative effects of class imbalance and limited data, leading to
performance improvements when distinguishing mutagenic
from non-mutagenic compounds.
2.3 Chemistry-oriented explanations of mutagenic and non-
mutagenic predictions using a node-edge attribute masking
strategy

In this work, we introduce an explainability study of Ames
mutagenicity using the predictions made by the Transformer
module of Meta-GTMP and the output node and edge embed-
dings of the Meta-GTMP graph embedding module. A node-
edge attribute masking strategy is used to obtain chemical
explanations for the mutagenic and non-mutagenic predictions
made by Meta-GTMP. As described in the previous sections,
each node v ˛ V (atoms) and edge e = (v, u) with u ˛ N(v)
(chemical bonds) in molecular graphs G is embedded into
a high-dimensional space of node and edge embeddings (hv, he)
to capture the molecular and structural dependencies relevant
to determine the Ames mutagenicity result. Meta-GTMP
predicts the mutagenicity of compounds in the overall Ames
test task, with node and edge embeddings serving as deep
representations obtained by the GNN embedding module to
build the graph-level embeddings hG (mean graph-pooling)
used as the input to the Transformer prediction module,
which computes the nal prediction. To identify key molecular
features associated with the mutagenicity and non-
mutagenicity, we apply node and edge attribute masking to
systematically inactivate the node and edge embeddings in
molecular graphs and observing the impact on Meta-GTMP
predictions. Hence, by comparing the node-edge masked
predictions with the original mutagenicity labels, we are able to
quantify the contributions of atoms and chemical bonds to
determine the Ames mutagenicity result. In Fig. 4, we show the
workow of this explainability study, outlining the steps from
the initial molecular graph to the visualization of the nodes
(atoms) and the edges (bonds) that determine the mutagenicity
or non-mutagenicity. In this study, we calculate the atom (node)
and bond (edge) scores derived from the Meta-GTMP predic-
tions for a total of 3324 molecules, the query set of the overall
Ames test task in the 5-shot setting (using a random support set
3524 | Digital Discovery, 2025, 4, 3515–3532
of 10 compounds with n+ = 5 positives and n− = 5 negatives of
a total of 3103 positives + 231 negatives = 3334 samples). The
node scores sv provide insights into the importance of indi-
vidual atoms, highlighting specic atomic positions critical to
determine the mutagenicity or non-mutagenicity. The edge
scores se quantify the importance of chemical bonds in inu-
encing the mutagenic or non-mutagenic properties. Therefore,
the combined analysis of atom (node) and bond (edge) scores is
crucial for identifying key molecular substructures and func-
tional groups that play an important role to determine the Ames
mutagenicity result. In Fig. 5, we analyse ve compounds
showing the atoms and bonds with higher scores, suggesting
the existence of substructures that contribute more promi-
nently to the mutagenic and non-mutagenic properties.

Conversely, the atoms and chemical bonds of lower scores
indicate specic regions where structural changes have
minimal impact to determine the Ames mutagenicity result.
These ve compounds were chosen to represent a diverse set of
chemical structures, including different types of molecular
substructures and functional groups responsible for their
mutagenic and non-mutagenic properties. In Fig. 5A, the atom
scores in 1,6-dinitrophenanthrene highlight the nitroso (N]O)
groups, a well-known mutagenic moiety, which leads to the
formation of reactive intermediates, implicated in the forma-
tion of DNA adducts, segments of DNA associated with muta-
genic effects.45,46 The chemical bond scores also highlight the
N]O bonds of the nitroso groups, which have the potential of
interacting with DNA segments and promote genotoxicity.47,48 In
addition, the C–C bonds of the phenanthrene ring are also
highlighted, which provide a conjugated system that can
stabilize the derived reactive intermediates. In Fig. 5B, the atom
scores in 9-aminoanthracene emphasize the nitrogen atom
integrated in the amino (NH2) group, which can lead to the
formation of reactive electrophiles called nitrenium ions.49

These electrophilic species form strong covalent bonds with
important nucleophilic centers such as the DNA, leading to
signicant genotoxic effects.50,51 In addition, the atom and
chemical bond scores in the anthracene ring highlight the
planarity and aromatic nature of the 9-aminoanthracene, which
enables the intercalation with DNA chains, a key mechanism
underlying their mutagenic potential.52,53 In Fig. 5B, the bond
scores denote the C–N bond connecting the amine group (NH2)
with the anthracene ring system, highlighting its role in stabi-
lizing the derived reactive intermediates. In Fig. 5C, the atom
scores obtained for 3,9-dinitrouoranthene focus on the
nitrogen atoms of the nitroso groups, which play a central role
in the formation of nitrenium ions, capable of directly inter-
acting with DNA. Similarly, the bond scores also emphasize the
N]O bonds, which lead to the formation of these reactive
intermediates with the potential of interacting with DNA and
cause mutagenic effects.45,46 In non-mutagenic compounds
such as diazinon in Fig. 5D, the atom scores place emphasis in
the sulfur atom (S) in the thiophosphate group, which is typi-
cally not reactive towards DNA, reducing the mutagenic
potential.54 The oxygen atom is also highlighted as part of ester
group (C–O), which maintains the structural integrity of the
compound rather than promoting the formation of reactive
© 2025 The Author(s). Published by the Royal Society of Chemistry
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species.55 In addition, atom scores emphasize the C–N atoms in
the pyrimidine ring, which are crucial for maintaining the
structure of the ring, affecting how diazinon interacts with
biological targets.56 The bond scores highlight the C–O ester
bond in diazinon, which improves chemical stability, solubility
and resistance to bioactivation.55 In Fig. 5E, the atom scores in
17b-trenbolone highlight the hydroxyl (OH) group, which
inuences the binding to the androgen receptors and ensures
a biological functionality without inducing mutagenicity.57 The
carbonyl (C]O) group is also highlighted, which increases the
binding affinity of 17b-trenbolone to androgen receptors
without non-specic mutagenic interactions.58 The bond scores
emphasize the C–C bonds of the rigid steroid structure of 17b-
trenbolone, increasing the overall stability, preventing the
formation of electrophilic species, and thereby reducing the risk
of genotoxicity.59 From this explainability study, we conclude
that this node-edge attribute masking strategy allows the
detection of molecular substructures and functional groups
that collectively determine the mutagenic or non-mutagenic
properties. The atom and bond scores are calculated for
a query set with a total of 3324 compounds in the 5-shot setting
accessible via the Github link provided in the Code Availability
section.
2.4 Experimental validation of Meta-GTMP mutagenicity
predictions

The molecular substructures identied using the node-edge
attribute masking strategy described in the previous section
were used as queries in the PubChem60 substructure search tool
to select six new compounds (three predicted mutagenic and
three predicted non-mutagenic) with a diverse set of chemical
Fig. 6 List of the six compounds selected for laboratory validation exper
benzo[c]chromen-6-one; 2-[(2,4-dinitrophenyl)amino]-5-nitrophenol a
mutagenic (2H-1,3-benzodioxole-4-carbaldehyde; [1,10-biphenyl]-3,30-d
ratory validation experiments and the Ames mutagenicity predictions for

© 2025 The Author(s). Published by the Royal Society of Chemistry
structures and unknown mutagenicity labels for laboratory
validation experiments. These substructures correspond to
highly informative atomic and bond-level features identied by
the model, oen overlapping with known mutagenic motifs
(nitroso, nitroaromatic, aromatic amine structures) and non-
mutagenic features. They were encoded as SMARTS patterns
and submitted to PubChem's substructure search API. We
include a detailed list of selected compounds in the SI Material,
along with their corresponding SMILES string representations
and Meta-GTMP mutagenicity predictions. The substructure
search was based on the following criteria: (1) unknown muta-
genicity labels of the selected compounds to validate the
applicability of Meta-GTMP in a potential drug discovery
scenario; (2) compliance with the Lipinski rule of ve, which
evaluates the drug-likeness of chemical compounds to ensure
a more favorable pharmacological prole and (3) availability
and feasibility of the selected compounds for laboratory testing,
ensuring that they could be sourced and tested within
a reasonable timeframe and budget. In Fig. 6, we describe the
six selected compounds and their chemical structures, half of
them were predicted to be mutagenic, and the remaining three
compounds were predicted to be non-mutagenic, according to
the 5-shot and 10-shot Meta-GTMP models. More details
regarding the most important molecular substructures identi-
ed for each one of these compounds using a node-edge attri-
bute masking strategy are provided in the SI Material.

Laboratory experiments were conducted to validate the
computational Meta-GTMP predictions for the six selected
compounds with unknown Ames test results. These chemical
compounds were tested using a miniaturized version of the
Ames bacterial reversion test, in 6-well cell culture plates,61,62
iments. A total of 3 compounds predicted mutagenic (3,8-dinitro-6H-
nd 6-(4-nitrophenyl)imidazo[2,1-b][1,3]thiazole) and 3 predicted non-
iol and 6-benzyl-1,3,5-triazine-2,4-diamine) were selected for labo-
each selected compound were computed by the Meta-GTMP model.

Digital Discovery, 2025, 4, 3515–3532 | 3525
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following the OECD testing guideline 471.4,6 As S. typhimurium
TA98 and TA100 strains together are capable of detecting 93%
of the mutagens identied by all the other strains,17,63 we
established a tiered approach to the Ames test workow. Each
compound was rst tested with strain TA98, then with strain
TA100, followed by S. typhimurium strains TA1535, TA1537, and
E. coli WP2, which according to the OECD guidelines is equiv-
alent to S. typhimurium TA102.4 Only those compounds that did
not test positive with TA98 were tested with the rest of the
strains. Table 6 summarizes the results for all tested
compounds and further details can be found in the SI Material.
2.5 Comparison of predicted probabilities: Meta-GTMP vs.
GNN baselines

To further validate our ndings, we extended the experimental
validation of the computational results to the GNN baseline
models, including: GIN, GCN, and GraphSAGE. By directly
computing the predicted probabilities across the six selected
compounds for experimental validation, we show that Meta-
GTMP consistently outperforms the GNN baselines when pre-
dicting the probability of a compound to be mutagenic or non-
mutagenic. Predicted probabilities for non-mutagenic
compounds (Compounds 1–3) and mutagenic compounds
(Compounds 4–6) under the 5-shot and 10-shot settings are
displayed in Table 5.

For non-mutagenic compounds (Compounds 1–3), Meta-
GTMP achieves predicted probabilities close to 0.999 in 5-shot
and 10-shot settings, outperforming the GNN baselines across
all compounds. Similarly, for mutagenic compounds
(Compounds 4–6), Meta-GTMP achieves near-perfect predicted
probabilities (e.g., 0.999982 for Compounds 5 and 6, 5-shot
setting), aligning closely with the experimental labels. In
contrast, GNN baselines exhibit higher variability and struggle
Table 5 Predicted probabilities obtained by Meta-GTMP and GNN
baselines for the six compounds selected for experimental validation.
Predicted probabilities ˛ {0, 1} are shown for non-mutagenic
compounds (Compounds 1–3) and mutagenic compounds
(Compounds 4–6) under 5-shot and 10-shot settings. The highest
predicted probability for each selected compound is highlighted in
bold

Compound GIN GCN GraphSAGE Meta-GTMP

Experimental label: Non-mutagenic

1 5-shot 0.940237 0.533031 0.495889 0.999966
10-shot 0.943482 0.564391 0.686700 0.999966

2 5-shot 0.891616 0.851538 0.803546 0.999979
10-shot 0.904768 0.702467 0.792602 0.999962

3 5-shot 0.981856 0.898893 0.839920 0.999978
10-shot 0.977554 0.910749 0.882489 0.999965

Experimental Label: Mutagenic
4 5-shot 0.981704 0.880847 0.819704 0.999980

10-shot 0.993135 0.935832 0.913474 0.999972
5 5-shot 0.857370 0.897551 0.739320 0.999982

10-shot 0.847780 0.983059 0.710503 0.999953
6 5-shot 0.941193 0.954725 0.892516 0.999982

10-shot 0.921292 0.996580 0.914871 0.999900

3526 | Digital Discovery, 2025, 4, 3515–3532
to match the experimental outcomes, with probabilities oen
falling below the threshold required for condent and reliable
predictions.

Meta-GTMP achieves the highest predicted probabilities
across all the six selected compounds, consistently aligning
with the experimental labels and outperforming the GNN
baselines across the 5-shot and 10-shot settings. This predictive
performance reects the robustness and reliability of the Meta-
GTMP model, particularly in addressing the challenges posed
by high class imbalance and limited data in mutagenicity
prediction. These results highlight the practical advancements
of Meta-GTMP for applications such as drug discovery and
toxicology, where the prediction of mutagenic properties is
critical.
2.6 Conclusion

The Ames mutagenicity test is a widely used experimental
method for evaluating the mutagenic properties of chemical
compounds. In this research, we consider the individual
contributions of each bacterial strain involved in the Ames test
to predict mutagenic toxicity with high sensitivity and speci-
city in highly imbalanced scenarios with limited data, which is
crucial in drug discovery. To address these challenges, we
introduced a few-shot GNN-Transformer, Meta-GTMP, to
capture the local structure of molecular graphs and the global
information of molecular graph embeddings for mutagenicity
prediction. Additionally, a multi-task few-shot learning frame-
work is proposed to leverage the complementarity among
individual predictive tasks for each strain of bacteria in a joint
learning procedure to model the results of the Ames mutage-
nicity test with just a few labeled compounds.

Moreover, we implemented a node-edge attribute masking
strategy within the Meta-GTMP graph embedding module. This
strategy computes a set of atom and bond scores for each
molecule, offering valuable insights into the key molecular
substructures and functional groups inuencing mutagenicity.
These explainable insights guided the selection of diverse
compounds with unknown mutagenicity labels for experi-
mental validation, which conrmed the Meta-GTMP's compu-
tational predictions. These insights are essential in drug
discovery and valuable for the identication of chemical prop-
erties associated with mutagenicity to inform the selection and
design of promising drug candidates. By highlighting impor-
tant molecular features and functional groups, Meta-GTMP
offers a practical method for lead optimization, facilitating
the generation of safer and more effective drug-like compounds.

The traditional Ames test is labor-intensive, expensive, and
time-consuming. The Meta-GTMP model accelerates this
process with high reliability and high sensitivity, making the
identication of mutagenic and non-mutagenic compounds
faster and more cost-effective. Beyond its computational effi-
ciency, the explainability of Meta-GTMP ensures its practical
utility across drug discovery pipelines, where understanding the
relationship between the chemical structure and mutagenic
potential is critical. The results demonstrate that Meta-GTMP
achieves substantial improvements over existing methods,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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providing a scalable and explainable framework for modeling
mutagenicity in low-data and highly imbalanced scenarios,
which are common in drug discovery. This makes Meta-GTMP
a powerful tool for improving the identication, selection,
and rational design of potential drug candidates, offering
signicant advancements in lead optimization and mutage-
nicity assessments.

All the compounds predicted by the Meta-GTMP model to be
non-mutagenic (compounds 1, 2, and 3) showed no effect in any
of the strains tested. For S. typhimurium strains TA98 and
TA100, and E. coli WP2 (equivalent to TA102),4 a positive result
implies that the number of colonies (revertants) induced by the
tested compound should be at least two-fold higher than the
spontaneous reversion rate (negative control),61,64,65 which was
not observed for these compounds. For the S. typhimurium
strains TA1535 and TA1537, a positive response is considered
whenever the compound causes a three-fold increase compared
to the negative control.61,64,65 For these strains, we found that the
spontaneous reversion rate was low, yet within the published
ranges.61,64,65 Moreover, the number of colonies obtained at all
concentrations with compounds 1, 2 and 3 was within the range
observed for the negative control (DMSO). Therefore, we
concluded that none of these compounds elicited a positive
response, indicating that they were non-mutagenic for all
strains. The compounds predicted to be mutagenic
(compounds 4, 5, and 6) were also conrmed by the Ames in
vitro assay, showing a clear positive response in the TA98 strain
(Table 6). Indeed, aer the incubation of TA98 with each of the
compounds, an increase in the number of revertants ranging
from 4.5 to > 105 fold above the negative control was observed.
In summary, the in vitro results of the Ames mutagenicity test
showed 100% agreement with the Meta-GTMP predictions for
both mutagenic and non-mutagenic compounds, further
corroborating the robustness of the Meta-GTMP framework.

3 Methods
3.1 Meta-GTMP architecture

3.1.1 Graph embedding module. A graph isomorphism
network (GIN)42 with LGIN = 5 layers is used as a GNN embed-
ding module to generate graph embeddings hG for molecular
graphs G (see Fig. 1A). The GNN computes AGGREGATE and
COMBINE operations by summing up node and edge features.
Table 6 Summary of the results obtained in Ames laboratory test exper

Compounds
Meta-GTMP
prediction

1 2H-1,3-benzodioxole-4-carbaldehyde N
2 [1,10-biphenyl]-3,30-diol N
3 6-Benzyl-1,3,5-triazine-2,4-diamine N
4 3,8-Dinitro-6H-benzo(c)chromen-6-one P
5 2-((2,4-dinitrophenyl)(amino)-5-nitrophenol P
6 6-(4-nitrophenyl)imidazo[2,1-b][1,3]thiazole P

a NT – not tested, P – positive (mutagenic), N – negative (non-mutagenic)

© 2025 The Author(s). Published by the Royal Society of Chemistry
During each message-passing iteration l, node embeddings
hlv are updated by aggregating prior node representations
hl−1
v with representations of neighboring nodes and edges

(hl−1
u ,hl−1

e ). Node embeddings hv on the l − th layer are given by
the COMBINE and UPDATE steps aer neighborhood
aggregation,

ml
NðvÞ ¼ AGGREGATEl

��
hl�1
u ;cu˛NðvÞ�; �hl�1

e : e ¼ ðv; uÞ��
(1)

hlv = s(MLPl(COMBINEl(hl−1
v ,ml

N(v)))) (2)

with m the “neural message” transmitted across GNN layers,
hlu the embedding of neighboring nodes, and hle the embedding
of the connection between nodes u and v, with u ˛ N(V). An
UPDATE step uses a multi-layer perceptron (MLP) followed by
an activation function s = ReLU. These operations can be
expressed as follows

hlv ¼ ReLU

 
MLPl

 X
u˛NðvÞWv

hl�1
u þ

X
e¼ðv;uÞ:u˛NðvÞWv

hl�1
e

!!
: (3)

In the nal iteration of message-passing, graph embeddings
hG are obtained using a READOUT operation, which involves
aggregating node embeddings hv at the last GNN layer LGIN to
generate a graph-level representation hG with a mean-pooling
operation

hG ¼ mean
��

hLGIN
v : v˛V

��
: (4)

This GNN module is pre-trained with GNN models proposed
by Hu et al. (2020)30 to obtain a better initialization. In this
module, we consider 5 GNN layers and graph embeddings of
size 300.

3.1.2 Transformer prediction module. A Transformer
encoder with LT = 5 blocks is used as the Ames mutagenicity
prediction module (see Fig. 1A). Unlike the standard Trans-
former,66 it acts as a vision Transformer (ViT)67,68 that takes
graph embeddings hG as 1D feature vectors with embedding
size of 300. Input graph embeddings hG are converted into
a sequence of patches p in a D-dimensional space with N
patches of size P. In this process, the Transformer accepts the
imentsa

Ames test result/strain
Ames test
overall resultTA98 TA100 TA1535 TA1537 WP2

N N N N N N
N N N N N N
N N N N N N
P NT NT NT NT P
P NT NT NT NT P
P NT NT NT NT P

.
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input embeddings hG and converts them into a sequence of
patch tokens xp,

p(hG) = [x1p,x
2
p,.,xNp ] (5)

where xip represent individual patch tokens. The Transformer

converts graph embeddings hG into N ¼ 300
P

patch tokens of

size P, which are linearly projected to build Transformer
embeddings hT. Transformer blocks propagate embeddings hT
across multi-head self-attention (MSA) layers. MSA takes 3
inputs: queries, keys, and values (q, k, v) stacked into matrices
(Q, K, V) to optimize the dot-product MSA operation. MSA
calculates the dot-product for each query in Q and all keys in K
and applies a somax function to obtain the attention weights
for each value in V

AttentionðQ;K ;VÞ ¼ softmax

�
QKTffiffiffi

d
p

�
V : (6)

In the MSA operation, we consider multiple linear projection
heads H and the nal attention score is given by

MSA(Q,K,V) = CONCAT(head1,.,headH)W (7)

headj = Attention(QWQ
j , KW

K
j , VW

V
j ) (8)

with (WQ
j ,W

K
j ,W

V
j ) the linear projection matrices obtained by the

projection of (Q, K, V) for each head j. Individual Transformer
blocks include a MSA layer followed by MLP. MSA and MLP are
preceded by layer normalization (LN) and residual connections.
For 1D patch token sequences xip, Transformer embeddings hT
obtained across Transformer blocks l can be formulated as

h0T = [x1pK,x
2
pK,x

3
pK,.,xNpK] (9)

hl
*

T ¼ MSA
�
LN
�
hl�1
T

��þ hl�1
T (10)

hlT ¼ MLP
	
LN
	
hl

*

T




þ hl

*

T (11)

y ¼ LN
�
hLT

T

�
(12)

where l= {1,., LT}, h
l
T are Transformer embeddings at layer l, K

are the linear projections of patch embeddings with and y is the
output vector. A linear layer followed by sigmoid activation uses
the output of the last Transformer block to predict the muta-
genicity result (condensed in a value ˛ {0, 1}).

3.1.3 Few-shot meta-learning framework. A meta-learning
framework based on model-agnostic meta-learning
(MAML)20,26 was developed to learn complementary informa-
tion across few-shot tasks and model the contribution of ve
different strains of bacteria for Ames mutagenicity prediction
(see Fig. 1B). This strategy leverages the complementarity
among different strains involved in the Ames test by the means
of integrating information of these individual predictive tasks
with a joint learning procedure. The meta-learning framework
optimizes two neural network models: a GNN and a Trans-
former (TR). Both models update model parameters across few-
3528 | Digital Discovery, 2025, 4, 3515–3532
shot tasks (meta-training) for each strain using a random
support set for training and a disjoint query set for evaluation.
The updated parameters are used to initialize both models and
generalize to new compounds and predict the overall Ames
mutagenicity result in the test data (meta-testing). In meta-
training, a support set St of molecular graphs GSti

of size k is
randomly sampled to serve as an input to the GNN-Transformer
and compute the support losses L GNN

t ;L TR
t for each strain:

{TA98, TA100, TA102, TA1535, and TA1537} across tasks t ˛
{1., nstrains}. Support losses are then used to iteratively update
model parameters q / q0, q* / q*0. Both models compute the
query losses L GNN

0
t ;L TR

0
t using a query set Qt of molecular

graphs GQtj
with the remaining n samples for that task. In meta-

training, model parameters are updated by applying just a few
gradient steps

qt ¼ q� aPqL GNN
t ðqÞ (13)

q*t ¼ q* � a*Pq*L
TR
t

�
q*
�

(14)

where a and a* are the size of the steps used for the gradient
descent updates. In meta-testing, a support set of k examples is
randomly sampled for the overall Ames test task t= nstrains + 1=
T and model parameters are initialized using the updated
parameters from meta-training, q0, q*0. Then, the GNN and the
Transformer modules are used to predict the overall Ames
mutagenicity result of a query set of new compounds with the
remaining n samples for this overall test task.

3.1.4 Weighted loss for mutagenicity prediction. In Meta-
GTMP, the loss function for the GNN and Transformer
modules, L GNN and L TR is a binary cross-entropy loss. To
address the problem of class imbalance, a weighted binary
cross-entropy loss is introduced to greatly penalize failed
predictions on rare-class samples. Hence, the loss denes
a weight c for the minority class,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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L ¼ �1

k

Xk
i¼1

c yi log
	
y
0
i



þ ð1� yiÞlog

	
1� y

0
i



(15)

where y0 are the predictions and y the mutagenicity labels with k
the number of samples. Since we have different positive-
negative ratios for each strain used in the Ames test, the value
c is determined by exploring values in a reasonable range c ˛
{0.1, ., 10}. In our computational experiments, we select
a value of c = 5 given the task-specic variability across the
Ames test bacterial strains. This strategy is particularly impor-
tant for strains with a severe imbalance between positive and
negative samples, such as TA1535 and TA1537, which have very
few mutagenic compounds in the ISSSTY dataset. By up-
weighting the contribution of rare positive examples during
loss computation we improve sensitivity without overtting to
the dominant negative class. Moreover, this approach aligns
with the few-shot setting in which balanced support sets are
sampled during training, helping the model generalize across
highly imbalanced tasks. Together, the use of class weighting
and balanced episodic training allows Meta-GTMP to learn
generalizable representations across all strains, mitigating the
adverse impact of limited imbalanced data on predictive
performance.
Table 7 Distribution of positive, negative and undetermined samples
for each one of the five bacterial strains and for the overall Ames
mutagenicity label

Ames mutagenicity dataset

Strain
# Positive
(1)

# Negative
(0)

# Undetermined
(−1)

TA98 1676 2782 1078
TA100 2096 2721 719
TA102 226 587 4723
TA1535 436 2103 2997
TA1537 365 1779 3392
Overall 3103 231 2202
3.2 Computational experimental settings

3.2.1 Dataset. Data is collected using a public compound
repository known as ISSSTY v1-a40,41 (accessed on March 14,
2024), which includes publicly available information on the
mutagenic effects of compounds on ve S. typhimurium strains
across Ames mutagenicity test experiments. This repository
includes data of 7367 compounds and contains information on
the Ames test performed with ve bacterial strains {TA98,
TA100, TA102, TA1535, and TA1537} to obtain the overall Ames
mutagenicity result.18 We selected this dataset due to the high-
quality experimental annotations and the inclusion of strain-
specic mutagenicity results across ve bacterial strains. This
is essential for our few-shot meta-learning framework, which
depends on a multi-task structure to dene task-specic
support and query sets. The ISSSTY dataset therefore provides
both the biological granularity and structured diversity neces-
sary to model cross-strain patterns under low-data scenarios.
Compounds are represented using molecular graphs obtained
from SMILES (Simplied Molecular-Input Line-Entry System)
using the RDKit.Chem library,69 which are pre-processed, so
that SMILES are canonicalized and duplicates are removed.70

While RDKit performs basic molecule sanitization automati-
cally (e.g., valence checks and aromaticity detection), we did not
apply tautomer normalization or rare functional group ltering.
This decision preserves the structural delity of reported
compounds and avoids potential distortion of their bioactivity
proles, while we recognize that such normalization may
improve consistency and robustness in future studies. Aer the
pre-processing stage, we obtain a dataset of 6445 compounds
with six different labels per compound: ve different labels for
each different bacterial strain {TA98, TA100, TA102, TA1535 and
TA1537}, and one for the overall Ames mutagenicity label. In
© 2025 The Author(s). Published by the Royal Society of Chemistry
this process, the labels are computed to follow the standard
Organisation for Economic Cooperation and Development
Guidelines for the Testing of Chemicals (OECD)-5 classication:
TA98, TA100, TA1535, TA1537 (or TA97) and TA102 (or E. coli)4

aer aggregating the labels including derivations of the same
strain. These labels can be either: positive (mutagenic), negative
(non-mutagenic), inconclusive or equivocal. Equivocal labels
are produced if compounds do not yield positive results in any
strains and there is at least one equivocal result across the ve
strains. Inconclusive labels are returned if there is not enough
data to make a determination. Equivocal and inconclusive
designations are merged into a new label: undetermined. At this
stage, most compounds with an undetermined label in one
strain can have a distinct label for at least one other strain. If
a compound has an undetermined label for at least one strain,
but had either a positive or negative label in the remaining
strains, it is still included in the nal data. However, if
a compound has an undetermined label for all tested strains,
they are removed, to obtain a nal dataset with 5536
compounds. In Table 7, we report the distribution of
compounds for the bacterial strains used in the Ames test and
for the overall Ames mutagenicity labels.

External validation using other knownmutagenicity datasets
was considered. However, most publicly available datasets
report only the overall (aggregated) Ames result, a binary label
indicating whether a compound is mutagenic in any strain, and
do not include the strain-specic annotations necessary to
generate a set of few-shot tasks. As a result, such datasets are
not directly compatible with our task-based meta-learning
setup. Given these constraints, ISSSTY v1-a was selected as the
most appropriate benchmark to develop and evaluate Meta-
GTMP. Future work may explore extensions of Meta-GTMP
that adapt the model for compatibility with aggregated-label
datasets or hybrid evaluation strategies which may incorpo-
rate scaffold-based task generation.

3.2.2 Implementation. Meta-GTMP is implemented in
Python 3.9.16 and PyTorch 1.13.0 with CUDA 11.6, along with
functions in Scikit-learn 1.2.2, NumPy 1.22.3, Pandas 1.5.3 and
RDKit 2022.03.5. The Meta-GTMP model was trained across
(nstrains × epochs) iterations with nstrains = 5 as the number of
meta-training tasks and epochs as the number of epochs. The
best model is selected at the epoch giving the best ROC-AUC
Digital Discovery, 2025, 4, 3515–3532 | 3529
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score in the query set of the overall Ames test task and we allow
it to run for at most 2000 epochs. Additionally, we consider
learnings rates of 1 × 10−3 for the GNN, 1 × 10−4 for the
Transformer, update steps of 5 for meta-training and 10 for
meta-testing. In Meta-GTMP, the GNN embedding module
includes 5 GIN message-passing layers and embedding
dimension of 300. For Meta-GTMP and graph-based baselines,
the GNN models are pre-trained with GNN models of Hu et al.
(2020)30 for improved initialization. The GNN and Transformer
modules of Meta-GTMP have the main hyperparameters di-
splayed on the SI Material section. In this work, we do not
mainly focus on hyperparameter optimization, especially for
GNN baselines. Thus, we did not put an extensive effort into
optimizing model hyperparameters, leaving it for future work.
In model convergence, we consider a random seed of 1. The
computational results are fully reproducible by using 30
different random seeds ˛ {2, ., 31} for each one of the 30
computational experiments conducted in 5-shot and 10-shot
settings. The explainability study using a node-edge attribute
masking strategy with the output node-edge embeddings of the
Meta-GTMP GNN embedding module uses the RDKit.Chem
library69 to visualize node (atom) and edge (bond) importance
scores for each compound using blue and red color gradients,
respectively. The model is trained to generalize across related
tasks dened by bacterial strains. This setup reects the
intended application of few-shot learning frameworks, which
aim to perform well under task-level variability with limited
data. Nonetheless, we acknowledge that scaffold-aware task
construction and external validation using complementary
datasets could further strengthen the evaluation of generaliza-
tion. However, many external datasets do not provide the
necessary strain-level annotations required for task denition
in our proposed framework. Future extensions of this work may
explore strategies to incorporate scaffold-aware sampling
protocols or adapt the model for compatibility with aggregated-
label datasets to support broader benchmarking.

3.2.3 Comparison with machine learning (ML) baselines.
For comparative purposes, we implemented a set of classical
machine learning (ML) models using standard chem-
informatics descriptors. The results are available in the SI
Material section and compared against 5-shot and 10-shot
Meta-GTMP models. Specically, we used RDKit ngerprints
and Morgan ngerprints generated via RDKit, alongside four
widely used classiers, Random Forest, Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), and Gaussian Process,
implemented with scikit-learn. These models serve as repre-
sentative baselines for molecular property prediction. While we
acknowledge that further tuning, descriptor selection, and bias
mitigation strategies could improve their performance, our
focus in this work is on evaluating the proposed Meta-GTMP
model, a graph-based few-shot learning approach designed
for multi-strain-based mutagenicity prediction under low-data
settings. Therefore, the classical ML models were included as
reference points under standard conditions rather than fully
optimized competitors, consistent with our treatment of the
proposed Meta-GTMP model, where we likewise did not
perform extensive hyperparameter tuning. This approach
3530 | Digital Discovery, 2025, 4, 3515–3532
ensures a fair and balanced comparison across methods.
Hence, the focus of this work is on evaluating the proposed few-
shot graph-based meta-learning framework Meta-GTMP under
low-data settings. Consequently, we chose standard descriptors
and machine learning algorithms to serve as baseline methods
for comparison.
3.3 Ames laboratory test experimental settings

3.3.1 Chemical compounds. The compound versions used
in laboratory experiments were commercially sourced and can
be uniquely identied using their CAS (Chemical Abstract
Service) numbers. Hence, the compounds used in experiments
were commercially sourced from vendor catalogs via the CAS
numbers linked in the original PubChem records (accessed May
20, 2024). The tested compounds in laboratory validation
experiments included: 2H-1,3-benzodioxole-4-carbaldehyde
(CAS No 7797-83-3, BLD PharmaTech GmBH), 3,8-dinitro-6H-
benzo(c)chromen-6-one (CAS No 63636-7, Vitas M Chemical
limited), 6-benzyl-1,3,5-triazine-2,4-diamine (CAS No 1853-88-9,
Specs), 6-(4-nitrophenyl)imidazo[2,1-b][1,3]thiazole (CAS No
7120-14-1, Vitas M Chemical limited), 2-((2,4-
dinitrophenyl)(amino)-5-nitrophenol (CAS No 304479-24-1,
Specs) and [1,10-biphenyl]-3,30-diol (CAS No 612-76-0, Fluoro-
chem Limited). All compounds were purchased in batch
through the global chemical marketplace MolPort. The chem-
icals 2-aminoanthracene (CAS No 613-13-8, Sigma), 2-nitro-
uorene (CAS No 607-57-8CAS, Sigma), sodium azide (CAS No
26628-22-8, Sigma), 9-aminoacridine (CAS No 90-45-9, Merck),
and methyl methaneosulfonate (CAS No 66-27-3, Sigma) were
used as the positive controls for mutagenicity.

3.3.2 Bacterial strains. The histidine-dependent S. typhi-
murium strains TA98, TA100, TA1535 and TA1537, and the
tryptophan-dependent E. coli WP2 (uvra pKM101), which is
equivalent to the S. typhimurium TA102,4 were purchased from
Trinova Biochem (Moltox). These bacterial strains used in the
Ames test were grown in liquid nutrient broth (Oxoid No. 2) at
37° with agitation.

3.3.3 Ames test. The Ames bacterial reverse mutation assay
was performed according to the OECD Test Guideline No. 471,4,6

albeit in a modied, miniaturized version.61,62,64,65,71 The assay
was conducted in 6-well cell culture plates; each well contained
5 mL minimal agar medium consisting of Vogel–Bonner
medium E and glucose,6 and 400 mL of top agar containing 0.6%
NaCl, 0.05 mM histidine and biotin (for S. typhimurium strains)
or 0.05 mM tryptophan (for the E. coli WP2 strain). Bacterial
cultures grown to late log growth phase (3 to 5 × 108 cells per
mL)61 were collected by centrifugation, washed, and resus-
pended in phosphate buffer (PBS). Each chemical compound
was tested at 1, 0.3, 0.1, 0.03, 0.01, and 0.003 mg per well.
Briey, compounds were rst dissolved in DMSO and serially
diluted from the highest concentration (100 mg mL−1) at half-
log intervals to prepare ve stock solutions of 100, 30, 10, 3,
and 1 mg mL−1. Each stock solution (10 mL) was mixed with 20
mL of each strain culture and 100 mL of PBS, and incubated at
37 °C for 30 min. To test mutagenicity induced by metabolic
activation, a 10% S9 mix (10% Mutazyme, Trinova Biochem,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Moltox) was used instead of PBS. Aer incubation, 400 mL of
melted top agar were added to each condition/strain, and
cultures were poured into the wells. The plates were incubated
at 35 °C for 48 hours for colony counting. The Ames test was
performed in triplicate for each chemical compound.
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