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As organic display technology progresses, the urgent and daunting challenge lies in the development of

next-generation molecular emitters capable of delivering an extensive color gamut with unparalleled

color purity. The existing process for uncovering new emitters is largely reliant on a time-consuming and

costly trial-and-error method. However, with the integration of AI, the pace of materials discovery is

accelerated dramatically. Here, a molecular generation framework, MEMOS, which harnesses the

efficiency of Markov molecular sampling techniques alongside multi-objective optimization for the

inverse design of molecules, is presented. MEMOS facilitates the precise engineering of molecules

capable of emitting narrow spectral bands at desired colors. Utilizing a self-improving iterative process, it

can efficiently traverse millions of molecular structures within hours, pinpointing thousands of target

emitters with an impressive success rate up to 80%, as validated by density functional theory

calculations. Through the use of MEMOS, well-documented multiple resonance cores from the

experimental literature have been successfully retrieved, and a broader color gamut has been achieved

with the newly identified tricolor narrowband emitters. These findings underscore the immense potential

of MEMOS as an efficient tool for expediting the exploration of the uncharted chemical territory of

molecular emitters and their experimental discovery.
1. Introduction

Organic light-emitting diodes (OLEDs) have emerged as highly
promising light-emitting devices for applications in lighting
and displays, owing to their rapid response times, wide viewing
angles, and inherent exibility. Color purity is a critical attri-
bute for emitters, as it directly inuences color deviation and
the realism of the displayed image. Typically, the color purity of
an emitter is assessed by the full width at half-maximum
(FWHM) of its emission spectrum. Minimizing the FWHM is
essential for achieving color coordinates that lie closer to the
outer boundary of the color space, thereby ensuring a more
accurate and vibrant color representation.
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Recently, a novel class of molecules with narrowband emis-
sion, known as multiple resonance thermally activated delayed
uorescent (MR-TADF) materials, has been introduced.1 These
materials leverage resonance effects to conne frontier orbitals to
specic atoms by incorporating elements with complementary
electronegativity, such as boron and nitrogen, at the ortho- or para-
positions of rigid conjugated rings. This strategy not only effec-
tively separates the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO), thereby
endowing the molecule with excellent thermally activated delayed
uorescence properties, but also curtails the deformation of the
excited state and reduces electron-vibrational coupling, leading to
a narrowed emission prole.2,3 To date, multiple resonance
strategies have yielded narrowband emitters with the narrowest
reported emission peaks demonstrating a FWHMofmerely 13 nm
in the blue, 14 nm in the green, and 21 nm in the red spectral
regions.4–10 However, the scarcity of molecules that exhibit
narrowband emissions in the long-wavelength regions presents
a signicant challenge. The majority of molecules, especially
those emitting in the green and red spectra, still display emission
peaks with an FWHM exceeding 20 nm. This rarity of high-
performance red and green emitters has emerged as a critical
bottleneck in the advancement of OLED materials discovery.

Traditionally, designing ideal luminescent molecules
involves a laborious cycle of extensive synthesis and validation,
Digital Discovery
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which oen incurs signicant costs due to the trial-and-error
nature of the approach. High-throughput virtual screening
(HTVS), complemented by theoretical calculations, is consid-
ered a more cost-effective approach for material discovery.11

Nevertheless, accurately predicting the emission peaks and
FWHM for a vast array of molecular spectra remains chal-
lenging, primarily due to the computationally intensive task of
calculating Hessian matrices for excited states. Machine
learning (ML) methods, which leverage data to establish struc-
ture–property relationships and enable rapid property predic-
tion without the need for extensive theoretical calculations,
have substantially expedited the HTVS process.12–17 These
methods have recently been applied to screen for organic
emitters that exhibit high photoluminescence quantum yield
(PLQY), a wide color gamut, or high color purity.18–22

Despite the encouraging progress made in ML-accelerated
HTVS, its efficiency is still limited by several key factors. Firstly,
it is dependent on a nite collection of pre-designed candidate
molecules, which encompass only a tiny fraction of the vast
molecular space. Secondly, the processes of molecular generation
and screening are disconnected, resulting in a low hit rate and
necessitating a considerable time commitment. To achieve
a thorough and efficient exploration of the chemical space, there
is an urgent need for a more integrated approach that can freely
navigate the extensive chemical landscape and optimize mole-
cules on the y, based on feedback from the molecules that are
generated. Recent progress in generative modeling has opened
new avenues for inverse design ofmaterials, enabling the targeted
generation of candidate molecules x by learning the conditional
distribution p(xjy) over desired properties y.23

In this research, we introduce Markov Emission MOlecular
Sampling (MEMOS), a framework tailored for the efficient multi-
objective inverse design of luminescent molecules. Inspired by
the efficacy of the Markov Chain Monte Carlo (MCMC) sampling
technique in generating text24 and drug-like molecules,25 MEMOS
leverages the power of efficient MCMC sampling for the organic
light-emitting eld. It does so by integrating customized molec-
ular editing operations and scoring functions. Within the
MEMOS framework, candidate molecules are generated at each
time step by applying a single editing operation to the molecules
from the preceding step. This method facilitates the exploration
of an almost limitless chemical space, free from the constraints of
nite candidate pools. The acceptance of the newly generated
molecules is determined based on their property scores,
including emission wavelength and FWHM. This procedure
systematically directs the properties of the sampled molecules
towards the desired target values.

By employing MEMOS, we have successfully designed
a diverse array of molecules with nely tunable colors and
FWHM values that reach as low as 13 nm in the blue, 15.5 nm in
the green, and 20 nm in the red spectral regions. The CIE color
coordinates of these molecules closely adhere to the Rec. 2020
standard,26 offering signicant potential for expanding the
color gamut and facilitating the development of ultra-high-
denition displays. Our methodology has dramatically boos-
ted the efficiency of molecular design and underscores the
Digital Discovery
potential of articial intelligence (AI) in the discovery of cutting-
edge emission molecules.

2. Results and discussion
2.1 Overview of MEMOS

Navigating the vast molecular space to uncover molecules with
desired optical properties presents a substantial challenge. To
surmount this hurdle, we have craed a framework, MEMOS,
which is based on MCMC sampling, to design emission mole-
cules with the specic color and high color purity. Fig. 1a
depicts the workow of MEMOS. Initially, the MCMC sampling
process continuously generates candidate molecules from
a seed molecule by modifying those from preceding steps using
ve molecular graph editing operations (Fig. 1b): fragment
adding and deleting, ring fusing and defusing, and atom
substitution. Proposals for these operations are represented by
message-passing neural networks (MPNNs),27 which are adap-
tively trained throughout the sampling process. Subsequently,
proxy models predict the emission wavelength and FWHM of
the sampled molecules. The acceptance of the newly generated
molecule is determined based on its score on the objective
function (Fig. 1c), which encompasses structural and repre-
sentational rationality, wavelength, and color purity.

As the cornerstone of our framework, the MCMC sampling
method, enhanced with a simulated annealing scheme,28 is
employed to navigate the chemical space in search of molecules
with the desired properties. Specically, it constructs a Markov
chain within the chemical space, where each state corresponds
to a molecule, and the equilibrium distribution of the Markov
chain is aligned with the target distribution.29 Therefore, as the
number of sampling steps increases, the initial molecule can
progressively enhance its objective function score, ultimately
achieving the desired properties. Density functional theory
(DFT) is then applied to ascertain the precise optical properties
of the top-k generated molecules. Finally, these data are used to
iteratively rene the proxy model, creating a self-improving loop
for the design of target molecules. Unlike conventional
screening based on static predened libraries, our method
explores chemical space in a dynamic, model-guided manner.
Only a few hundred top-ranked molecules are subjected to
further DFT validation, and convergence is achieved within just
a few iterations, greatly accelerating the design cycle.

To transform between molecules, the original Markov
molecular sampling approach25 considers fragment adding and
deleting. However, relying solely on these operations is insuf-
cient for effectively exploring the molecular space, since
organic light-emitting molecules typically feature multiple
fused ring structures. Moreover, simply adding single bonds
through the adding operation may lead to signicant long-
range charge transfer, which is not conducive to the sampling
of narrow emission molecules. To address this limitation,
MEMOS expands the operation set to include ring fusing and
defusing, as well as heteroatom substitution. With these addi-
tional operations, MEMOS can explore more than 100 novel
molecules per step. Furthermore, up to 300Markov chains, each
undergoing 1500 steps, can be established and evolved on
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) Schematic overview of MEMOS: a self-improvingOLEDmolecular design system utilizingMCMC sampling. (b) Schematic diagram of all
molecular editing operations. (c) Schematic diagram of the scorer used in MCMC sampling.
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a single NVIDIA RTX 3090 Graphics Processing Unit (GPU)
within a day. Consequently, MEMOS can traverse through ∼45
000 000 molecules in a single day, thereby facilitating a more
efficient exploration of a broader chemical space than tradi-
tional HTVS approaches. This capability enables the generation
of a more diverse set of target molecules and achieves the effi-
cient inverse design of narrowband emitters in desired colors.
2.2 Proxy model performance in optical property prediction

The accurate prediction of molecular properties is essential in
machine learning applications. Uni-Mol,30 as a pre-trained
© 2025 The Author(s). Published by the Royal Society of Chemistry
model, has demonstrated remarkable prociency in fore-
casting the optical properties of organic molecules.18 Based on
the Transformer architecture,31 Uni-Mol takes 3D molecular
conformations as input and leverages its pre-training on a vast
array of molecular conformations to generate high-quality
molecular representations. Upon ne-tuning, Uni-Mol exhibits
exceptional performance across a range of downstream tasks.
Consequently, we utilize Uni-Mol as the proxy model to predict
the emission peak wavelengths and spectral FWHM of mole-
cules. We have developed separate models for each property,
each comprising a Uni-Mol backbone complemented by
a multilayer perceptron (MLP). The MLP transforms the vector
Digital Discovery
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Fig. 2 Mean absolute error (MAE) and distribution of labels on test set against the prediction of initial proxy models for (a) emission peak
wavelengths and (b) the FWHM of the emission spectrum. Prediction of adapted proxy models in the last iteration for (c) emission peak
wavelengths and (d) the FWHM of the emission spectrum. Data from the initial experiment dataset are marked in red, while newly added DFT-
calculated data are highlighted in blue.
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output from Uni-Mol into a scalar value, which represents the
nal prediction for each property. Fig. 2a and b illustrate the
performance of our models on the initially collected dataset
from experiments (see Methods 4.1). These results are based on
the models' predictions on a predened test set, which is
distinct from the training set. Overall, both models have been
successfully trained using our meticulously curated dataset.
The correlation coefficient (R) and mean absolute error (MAE)
are 0.79 and 32.16 nm for the emission peak wavelength, and
0.86 and 0.05 eV for the FWHM, respectively. These metrics
indicate that the models are capable of accurately determining
these two properties, which in turn enables their use in
informing the subsequent molecular sampling process.
2.3 Iteratively adapting to the MEMOS-explored chemical
space

One challenge in material design arises when proxy models,
used in design algorithms, encounter novel chemical spaces
Digital Discovery
that differ from the training data,32 leading to a degradation in
the quality of the generated molecules. This issue is known as
the out-of-distribution (OOD) problem.33 To address this,
a representation-based constraint is incorporated into its
sampling objective to exclude molecules that lie too far from the
training distribution (see methods 4.3). Moreover, we iteratively
update the proxy models with newly generated molecules,
enabling the models to adapt to the novel chemical space
explored by MEMOS. This strategy aligns with the methods
proposed by Fannjiang and Listgarten,34 which involve iterative
retraining based on previously high-scoring molecules.

As illustrated in Fig. 1a, the top-k molecules are selected as
the nal sampled targets and labeled based on the results from
DFT calculations. These labeled molecules are then integrated
into the dataset to enhance the training of the proxy models.
The updated models are employed in the subsequent sampling
phase, thus creating a self-improving loop. With each iteration,
the proxy models become capable of predicting the properties of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) Distribution of emission peak wavelengths for sampledmolecules across different iterative batches. (b) Distribution of emission FWHM
for sampled molecules across different iterative batches. (c) Distribution of sampled molecules from different iterative batches within chemical
space. (d) Boxplot of synthetic accessibility scores for sampled molecules across different iterative batches. The upper and lower boundaries of
the boxes represent the first and third quartiles, respectively; the whiskers indicate 1.5 times the standard deviation, and the median is denoted by
a center line. (e) Distribution of emission peak wavelengths for sampled molecules intended for RGB light emission in the fifth iteration. (f)
Distribution of emission FWHM for sampled molecules targeting RGB light emission in the fifth iteration.
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a broader range of molecules. Fig. 2c and d demonstrate that
the rened models achieve superior accuracy in predictions on
test datasets that include the initial test data and the sampled
molecules. Consequently, the hit rate (the proportion of
selected top-k molecules whose DFT-validated wavelength/
FWHM values satisfy the predened thresholds) of MEMOS
has notably increased during the self-improving loop.

Fig. 3a and b show the shi in property distributions of the
sampled molecules over successive iterations. Here, our target
© 2025 The Author(s). Published by the Royal Society of Chemistry
is green light-emitting molecules. The iterative renement of
the model has resulted in an increasing number of sampled
molecules that emit within the 525 ± 25 nm range and have
a FWHM below 0.125 eV. By the h iteration, approximately
70% of the sampled molecules emit colors that align with the
target expectation (525 ± 25 nm), and nearly 80% meet the
target standard for FWHM values (<0.125 eV). The hit rate for
sampling red light-emitting molecules is somewhat lower, and
the wavelength distributions are broader when compared to
Digital Discovery
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Fig. 4 (a) Sampling trajectory of BN-ICZ, along with the corresponding emission wavelength and FWHM predicted by the proxy models for each
molecule. (b) DFT calculated and experimental spectra of BN-ICZ, with the experimental spectra reproduced from the literature.40
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those emitting blue and green colors. This discrepancy is likely
due to the smaller number of reported red light-emitting
molecules in the initial dataset and the sensitivity to radiation
energy in the long-wavelength region. Adapting MEMOS with
chemically informed priors, such as enriching fragment
libraries with electron-donating and electron-withdrawing
substituents or introducing known red-emitting scaffolds like
RBNN core into the initial seed pool, may improve sampling
efficiency in these spectral ranges.

The rising hit rate indicates that the proxy model is
progressively adapting to the novel chemical space explored by
MEMOS. We employ t-SNE35 to visualize the distribution of
sampled molecules in chemical space across iterations. As
depicted in Fig. 3c, initially, the sampled molecules cluster at
the outskirts of the distribution of molecules in the training
data. Due to the scarcity of data in this area, the reliability of the
predicted properties is relatively low, leading to a low hit rate for
MEMOS. As the iterations progress, MEMOS gradually extends
its exploration to a wider chemical space. The incorporation of
this new data into the dataset enhances the representation of
the chemical space, thereby improving the model's generaliza-
tion capability. Consequently, the predictions become more
reliable, and the sampling hit rate steadily increases. Aer ve
iterations, almost all newly sampled molecules are situated
within the chemical space covered by the dataset. In addition to
the increasing hit rate, the MAE on a distinct, non-overlapping
dataset is employed to quantitatively assess predictive uncer-
tainty (Fig. S2). The gradual decline in MAE over iterations
indicates that the model becomes more capable of handling
unseen molecules as more training data are incorporated.

Beyond the success in achieving desired optical properties, it
is equally essential to quantitatively assess the structural val-
idity and synthetic accessibility of the sampled molecules. In
Digital Discovery
addition to optical properties, synthesis accessibility is a critical
metric for evaluating the practical applicability of these mole-
cules. The synthesis accessibility of green light-emitting mole-
cules sampled from different iterations was evaluated using
fragment spatial and stereoselective-based synthesis accessi-
bility scores (SAscore),36 which are integrated into the RDKit
package.37 As shown in Fig. 3d, there is a trend of decreasing
synthesis accessibility scores over each iteration. This trend
suggests that the structures of the sampled molecules are
evolving towards greater rationality and simplicity, with
a reduction in the presence of unconventional structural
elements. Aer ve iterations, around 50% of the molecules
have synthesis accessibility scores below 3.5, suggesting that
these target molecules could be more readily synthesized. For
reference, experimentally reported MR emitters have an average
SA score of 3.88 ± 0.88, with values ranging from 2.01 to 6.21.
Further evaluation of synthetic accessibility, based on votes
from experimental collaborators, along with selected molecular
examples, is provided in Fig. S11. Most candidates were
assessed as having only moderate synthetic feasibility, oen
requiring complex routes with low expected yields. To address
this, more rigorous synthesis-aware constraints and modica-
tions to molecular operations will be incorporated based on
expert feedback in future work.
2.4 Target pool discovery and interpretable design by
MEMOS

Using the iteratively adapted proxy models, we have successfully
sampled narrowbandmolecules across the blue, green, and red-
light spectra (Fig. 3e and f). During the sampling process,
several well-known emitters such as CzBN, CzBO, and g-Cb-
B5,38,39 were recovered from basic fragments that could not be
further divided by deleting or defusing using our designed
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Typical structures of the sampled target molecules for (a) blue, (b) green, and (c) red emissions, with the corresponding emission
wavelengths, FWHM, and oscillator strengths listed. The narrowest FWHM in each emission color are indicated by red underlines. Molecules
exemplifying the application of double boron embedded design strategy is highlighted.

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery
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Fig. 6 (a) Color space constructed using the three target molecules delineated by solid lines, compared to the standard sRGB color space
outlined by dashed lines, with the CIE coordinates of the molecules provided. (b) Theoretically calculated emission spectra for the three target
molecules, including the emission wavelength and FWHM values.
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operations. Fig. 4 illustrates a trajectory that evolves from an
indivisible core to the BN-ICZ core, which differs from the
experimentally reported BN-ICZ molecule40 by the absence of
a tert-butyl group. During the sampling process, carbazole units
and tert-butyl substituents have been introduced to further
modulate the molecular structure and enable the ne-tuning of
photophysical properties to meet our specic requirements.
Our proxy model predictions show excellent agreement with
experimental values, both in terms of wavelength and FWHM.

This demonstrates that the vocabulary and actions within
MEMOS are adequate for constructing potential high-
performance molecules. Structures with a Tanimoto similarity
as high as 0.97 to more complex emitters, such as BTC-BNCz41

with an emission peak at 488 nm and a FWHM of 23 nm, or
BNNO42 with an emission peak at 637 nm and a FWHM of
32 nm, can also be identied. To fully recover such structures, it
is essential to incorporate additional constraints, such as
symmetry and reactivity criteria.

Employing MEMOS, we can sample thousands of target
molecules daily that meet our criteria for color and FWHM,
thereby efficiently expanding the array of known MR emitters.
The molecules sampled through this process are categorized
into several distinct groups, including boron–nitrogen-based,
boron–oxygen-based, carbonyl–nitrogen-based, and indolo
[3,2,1-jk]carbazole (ICZ)-based types. Each group exhibits
a diverse array of unique structures. These structures have
considerably expanded the target pool for organic light-emitting
materials. Representative structures that emit red, green, and
blue colors as identied in the sampling are illustrated in Fig. 5.
The quality, uniqueness, and novelty of the structures generated
by MEMOS surpass those of other generative models, which
oen face challenges in producing conjugated structures.
Detailed benchmarking results are provided in Table S1. As
current editing operations, fragment libraries, and structural
constraints are informed by known molecules to ensure
chemical validity, most MEMOS-generated structures retain
recognizable motifs. Incorporating richer chemical heuristics
and expanding the design space could further unlock the
Digital Discovery
potential of AI, enhancing its capacity to discover novel, non-
intuitive yet promising candidates.

To accurately tailor the optical properties of the molecules to
meet target specications, MEMOS automatically incorporates
molecular design strategies learned from the dataset during the
sampling process, without the need for pre-set manual adjust-
ments. For instance, it implements the double boron embed-
ding strategies,8,43 which strategically introduce additional
boron (B) or nitrogen (N) atoms at the meta/para positions
relative to the existing boron atom. This strategic incorporation
has effectively modulated the strengths of intramolecular
charge transfer and enhanced the MR effect on the central ring,
thereby nely adjusting the spectral color and narrowing the
emission band. Particularly, compared to molecules without
additional B/N incorporation, the spectra of the highlighted
molecules in Fig. 5 with double boron embeddings have shied
from red to the desired green emission, while the FWHM has
been reduced by nearly 10 nm. The introduction of an addi-
tional boron atom enhances the MR effect within the conju-
gated motif, leading to a more localized electron distribution.
This, in turn, reduces electron-vibrational coupling and
narrows the spectra (Fig. S8). This demonstrates that MEMOS
has successfully learned the underlying patterns from the
training data, strategically incorporating heteroatoms to
meticulously adjust charge transfer properties, ultimately ne-
tuning the optical characteristics to align with our specic
requirements.

From the target pool, we have identied those capable of
producing a broader color gamut. This gamut not only exceeds
the coverage of the conventional sRGB color space but also
closely aligns with the Rec. 2020 standard.26 The CIE coordi-
nates achieved are (0.137, 0.051) for blue, (0.167, 0.723) for
green, and (0.715, 0.285) for red (Fig. 6a and b).
3. Conclusions

In summary, by combining efficient MCMC sampling with
sophisticated proxy models for optical property prediction,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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MEMOS effectively tackles the inverse design challenge of
molecules with narrowband emissions spanning the entire
spectrum of wavelengths. This integration signicantly speeds
up the exploration of chemical space. Moreover, the perfor-
mance of MEMOS is continually enhanced through a self-
improving iterative process, resulting in high success rates of
70% for emission peak wavelengths and 80% for FWHM. Well-
documented multiple resonance cores from the experimental
literature have been successfully identied, and a broader color
gamut has been achieved through the utilization of the newly
designed tricolor narrowband emitters.

Building upon the foundation of MEMOS, we are now poised
to concurrently optimize other pivotal optical properties,
including photoluminescence efficiencies, uorescence life-
times, and singlet–triplet energy gaps. Relevant property data-
sets can be sourced from experiments or scalable DFT
calculations. Once property-specic proxy models are trained,
their predictions can be integrated into MEMOS’ s objective
function, enabling efficient multi-objective optimization. We
believe that MEMOS will play a pivotal role in propelling the
advancement of next-generation organic luminescent materials,
which are essential for applications in display technologies and
various other elds.
4. Methods
4.1 Dataset construction and proxy models training

The initial dataset was constructed by collecting molecules
featuring multiple resonance structures and narrow spectral
proles, as reported in the literature. To minimize the impact of
extraneous factors on the spectral data, the emission peak
wavelength (measured in nm) and FWHM (measured in eV) of
the emission spectra in dichloromethane or toluene solutions
were used as labels. Furthermore, we expanded the dataset by
including molecules from the dataset reported by Park et al.44

that exhibited an FWHM below 100 nm in either di-
chloromethane or toluene solutions. The nal dataset consisted
of 811 molecules, with 320 of them exhibiting multiple reso-
nance structure characteristics. The Uni-Mol models were ne-
tuned using this curated dataset. We trained two separate
models to predict each property individually. It is important to
note that both properties were normalized to conform to
a standard normal distribution. The entire dataset was
randomly partitioned into training and validation sets in a 4 : 1
ratio. Before input into Uni-Mol, all molecules were converted
into a 3D conformation using the Experimental-Torsion Basic
Knowledge Distance Geometry (ETKDG)45 algorithm and opti-
mized with the MMFF94 force eld46 using the RDKit program.
During training, we utilized the Adam optimizer and employed
mean squared error (MSE) as the loss function. Each model was
trained for 100 epochs, and the training process was terminated
if the validationMSE did not improve for 10 consecutive epochs.
The batch size was set to 32, and the learning rate was xed at 1
× 10−4. The remaining training hyperparameters were consis-
tent with the pre-training procedure of Uni-Mol, as detailed in
the original paper.30
© 2025 The Author(s). Published by the Royal Society of Chemistry
4.2 Spectra calculation

During the active learning phase, the DFT-calculated emission
spectra of the sampled molecules were integrated into the
dataset. The emission spectrum was obtained by computing the
thermal vibration correlation function (TVCF) using the
MOlecular MAterials Property Prediction Package (MOMAP),47

without considering the Herzberg–Teller effect and Duschinsky
rotation.

Structural optimizations for both the ground and excited
states, along with electronic energy and frequency analyses,
were conducted at the B3LYP-D3(BJ)/6-31G* level of theory
using the Gaussian 16 package.48 Solvent effects were taken into
consideration through the Polarizable Continuum Model using
the Integral Equation Formalism (IEFPCM), with the solvent's
volume and dielectric constant set according to the properties
of toluene. To further mitigate the impact of discrepancies
between experimental and computational spectra on model
training, the calculated emission wavelengths and FWHM were
calibrated based on a linear regression relationship prior to
model training. The calibration was performed on a set of 37
experimentally reported molecules. The resulting R2 value for
wavelength tting reached 0.96, while the R2 for FWHM was
0.55. Further details can be found in Fig. S1.
4.3 Molecular sampling

4.3.1 Objective function. To generate valid molecules with
desired properties, we developed a multi-objective scoring
function dened as:

p(x) = Srep(x) + Sstruct(x) + Swave(x) + SFWHM(x)

Here, p(x) represents the objective function of molecule x and
also serves as an unnormalized probability distribution over the
chemical space from which we aim to sample. This function
integrates a molecular representation constraint (Srep(x)) to
ensure that sampled molecules remain close to the training
data, along with criteria for molecular structure validity
(Sstruct(x)), emission peak wavelength (Swave(x)), and the FWHM
of the emission spectrum (SFWHM(x)). Each objective is formu-
lated as a separate function that outputs a scalar, with higher
values indicating better fulllment of the objective. The overall
sampling objective is computed as the sum of these individual
functions. The detailed forms of each objective are provided in
the SI.

4.3.2 Molecular editing operations. To transform one
molecule into another, we considered ve molecular editing
operations based on the molecular graph, as illustrated in
Fig. 1b. Specically, the adding and fusing operations involve
expanding the molecule by attaching a structure from pre-
dened vocabularies. Conversely, the deleting and defusing
operations serve as the inverse of adding and fusing, respec-
tively. Finally, the substitution operation converts a valency-
permissive aromatic carbon (or nitrogen) to nitrogen (or
carbon).

4.3.3 Parameterizing proposal distributions with MPNNs.
All proposal distributions for the editing operations were
Digital Discovery
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parameterized using Message Passing Neural Networks
(MPNNs), a type of Graph Neural Networks (GNNs) that itera-
tively updates node features by exchanging messages with their
neighboring nodes. Specically, we employed graph convolu-
tions as the message-passing function. The detailed architec-
ture of the MPNNs is displayed in Fig. S6. The MPNNs are
trained in a self-adaptive manner to increase the likelihood of
generating high-quality proposals, thereby enhancing the effi-
ciency of searching the chemical space. At each time step,
proposals that improved the objective score from previous steps
were collected, forming a dataset D. Subsequently, we trained
the MPNNs on D using maximum likelihood estimation, aiming
to maximize the probability of proposal that enhances the target
score. This was implemented through the cross-entropy loss.
The MPNNs were trained for one epoch at each sampling time
step, utilizing the Adam optimizer with a learning rate of 3 ×

10−4, and the batch size was set to 128.
4.3.4 Molecular sampling process. During a sampling

process, 300 trajectories were established, originating from
randomly selected seed molecules. Each trajectory underwent
1500 editing steps. At each time step, we randomly selected an
operation. Once the operation was determined, a molecule x
was edited according to the corresponding proposal distribu-
tions parameterized by MPNN, yielding a new molecule x0. We
decided whether to accept x0 with a probability of min{1, pa(x0)/
pa(x)}, where a = 1/0.95[t/5]. Here, t is the index of the sampling
time step. Finally, molecules from the last 200 steps were
collected, and the top-100 unique molecules with the highest
scores were selected for DFT calculation.
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