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Multi-modal contrastive learning for chemical
structure elucidation with VibraCLIP

Pau Rocabert-Oriols, Camilla Lo Conte, Nuria Lopez® and Javier Heras-
Domingo & +*

Identifying molecular structures from vibrational spectra is central to chemical analysis but remains
challenging due to spectral ambiguity and the limitations of single-modality methods. While deep
learning has advanced various spectroscopic characterization techniques, leveraging the complementary
nature of infrared (IR) and Raman spectroscopies remains largely underexplored. We introduce
VibraCLIP, a contrastive learning framework that embeds molecular graphs, IR and Raman spectra into
a shared latent space. A lightweight fine-tuning protocol ensures generalization from theoretical to
experimental datasets. VibraCLIP enables accurate, scalable, and data-efficient molecular identification,
linking vibrational spectroscopy with structural interpretation. This tri-modal design captures rich
structure—spectra relationships, achieving Top-1 retrieval accuracy of 81.7% and reaching 98.9% Top-25
accuracy with molecular mass integration. By integrating complementary vibrational spectroscopic
signals with molecular representations, VibraCLIP provides a practical framework for automated spectral
analysis, with potential applications in fields such as synthesis monitoring, drug development, and

rsc.li/digitaldiscovery astrochemical detection.

Introduction

Accelerating the discovery of drugs or decoding complex
organic molecules in diverse chemical environments demands
rapid, on-the-fly molecular -characterization."™ Although,
during synthetic procedures, organic molecular identification is
powered by NMR spectroscopy,”® this technique has limitations
when the sample is paramagnetic, has high quadrupoles or
cannot be prepared in a liquid or solid form. Alternatively,
vibrational spectroscopies like IR and Raman provide infor-
mation on the patterns within the molecules (functional
groups) that correspond to the vibrational modes within the
molecule (collective movements). Although both probe molec-
ular vibrations, IR and Raman spectra differ due to distinct
selection rules (dipole vs. polarizability®), Fig. 1. These tech-
niques can be employed for remote detection at astronomical
distances, such as in the case of the James Webb Space Tele-
scope.” Despite their widespread use, vibrational spectroscopies
often struggle with low throughput, complex interpretation, and
their integration with computational tools.

Emerging machine learning approaches offer a trans-
formative path forward by enabling the interpretation of
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complex spectroscopic data and laying the foundation for
automated and scalable analysis,® for instance, in NMR® spec-
troscopy. By bridging the gap between qualitative signals and
quantitative insights, these tools open new possibilities to
understand and design molecular systems with unprecedented
speed and precision.”’® However, in reality human-based
experimental identification relies on integrating information
from at least two independent techniques. In Al, combining
complementary data streams is known as multi-modal learning,
but its application to molecular characterization remains
a challenge.
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Fig.1 Schematic of vibrational spectroscopy showing how molecular
stretching and bending modes are probed differently by IR and Raman
techniques, governed by dipole moment and polarizability selection
rules, respectively.

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://crossmark.crossref.org/dialog/?doi=10.1039/d5dd00269a&domain=pdf&date_stamp=2025-11-29
http://orcid.org/0000-0001-9150-5941
http://orcid.org/0000-0002-4322-3146
mailto:javier.heras@ub.edu
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00269a
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD004012

Open Access Article. Published on 11 November 2025. Downloaded on 1/29/2026 1:10:04 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

Vibrational spectroscopies are often interpreted with Density
Functional Theory (DFT), which balances accuracy and cost.***>
Systematic deviations remain: harmonic frequencies are over-
estimated requiring empirical scaling.”® Intensities depend on
functional and basis; B3LYP generally gives reliable IR intensi-
ties, though Raman intensities are more basis sensitive.'***
Moreover, temperature, intermolecular interactions,
solvation broaden or shift experimental spectra beyond ideal-
ized DFT predictions. To address such challenges, recent
advancements in Al-driven spectra-to-molecule mapping
broadly follow two main strategies: (i) predicting spectral
outputs directly from molecular structures, and (ii) interpreting
spectroscopic data to infer chemical structures, enabling
inverse design. Graph Neural Networks (GNNs) have been
developed to predict IR spectra from molecular graphs,”>°
while Convolutional Neural Networks (CNNs) have been applied
to classify IR spectra by functional groups.**> Other models,
such as support vector machines (SVMs), random forest (RF),
multilayer perceptrons (MLPs), and deep reinforcement
learning have been used to identify functional groups from IR
spectra.**?¢ SMILES-based representations using the Trans-
former architecture*” have emerged as an alternative for infer-
ring molecular structures directly from IR spectra.”® Existing
approaches focus on individual modalities, such as molecular
graphs or single spectral techniques.>***=* Unlike, CNNs, RNNs,
GNNs, or random forests, which rely on supervised prediction
of labels or properties, contrastive learning operates more like
a spectroscopic fingerprinting process: it aligns heterogeneous
data (Graph, IR, Raman) in a shared latent space by maximizing
the similarity of true pairs and minimizing that of mismatches.
Just as a chemist identifies a compound by matching experi-
mental spectra against reference patterns, contrastive learning
enables unsupervised cross-modal representation learning that
is essential for molecular elucidation.

Vibrational spectroscopies like infrared (IR) and Raman are
widely used to identify functional groups but remain underu-
tilized when it comes to combining their complementary
strengths.®* Integrating both offers a robust foundation for
multi-modal analysis, as both spectra originate from the same
underlying physics,® the molecular vibrations expressed as
normal modes (Fig. 1). Current methods struggle to unify these
modalities, and incorporating spectral data with molecular
graphs introduces further challenges in aligning disparate data
types within a shared latent space. Overcoming these limita-
tions is essential for advancing multi-modal characterization
and extracting deeper molecular insights.

Multi-modal models based on contrastive learning, such as
the CLIP architecture,*® have emerged as powerful tools to
bridge diverse data modalities. These models are particularly
well-suited for characterization techniques, where relationships
between different streams of data, such as molecular structures
and spectra, must be learned to allow molecular identification.
While current applications of contrastive learning focus on
dual-modal relationships, they leave room for further explora-
tion in more complex multi-modal tasks (i.e., a figure assigned
to its caption). For instance, MolCLR* leverages self-supervised
pre-training on molecular graphs to encode chemically
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meaningful similarities, improving property prediction tasks
with limited labeled data. The CReSS system applies contrastive
learning to directly connect '*C NMR spectra with molecular
structures, enabling high-recall cross-modal retrieval (ie.,
molecular assignment) in large molecular libraries and sup-
porting molecular scaffold determination.®**® Similarly, the
CMSSP framework establishes a shared representation between
tandem mass spectrometry (MS/MS) spectra and molecular
structures, improving metabolite identification.’” However,
these approaches used molecular Morgan fingerprints***
together with graph embeddings to better anchor the MS
spectra-molecule pair, though combining both may introduce
redundant information, underscoring the need for careful
feature selection. More recently, the MARASON implementation
introduces neural graph matching to retrieval-augmented
molecular machine learning, significantly improving mass
spectrum simulation accuracy over existing methods.*®
Expanding beyond molecular systems, MultiMat introduces
a self-supervised multi-modality framework for materials
science, leveraging diverse streams of bulk material properties
to enhance property prediction, material discovery, and scien-
tific interpretability.**

Despite this rapid progress, existing models remain
restricted to dual-modal formulations (e.g., structure-spectrum)
alignment. Our benchmarking of recent methods (see SI, S-1)
highlights their strengths and trade-offs. For example, Chem-
prop-IR" reaches high Spectral Information Similarity (SIS)
scores (0.969 theoretical, 0.864 experimental data), while
Graphormer-IR" scales to large datasets but with 139 M train-
able parameters. Contrastive approaches like CReSS* (*>C-NMR
+ SMILES, Top-10 = 91.6%) or CMSSP*” (MS/MS + Graph, Top-10
= 76.3%) demonstrate the potential of cross-modal retrieval but
remain constrained by their pairing nature. Among these, the
closest approach to our work is SMEN,** which aligns molecular
graphs with IR spectra. While effective (Top-1 = 94.1%, Top-10
= 99.8% in QM9 dataset®), SMEN is limited to two modalities
and requires 24 M parameters, more than twice the size of our
approach.

VibraCLIP advances this frontier by introducing a tri-modal
framework for vibrational spectroscopy that jointly aligns
molecular graphs, IR, and Raman spectra in a unified latent
space. By exploiting the complementarity of IR and Raman
signals, it enables richer and more comprehensive molecular
characterization than dual-modal systems currently allow. As
demonstrated in the SI (Section S-2), a non-learned baseline
further underscores the need for explicit alignment to reliably
recover molecular structures from different data streams (i.e.,
molecular structure and vibrational data). With a maximum of
11 M trainable parameters, VibraCLIP effectively captures
complex structure-spectra relationships, enabling molecular
elucidation from vibrational data and bridging characterization
techniques with molecular interpretation. Its adaptable and
scalable design unifies and leverages these complementary
modalities, accelerating structural analysis, facilitating knowl-
edge transfer across modalities, and establishing it as a power-
ful tool for advancing characterization across diverse scientific
domains.
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Results
VibraCLIP framework

Our model builds on the CLIP architecture,* adapting cross-
modal contrastive learning to vibrational spectroscopy. It
aligns IR and Raman spectral data with molecular structures in
a shared representation space, enabling accurate identification
of organic molecules. The framework operates in two phases: (i)
multi-modal contrastive pre-training (learning) and (ii) retrieval
with scoring (identification) (Fig. 2). During pre-training on the
theoretical QMO9S dataset,* the graph, IR, and Raman encoders
process triads of synthetic (calculated) IR and Raman spectra
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Fig. 2 Overview of VibraCLIP. (A) VibraCLIP pre-training. The SMILES
representation is converted into the graph representation (G) and the
vibrational spectra are both pre-processed by interpolation and
normalization between 0 and 1. Each modality is fed to the VibraCLIP
simultaneously in batches of 128 systems, where the graph encoder is
based on the DimeNet++ architecture*¢#” while the spectral encoders
and projection heads are based on fully connected neural networks
(FCNN). The contrastive loss is utilized to maximize the agreement
between the projected embedding vectors coming from the molec-
ular graph (G,). IR (/) and Raman (R,), building a shared latent space.
(B) The retrieval strategy, the IR and Raman spectra of an unknown
molecule is fed to the spectral encoders and the cross-modality
similarity score is then calculated across the database, providing the
Top-K-most aligned embeddings vectors, which contains the most
likely molecules.
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with molecular structures to generate feature embeddings. This
objective enables VibraCLIP to learn chemically coherent
representations by bringing together IR, Raman, and structural
features of the same molecule while separating those from
different systems.

All the employed spectra are standardized and curated
following the procedure described in the Vibrational Spectra
Pre-processing section. For pre-training, we use the QM9S*
dataset that contains 130 000 optimized organic molecules with
synthetic (DFT) spectroscopic data, see Datasets section for
details. To generalize, we fine-tuned (realign) the model on an
external PubChem dataset,** which contains 5500 molecules
following the same strategy as the QM9S,*>** expanding the
chemical space, together with their corresponding synthetic
spectra, and molecular size range encountered by the pre-
trained model. This addition, introduces a minimal realign-
ment of the latent space to accommodate unseen molecules.
Finally, as it is well-known in the community, experimental and
computed IR and Raman spectra differ in peak position and
width. Therefore, both experimental realignment and valida-
tion are crucial to be predictive under realistic conditions. To
this end, 320 gas-phase molecular spectra were used from NIST
Webbook* (IR) and from standard libraries (Raman). The
experimental dataset features chemically diverse, real-world
compounds with richer spectral complexity, listed in the SI
(Section S-5).

The representations of organic molecules via the Graph
Encoder allows to extract structural patterns from the graph, in
our case based on the DimeNet++,***” architecture (see Methods
section). DimeNet++ is a dedicated graph neural network to
learn geometric patterns in molecular structures containing
both angular and distance based features thus closely resem-
bling z-matrix molecular representations. DimeNet++ produces
a continuous vector space representation of molecular graphs
that, in our case, is further enhanced by only concatenating the
standardized molecular mass of the molecule (without isotopic
considerations) before the projection heads, see Fig. 2. The
molecular mass provides additional chemical context crucial to
distinguishing between similar structures particularly
enhancing the quality of the embeddings in downstream tasks.

Similarly, spectral encoders are needed. In this case, the
applied architecture is a multi-layer fully connected neural
network (FCNN) designed to transform the IR or Raman spectra
data into spectral embeddings representation, see Methods
section for details. The encoder first employs an input layer
matching the dimensionality of the given spectra, followed by
a sequence of two hidden layers with progressively decreasing
dimensions ensuring a smooth downsampling in the feature
space. The network produces a fixed-length feature vector using
a final linear layer.

Next, the projection heads are designed to map embeddings
from modality-specific encoders into a shared representation
space. It starts by a linear layer reducing the input dimension to
the projection dimension, and follows by a GELU activation
function*® to introduce non-linearity. Two more layers, one that
refines the projection and an optional one for normalization
that ensures consistent, well-regularized representations.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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The multi-modal training strategy incorporates separate
learning rates and optimization schedules for each component
to facilitate efficient learning across multiple data types, see
Methods for details. The learning ability is then controlled by
the contrastive loss functions. In the original CLIP framework,*
two distinct modalities, denoted as A (image) and B (caption),
are paired via the cosine similarity metric, see Methods for
details. In our adaptation, A = G denotes the molecular graph
representation, while the infrared (IR) or Raman spectra
correspond to B. Then we can evaluate loss functions, L, for
different pairs L(G, IR), L(G, Raman) and L(IR, Raman). The
CLIP loss is independently applied between the graph repre-
sentation and each spectroscopic modality, unifying all three in
a single model. The overall loss is the sum of individual CLIP
losses involving the graph G (see Contrastive loss functions
section).

To evaluate the retrieval accuracy, we implemented a dedi-
cated PyTorch Lightning callback,** executed exclusively on
the test dataset in two scenarios: the single and dual spectral
modalities. The cosine similarity then scores and ranks all
candidate graph embeddings, creating a sorted list of most
likely molecules (i.e., Top-K matches) either for single or dual
spectra data streams (see Retrieval accuracy section). In the
retrieval phase, IR and Raman spectra serve as queries to
generate embeddings, which are compared to candidate
molecular structures. Candidates are ranked by cosine
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Fig. 3 VibraCLIP retrieval performance. (A) Performance comparison
of VibraCLIP using different contrastive loss strategies without
anchoring features. (B) Performance comparison of VibraCLIP using
different contrastive loss strategies including the standardized
molecular mass as anchoring feature. (C) Latent space realignment on
the PubChem dataset** with the standardized molecular mass as
anchoring feature. (D) Latent space realignment on the experimental
dataset with the standardized molecular mass as anchoring feature.
Training epochs with maximum of 200 epochs with early stopping
strategy: (A) IR only 153, IR + Raman 115, IR + Raman (allpairs) 95; (B) IR
only 107, IR + Raman (allpairs) 112; (C and D) realignment with 15
epochs.
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similarity (eqn (2)), quantifying spectral-structural alignment
and prioritizing the most chemically consistent matches. As
shown in Fig. 3, retrieval accuracy plots highlight VibraCLIP's
effectiveness in matching spectra to molecular structures.
Furthermore, the model was also realigned (fine-tuned) using
experimental data, demonstrating the effectiveness of the
minimal realignment strategy in adapting to real-world spectra.

Performance evaluation

We evaluated VibraCLIP across multiple configurations to
assess its performance and adaptability (Fig. 3). These included:
(i) IR spectra only, (ii) combined IR and Raman spectra, and (iii)
full IR-Raman alignment through contrastive loss (see eqn (5)).
To enhance molecular context, we incorporated the standard-
ized molecular mass into the Graph, IR, and Raman embed-
dings before projection, following approaches like CMSSP.*” To
evaluate generalization beyond QM9S,*® we used a PubChem-
derived dataset* constructed by randomly selecting PubChem
molecules and computing their IR and Raman spectra, and
applying a minimal fine-tuning by updating only the projection
heads, leaving the rest of the model frozen. This lightweight
realignment enabled adaptation to new chemical distributions
with minimal overhead. Additionally, we validated the model on
an in-house experimental dataset containing real IR and Raman
spectra, again applying fine-tuning only to the final projection
layers. Together, these two realignment strategies demonstrate
VibraCLIP's ability to generalize across both theoretical and
experimental domains.

The retrieval accuracies highlight the substantial gains
achieved by incorporating the Raman spectra and aligning
vibrational modalities within the contrastive learning loss
function. Without considering the standardized molecular
mass as anchoring feature, adding Raman spectra increases the
Top-1 accuracy from 12.4% (IR only) to 55.1%, and further to
62.9% when explicitly aligning IR and Raman embeddings. As
shown in Fig. 3A, this improvement underscores the comple-
mentary role of Raman spectroscopy in refining molecular
identification. For Top-25, performance improves from 63.6%
(IR only) to 94.0% and 94.3% with Raman and full IR-Raman
alignment, respectively, demonstrating the value of
combining vibrational modalities in a unified latent space.
Learned alignment is essential, as the non-learning baseline
yielded near-random retrieval across modalities (<0.30% Top-K,
Section S-2). VibraCLIP surpasses this lower bound by orders of
magnitude, confirming that its performance stems directly
from the contrastive training objective.

Building on this, the inclusion of the standardized molecular
mass as an anchoring feature (i.e., similar to adding the total
mass from MS experiment), results in notable improvements
across all retrieval thresholds. With mass included, Top-1
accuracy for IR-only models rises from 12.4% to 24.2%, and
with the fully aligned IR-Raman loss function, from 62.9% to
81.7%, a remarkable 18.8% absolute gain. As shown in Fig. 3B,
the Top-25 accuracy increases to 98.9%, confirming the effec-
tiveness of mass as a chemically grounded global descriptor.
This anchoring strategy improves consistency in the latent

Digital Discovery, 2025, 4, 3818-3827 | 3821
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space, especially similar
candidates.

The model was further fined-tuned, realigned, on an external
dataset of randomly selected organic molecules from Pub-
Chem* (Fig. 3C) and an experimental dataset (Fig. 3D). These
evaluations demonstrate the model's adaptability and general-
ization to previously unseen chemical and spectral distribu-
tions. This realignment was deliberately minimal, updating
only the final layer of the projection heads over 15 epochs, while
leaving the remaining 8.7 million of the model's 11 million
parameters frozen. This lightweight adjustment enabled
smooth realignment to new data domains with minimal
computational cost.

On the PubChem dataset, realignment yielded strong
results: Top-1 accuracy rose to 67.6%, and Top-25 accuracy
reached 98.2% when the IR-Raman embeddings alignment is
considered in the loss function. While a moderate drop from
the QM9S*® benchmarks (98.9%), this performance reflects the
increased chemical diversity of PubChem** and confirms that
minimal fine-tuning effectively mitigates dataset shift. Simi-
larly, experimental validation using IR and Raman spectra
demonstrated the robustness of the approach, with Top-25
accuracy reaching 100% and Top-1 performance at 34.4% in
the fully aligned, mass-anchored setup. These findings confirm
that VibraCLIP's realignment strategy is not only data-efficient
but also transferable across theoretical and real-world domains.

in distinguishing structurally

Discussion

VibraCLIP introduces a new paradigm in molecular character-
ization by extending contrastive learning beyond dual-modality
frameworks to a three-way alignment of molecular Graphs, IR,
and Raman spectra. This multi-modal integration not only
boosts retrieval performance but also enables direct alignment
between spectral modalities, capturing complementary vibra-
tional features that enhance chemical identification. The
inclusion of standardized molecular mass as an anchoring
feature further enhances embedding consistency, facilitating
chemically grounded representations that are crucial for robust
retrieval.

The necessity of learned alignment is further highlighted
when compared to the non-learning baseline (SI, Section S-2),
where molecular fingerprints and spectra projected into
a shared space yielded near-random retrieval (<0.30%). Similar
to comparing an experimental IR spectrum with an uncali-
brated reference library, without alignment, meaningful
matches cannot be recovered.

The model shows particularly strong performance in Top-K
retrieval scenarios. While Top-1 accuracy improves substan-
tially with IR-Raman alignment (from 12.4% to 62.9%) and
further to 81.7% with mass anchoring, the real value lies in the
Top-25 accuracy of 98.9%. Importantly, this framework is not
designed to retrieve a single exact match, but rather to guide
molecular identification by narrowing the search space to
a small pool of highly similar candidates. In contexts such as
drug discovery, high-throughput screening, or the identification
of unknown chemical species in  extraterrestrial
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environments,** this level of precision is both meaningful and
practically valuable. This highlights that, even when the exact
structure is not ranked first, VibraCLIP consistently retrieves
chemically similar candidates sharing key scaffolds. As shown
in Fig. 4, correct molecules often appear within the top-ranked
set, and retrieved structures tend to be structurally coherent,
offering actionable insight in practical settings.

To probe the robustness of VibraCLIP under incomplete data
scenarios, we performed a missing-data analysis. In the dual-
modality setting (Graph, IR with mass anchoring), IR spectra
were progressively removed. Interestingly, performance
remained stable up to 10-15% missing data, but dropped
sharply at 50%, highlighting the model's reliance on complete
spectral information in this configuration. In contrast, in the
three-modality case (Graph, IR, Raman with the all-pairs loss
function), the accuracy decline at 50% missing data, from one
of the spectra modalities, was far less severe. This suggest that
the model continues to learn effectively from the Graph, IR and
the remaining Raman spectra underscoring the complemen-
tarity of the two vibrational modalities. When spectra were
missing, the spectral encoder part was frozen to prevent weight
updates, ensuring stable optimization of the remaining
modalities (SI, Section S-6).

VibraCLIP also supports realignment to new data distribu-
tions through lightweight fine-tuning. Using only the final
projection layers, we adapted the model to a PubChem** derived
dataset and to an internally curated experimental vibrational
dataset, confirming transferability across synthetic and real-
world domains. Nevertheless, significant limitations remain,
largely due to the scarcity of multi-modal, machine learning-
ready spectroscopic datasets. The core pre-training relies on
QM9S,* restricted to small organics and element counts of C:
9,N:7,0: 5, F: 6, leaving larger and chemically richer structures
underrepresented. PubChem extends this chemical space (C:
21, N: 6, O: 8, F: 0), and the experimental dataset (C: 30, N: 6, O:
6, F: 6), while limited in size, provides valuable diversity for
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Fig. 4 Top-K experimental structure retrieval using VibraCLIP. Each
row show a target molecule (left) and its Top-1 to Top-25 predicted
matches with cosine similarity scores. Correct matches are highlighted
in green (see all the Top-K's retrievals in (Section S-5)).
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benchmarking with real-world data, and highlights the oppor-
tunity for broader dataset development.

Lastly, while DimeNet++,***” provides a strong basis for
graph encoding, future VibraCLIP iterations can adopt more
expressive GNNs to capture complex molecular features. Its
modular design enables expansion to modalities such as
NMR,***¢ UV-Vis, and mass spectrometry,”” opening new paths
to Al-driven molecular identification.

In summary, VibraCLIP is a scalable, efficient, and general-
izable framework for spectral interpretation. By embedding
molecular and spectral information in a unified latent space, it
provides groundwork for next-generation tools in molecular
discovery, structural elucidation, and Al-augmented
spectroscopy.

Methods

Datasets

We utilized the QM9S dataset,* an extension of QM9 (ref. 43)
with theoretical spectroscopic data, comprising 130 000 organic
molecules with re-optimized geometries. It includes diverse
molecular properties, from scalar values (e.g., energies, partial
charges) to high-order tensors (e.g., Hessian matrices, quadru-
pole and octopole moments, and polarizabilities). Spectral data,
including IR, Raman, and UV-Vis spectra, were computed via
frequency analysis and time-dependent DFT at the B3LYP/def-
TZVP level of theory using Gaussian16.*> The inclusion of IR
and Raman spectra in QM9S enabled the development of
VibraCLIP, a model designed for multi-modal alignment and
spectroscopic representation learning.

VibraCLIP was fine-tuned on 5500 molecules from the
PubChem-derived subset of QM9S,**** expanding the chemical
space and molecular size range encountered by the pre-trained
model. This subset includes SMILES representations, 3D coor-
dinates, and Hessian matrices. IR and Raman spectra were
inferred using the DetaNet model,* trained and validated on
QM9S, which accurately predicts these spectral features. This
fine-tuning process improved VibraCLIP's ability to generalize
to a broader range of molecular and spectroscopic data.

Experimental realignment and validation were performed
using IR spectra from the NIST Webbook* and Raman spectra
from the OMNIC software's standard library for the same
molecules. The resulting dataset includes 320 examples, each
combining molecular structure, IR, and Raman spectra. Unlike
computational benchmarks such as QM9S** or PubChem,*
which remain biased toward small, synthetically accessible
molecules and lack the chemical richness of real systems, our
experimental set features diverse compounds with more
complex spectra. Although limited in size, it provides a crucial
first step toward validating VibraCLIP in real-world scenarios,
underscoring both its generalization ability and the need for
larger, experimentally grounded benchmarks.

Molecular graph representation

Given a SMILES representation coming from the QM9S dataset,
the corresponding molecular graph G is built, in which each

© 2025 The Author(s). Published by the Royal Society of Chemistry
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node represents an atom and each edge represents a chemical
bond between atoms. Initially, the SMILES string is converted
into a molecular structure with the RDKit library® for molecular
processing, where the molecule is saturated with hydrogen, and
a 3D conformation is generated using the ETKDG embedding
algorithm.** While ETKDG generally produces reasonable
geometries, conformer generation may fail for certain strained
systems, flexible molecules with many rotatable bonds, or cases
requiring higher-level quantum refinement. Such cases are
excluded from pre-training. After that, atom features including
atomic type, aromaticity and hybridization states (sp, sp?, sp)
are extracted. Bond attributes are encoded by bond type, and
pairwise atomic distances are added as additional edge attri-
butes. Furthermore, the molecular mass is standardized by the
dataset-wide mean and standard deviation, which is then
embedded as meta-data within the graph. The resulting graph
comprises node features, edge indices and attributes, 3D posi-
tions and standardized molecular mass, making it suitable for
a wide range of graph neural networks encoders.

Vibrational spectra pre-processing

The processing of vibrational spectra is applied uniformly to both
IR and Raman data, involving two key steps to standardize and
prepare the spectra for training (80%), validation (10%) and
testing (10%). First, both the x-axis (cm ") and y-axis (intensity) of
each spectrum are interpolated, reducing the original resolution
from 3501 data points to 1750. This step preserves the spectral
shape, ensures consistent dimensionality across all samples, and
makes the dataset more manageable computationally. Following
interpolation, each spectrum is normalized using the Min-Max
scaling strategy, which adjusts intensity values to fall within
a range of 0 to 1. This normalization step ensures consistency
across spectra, enhancing comparability and model performance
by eliminating scale variability in the data.

Since VibraCLIP is a multi-modal model, the processed IR
and Raman spectra are also incorporated within the graph
object, following a common strategy in PyTorch Geometric®* for
multi-modal data integration. This approach enables seamless
access to multiple data types within the model and supporting
efficient multi-modal alighment and representation learning.
Further implementation details are available in the SI (S-3).

Model architecture

Graph encoder. In order to extract structural patterns from
the graph representations of organic molecules, we employed
DimeNet++,*¢*” architecture. DimeNet++ is a state-of-the-art
graph neural network designed to capture geometric patterns
of molecular structure, making it especially effective for
quantum-chemical applications. This architecture leverages
directional message passing® to model both angular and
distance based features, allowing it to capture essential three-
body interactions through bond angles and atomic distances.
By using radial basis functions and spherical harmonics, Di-
meNet++ encodes information from neighboring atoms to
preserve directional dependencies crucial to molecular
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properties. This encoding produces a continuous vector space
representation of molecular graphs.

We further enhanced the molecular graph representation by
concatenating the standardized molecular mass to the molec-
ular vector generated by DimeNet++. This addition improved
the model's overall performance, as the molecular mass
provides additional chemical context that proved to be valuable
for distinguishing between similar structures. Importantly, this
addition occurs before passing the graph embeddings to the
projection head, allowing the projection model to fully leverage
this SI. We believe that the projection head benefits from the
inclusion of the standardize molecular mass by refining the
embeddings in a way that better captures molecular distinc-
tions relevant to the downstream tasks.

Spectral encoders. This architecture is implemented as
a multi-layer fully connected neural network designed to
transform either IR or Raman spectra data into a compact
representation suitable for multi-modal alignment. The
encoder begins with an input layer matching the dimensionality
of the given spectra, followed by a sequence of hidden layers
with progressively decreasing dimensions, ensuring smooth
downsampling.

Each hidden layer consists of a linear transformation fol-
lowed by an activation function, which introduces non-linearity
to enhance the network’s expressiveness. Then batch normali-
zation is enabled and applied after each linear layer to stabilize
training by normalizing the activations. Finally, the network
outputs a fixed-length feature vector through an additional
linear layer, which serves as the final layer. This spectral
encoder produces embeddings that capture meaningful spec-
tral information, enabling effective interaction with other
modalities for alignment within the VibraCLIP model.

Projection heads. Designed to map embeddings from
modality-specific encoders into a shared representation space,
the projection head enables effective cross-modal alignment. It
begins with a linear layer that reduces the input dimension to
the projection dimension, followed by a GELU activation func-
tion*® to introduce non-linearity. A second linear layer refines
the projection, with optional dropout for regularization. To
improve gradient flow and stability, a residual connection adds
the initial projection batch to the output, and optional layer
normalization is applied to standardize features. This structure
ensures consistent, well-regularized representations critical for
alignment different modalities within the VibraCLIP model.

Multi-modal training strategy

The multi-modal training strategy for VibraCLIP incorporates
separate learning rates and optimization schedules for each
component to facilitate efficient learning across multiple data
types. Specifically, distinct learning rates are assigned to the
graph neural network (GNN) encoder, both the spectral encoders,
allowing each modality-specific encoder to adapt at an optimal
pace. The projection heads for each modality (Graph, IR, Raman)
are grouped under a single learning rate, promoting alignment
within the shared representation space. Optimization is carried
out through the AdamW optimizer,”” which combines weight
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decay for regularization with adaptive gradient steps, and
a ReduceLROnPlateu scheduler®® that adjusts the learning rates
based on validation loss. Additionally, an early stopping mecha-
nism monitors also the validation loss, halting training if no
improvement is observed over 15 epochs, thereby preventing
overfitting and ensuring efficient convergence. This tailored
optimization approach enhances the model's ability to learn
complex multi-modal representations while preserving compu-
tational efficiency. See details in the SI (S-4).

Contrastive loss functions

In the original CLIP framework,* two distinct modalities,
denoted as A and B, are paired with corresponding samples A;
and B; across a batch of N samples, where i represents the batch
index. Following encoding via modality-specific encoders f, and
fs, the resulting embeddings are represented by a; = fi(4;) and b;
= fs(B,). The objective of CLIP is to establish a robust alignment
between these modalities through a shared objective function,
effectively bridging A and B in the embeddings space, as shown
in following equation:

N sim(a.bi)/c

U4,B) == log— (1)
=1 S gsimaih)/x
j=1

where sim(a;, b;) is the cosine similarity metric and 7 is the
temperature parameter.

Ll,"b,‘

sim(a,bi) = o @

Therefore, the symmetric loss can be represented as:

L(A,B) = %[Z(A,B) +{(B, A)] (3)

It is worth noting that the CLIP model was originally pre-
sented in the context of image-caption pairs, where A represents
an image modality and B a text modality.

VibraCLIP for vibrational spectroscopy

An intuitive approach to multi-modal pre-training for smart
characterization of organic molecules involves directly adapting
the two-modalities CLIP model to spectroscopic-specific data.
In our adaptation, G denotes the molecular graph representa-
tion analog to the image in the original CLIP model, while the
infrared (IR) or Raman spectra take the role of the text caption
in CLIP's original implementation. This framework enable us to
consider two distinct strategies for multi-modal pre-training in
smart characterization for vibrational spectroscopy of organic
molecules, paring G with IR or G with Raman. The loss function
for such strategies would be represented as L(G, IR), L(G,
Raman) and L(IR, Raman), where L is given by eqn (3).

Graph-centered VibraCLIP

Alternatively, rather than limiting CLIP to a single vibrational
spectroscopy, we extend the original CLIP framework to

© 2025 The Author(s). Published by the Royal Society of Chemistry
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incorporate multiple modality pairs by positioning the molec-
ular graph representation at the core of the model. This central
role leverages the graph's rich structural information and its
capacity to interface meaningfully with both IR and Raman
spectra. By computing the CLIP loss between the graph and
each spectroscopic modality independently, we effectively unify
all three modalities through a shared structural epicenter. The
resulting loss function for this graph-centered strategy is
defined by aggregating the CLIP losses involving the graph G,
with L as defined in eqn (3):

1
LGraph»cemered - 5 [L(G7 IR) + L(G7 Raman)} (4)

All pairs VibraCLIP

As a further extension, we can extend the graph-centered
strategy by also adding the interaction between vibrational
spectra, in our case, IR and Raman. Including such relationship
between IR and Raman embeddings, adds the additional loss
term that directly encourages alignment between the two
spectral modalities of the sample, creating a more cohesive
shared latent space by pulling all three modalities closer
together. Then, the resulting loss function for the all pairs
strategy can be expressed as follows, where L is defined in eqn

(3):

1
LAnpairs = 5 [L(G7 IR) + L(G7 Raman) + L(IR> Raman)} (5)

Retrieval accuracy

For evaluating the retrieval accuracy, we implemented a dedi-
cated PyTorch Lightning callback,**-** executed exclusively on
the test dataset. This callback assesses two retrieval scenarios.
In the first, the model aligns the molecular graph representa-
tion with a single spectral modality, either IR or Raman, to
retrieve the most similar graph embedding and its associated
molecular structure. In the second scenario, both IR and Raman
spectra are utilized simultaneously, allowing the model to
retrieve the molecular entity that best aligns with both spectra.
Each of these strategies are used depending on the number of
modalities that VibraCLIP is trained on. Top-K accuracy is
defined as the percentage of test cases in which the correct
molecular structure is ranked within the fist K candidates,
ordered by cosine similarity between the spectral and structural
embeddings.

Single spectra retrieval strategy

In this retrieval accuracy scenario, we evaluate the model's
alignment of molecular graph embeddings with a single spectra
embedding (either IR or Raman). The callback first generates
graph and spectral embeddings for each sample in the test
dataset by passing batches through the model's forward pass in
inference mode, storing the embeddings alongside SMILES
identifiers.
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The cosine similarity (eqn (2)) scores between spectral and
graph embeddings are then calculated. For each target spec-
trum, the model ranks all candidate graph embeddings based
on similarity, creating a sorted list of likely matches. These
similarity scores are stored and exported as pickle file for
further analysis of the retrieval accuracy and Top-K matches.

Dual spectra retrieval strategy

We assessed the model's ability to align molecular graph
embeddings with both IR and Raman spectra simultaneously.
This strategy differs from the single-spectrum approach by
incorporating both IR and Raman spectral embeddings in the
similarity calculations. Here, the cosine similarity scores are
computed not only between the graph and each spectral
embedding but also between IR and Raman embeddings
themselves.

To obtain a combined similarity measure, the geometric
mean (GM) of the three pairwise similarity scores (Graph-IR,
Graph-Raman, IR-Raman) is calculated, providing a compre-
hensive metric for alignment across three modalities. This
combined similarity helps identify the molecular graph that
aligns with both spectra most closely. Specifically, a low score in
any one pair will drastically reduce the overall geometric mean,
reflecting the joint alignment among all three modalities. The
results are saved as a pickle file, enabling analysis of retrieval
accuracy in multi-modal alignment within the VibraCLIP
framework.

3 : . .
GM = \/SlmG—lR *SIMG—Raman * SIMIR —Raman (6)

These enhancements in similarity scoring establish a robust
and interpretable multi-modal alignment, ensuring that Vibra-
CLIP captures the intricate relationships between molecular
structures and vibrational spectra. Employing the geometric
mean across three modalities, our approach maximizes retrieval
precision while mitigating discrepancies from individual spec-
tral contributions.
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documentation. A supplementary data repository is available
on Zenodo (https://doi.org/10.5281/zenodo0.15348391),
providing the datasets, training checkpoints, and callback
output files used in this study.

Supplementary information: with
models, a non-learning baseline, model implementation
details, hyperparameter optimization, retrieval accuracies from
experimental data, and a missing-data analysis. These provide
additional insights into the performance and intepretability of
the proposed approach. See DOI: https://doi.org/10.1039/
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