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Autonomous Elemental Characterization Enabled by a Low Cost
Robotic Platform Built Upon a Generalized Software Architecture

Xuan Cao'*, Yuxin Wul, Michael L. Whittaker!»2*

Abstract— Despite the rapidly growing applications of robots
in industry, the use of robots to automate tasks in scientific
laboratories is less prolific due to lack of generalized method-
ologies and high cost of hardware. This paper focuses on the
automation of characterization tasks necessary for reducing
cost while maintaining generalization, and proposes a software
architecture for building robotic systems in scientific laboratory
environment. A dual-layer (Socket.IO and ROS) action server
design is the basic building block, which facilitates the imple-
mentation of a web-based front end for user-friendly operations
and the use of ROS Behavior Tree for convenient task planning
and execution. A robotic platform for automating mineral and
material sample characterization is built upon the architecture,
with an open source, low-cost three-axis computer numerical
control gantry system serving as the main robot. A handheld
laser induced breakdown spectroscopy (LIBS) analyzer is inte-
grated with a 3D printed adapter, enabling (1) automated 2D
chemical mapping and (2) autonomous sample measurement
(with the support of a RGB-Depth camera). We demonstrate
the utility of automated chemical mapping by scanning of the
surface of a spodumene-bearing pegmatite core sample with a
1071-point dense hyperspectral map acquired at a rate of 1520
bits per second. Furthermore, we showcase the autonomy of
the platform in terms of perception, dynamic decision-making,
and execution, through a case study of LIBS measurement
of multiple mineral samples. The platform enables controlled
and autonomous chemical quantification in the laboratory that
complements field-based measurements acquired with the same
handheld device, linking resource exploration and processing
steps in the supply chain for lithium-based battery materials.

I. INTRODUCTION

The rapid development of robotics in recent years has
given a boost of its applications in industry, such as machine
tending [1], palletizing [2], and assembly [3]. The operational
stock of industrial robots worldwide increased from about 1.3
million in 2013 to 4.3 million in 2023 [4].

Similarly, robotic automation in research laboratories has
become an emerging field, since “Robotics and automation
can enable scientific experiments to be conducted faster,
more safely, more accurately, and with greater reproducibil-
ity, allowing scientists to tackle large societal problems in do-
mains such as health and energy on a shorter timescale” [5].
Although there have been successful applications of robotic
automation in laboratories [6]-[10], the use of robots to
automate laboratory operations is still limited in general due
to the automation gap caused by the variety of tasks and
protocols [11], ultimately resulting in high costs.
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This work sheds some light on the automation of char-
acterization tasks in labs, which determine the properties,
composition, and behavior of substances (e.g. spectrometry,
microscopy, thermal analysis, etc.), and hence are essential
in scientific research. One common pattern in characteri-
zation tasks is sample-move-instrument-stay (SMIS), where
a sample is placed to a specific position for an analytical
instrument to start working. Automating this pattern using
robots requires precise pick-and-place operations and enough
degrees of freedom.

By contrast, this paper focuses on the sample-stay-
instrument-move (SSIM) pattern, where an instrument is held
by a robot and moved around a sample during characteriza-
tion. Automating this pattern does not require pick-and-place
operations since the instrument is mounted on the robot all
the time. Sample standardization, such as positioning on a
2-d horizontal plane, reduces the robot’s required degrees of
freedom to reach the samples, which could potentially lower
the hardware cost.

Towards this end, this paper introduces a robotic platform
for automating SSIM characterization tasks for mineral and
material samples. The platform consists of: (1) a low-cost
3D (translational movements in X, Y, and Z directions)
gantry system commonly used in traditional computer nu-
merical control (CNC) machining as the primary robot,
(2) an analytical instrument mounted to the gantry system
for sample characterization, and (3) a stereo camera capable
of depth sensing for locating samples to be measured. All
components, and samples to be measured, are placed on a
benchtop. The general workflow consists of the following
steps: (1) a sample location is either predefined, or else
identified by the camera; (2) the gantry system takes the an-
alytical instrument to the sample location; (3) the instrument
starts characterization and collects raw data; (4) the raw data
are processed and optional feedback is generated.

The core of the software is a generalized custom-designed
architecture for automation systems in laboratory environ-
ments. The basis of the architecture is a dual-layer action
server design for every hardware component, which monitors
incoming operation requests through both Socket.IO [12]
and Robot Operating System (ROS) [13] communication
protocols and commands the hardware to act accordingly.
On top of all action servers lies a Behavior Tree (BT) [14]
which orchestrates the hardware components by interacting
with their action servers to automate the characterization
workflow. A web-based front end is developed to ensure user-
friendly operations of the platform, including both manual
control of each individual hardware and execution of the BT.
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To showcase the efficacy of the platform, we integrate
a handheld laser induced breakdown spectroscopy (LIBS)
analyzer to the gantry system and use the platform in two
case studies. In the first case study, dense LIBS scanning
is performed on the surface of a spodumene-bearing peg-
matite core sample with 1071 measurement points, each
containing optical emission spectra between 190 nm and
950 nm with 0.03 nm resolution, corresponding to 22800
data channels per measurement. The resulting 2 x 107
data are automatically quantified using a custom algorithm,
yielding spatially-resolved, comprehensive chemical analysis
with parts-per-million levels for most chemical elements.
In the second case study, autonomous perception, dynamic
decision-making, and execution are demonstrated by measur-
ing mineral samples, one of which is moved from inside to
outside of the platform’s hypothetical reachable area during
the measurement. The platform is capable of identifying
which samples have been measured and which have not, rec-
ognizing the change of sample locations, dynamic adjusting
its plan, and executing the plan accordingly. The autonomous
LIBS characterization (1) frees researchers from tedious
operations, (2) accelerates LIBS characterization by at least 3
times the rate of manual operations, and (3) provides crucial
information about downstream processing chemistry.

This paper makes three contributions. First, a generalized
software architecture for building robotic automation systems
in scientific laboratory environment is proposed. Second, a
low-cost gantry system commonly used in CNC machining is
shown to be capable of working as a robot for the automation
of SMIS characterization tasks. Third, automated dense LIBS
scanning using the developed robotic platform and automatic
data reduction is achieved.

II. RELATED WORK

This section reviews literature related to automation in
laboratory environments and LIBS scanning.

Industrial robot arms, installed either on benchtops [6] or
mobile bases [9], [10], have been used to automate lab-level
experimental protocols, by handling samples, transferring
samples between instruments, and operating instruments.
Though these applications of robot arms were successful, few
technical details were reported in [6], [9], [10] with respect
to the automation systems, such as individual instrument
control, multi-instrument integration, and high-level planning
and execution. There have been other automation systems for
more narrowed down tasks in laboratory environments with
more technical details reported, such as solid dispensing [7],
liquid handling [15], operating reactors [8], simple sample
pre-treatments followed by mass spectrometry characteri-
zation [16], and mobile robot navigation in a distributed
lab [17]. However, the approaches introduced in [7], [8],
[15]-[17] are ad hoc and can be difficult to be generalized.
In contrast to these studies, this work explores to replace
industrial robot arms with a low-cost 3D translation gantry
system for SSIM-pattern characterization tasks based on a
generalized software architecture for lab automation systems.
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This work chooses LIBS [18] as the characterization probe
to validate the robotic platform’s competency. Plain LIBS
measurement is point-wise [19] and some extra effort must
be made to achieve LIBS scanning. Some LIBS devices
can perform a small step raster pattern within its laser
aperture [20] but will not suffice for large samples. Another
common approach is putting a sample on a 2D or 3D (X-Y or
X-Y-Z) translation stage and moving the sample with respect
to the laser beam [21]-[23], which in theory can handle
large samples, but falls into the SMIS pattern which can
be challenging to automate. By contract, this work presents
a SSIM-pattern LIBS scanning which is suitable for large
samples and easier to automate with a lower budget.

III. GENERALIZED SOFTWARE ARCHITECTURE

This section introduces the software architecture designed
for the mineral and material sample characterization plat-
form and applicable to laboratory automation systems more
broadly. First, a general scenario of laboratory automation
problems is described and the task of software architec-
ture design is formalized. Second, the dual-layer action
server design for any individual device’s communication and
control, which serves as a basic module of the software
architecture, is introduced. Third, the complete software
architecture is demonstrated.

A. A General Scenario of Laboratory Automation Problems

Let there be a set of devices D = {d,--- ,dn} operated
in a laboratory environment. A device can be either a sci-
entific instrument (e.g. a furnace, a balance, a spectrometer,
etc.) or a robotic tool (e.g. a robot arm, a gripper, a camera,
etc.). Each device d; € D can perform a set of actions,
denoted by A; = {a},--- ,a}; }, where | A;| = M; indicates
devices may have different numbers of actions. For example,
a balance’s action set can be {tare,zero,weigh} and a
gripper’s action set can be {open, close}. Let A = Ufil A;
be the set of all actions of all devices. Then the automation
of an experimental protocol P, a sequence of sets of actions,
can be denoted by

P = [A17"' 7AT]7

where 4, C A, |A;] > 1,Vt € [1,T)]. In other words, at
any step ¢, there can be either one action or multiple actions
running. One automation system may need to handle multiple
protocols. Let be P = {Py,--- , Pk} be the set of protocols
handled by one automation system.

We propose that the software for orchestrating D to
achieve P; € P should satisfy the following properties: mod-
ularity, adaptability, scalability, distributed system support,
ROS integration, and user-friendly operation. Explanations of
these properties are listed in Table I. Next, we introduce the
dual-layer action server software design as a basic building
block and justify the complete software architecture built
upon it.

Page 2 of 11


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00263j

Page 3 of 11

Open Access Article. Published on 12 January 2026. Downloaded on 1/14/2026 12:40:46 AM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

View Article Online
DOI: 10.1039/D5DD00263J

TABLE I: Desired properties and justification of the designed software architecture.

Desired Property Explanation

Software Architecture Justification

The software can be separated into independent

The dual-layer action server blocks, BT and

Modularity modules to enable flexible and reusable implementations. | front end have minimal connnections with each other.
Adaptability The softwareT can be'adapted easily The system achieves differ(?m e)fperimental
for changes in experimental or protocols. protocols by simply executing different BTs.
- It should be convenient to add New dual-layer actoin server blocks can be easily
Scalability

more devices to the existing system.

added without changing existing action server blocks.

Distributed System Support

The software can be deployed to separate
machines since devices can take a high space span.

The dual-layer action server blocks, BT and
front end can all run in separate machines within
the same local area network.

ROS Integration

with ROS for using existing resources.

ROS is a widely used set of software libraries and
tools for building robotic applications and
the software should allow easy integration

The ROS layer allows convenient intergration with ROS.

User-friendly Operation

The software should be easy to learn and use,
especially for non-experts of computer science.

The front end allows user-friendly operation.

ROS ROS
Action Server Entities
Socket.lO Socket.lIO
Action Server Entities

I

Device Driver

Fig. 1: The dual-layer action server design for any individual
device’s communication and control.

B. Dual-layer Action Server Design

Fig. 1 shows the dual-layer action server software design
for any individual device’s communication and control. First,
upon the device’s driver is a Socket.IO action server layer.
It receives requests from Socket.IO clients and handles those
requests by calling the device’s driver. Second, beyond the
Socket.IO layer is a ROS action server layer. It incorporates
a corresponding Socket.IO client and serves as a bridge
between ROS action clients and the Socket.IO action server.
Communications with the device can flow via either the
Socket.IO layer or the ROS layer, whichever is more con-
venient, ensuring high flexibility and efficiency. Note that
it is a subjective design choice to use Socket.IO as the
first layer communication protocol for its convenient built-in
features like reconnection and broadcasting. It is possible to
replace Socket.IO with other communication protocols such
as WebSocket [24].

C. Complete Software Architecture

Fig. 2 shows the complete software architecture for a
laboratory automation system. Recall the system consists of

a set of devices D = {d;,--- ,dy} and handles a set of
experimental protocols P = {Py,---,Pk}. Then the dual-
layer action server block for each device d; € D (pink dashed
box) builds up the foundation of the software architecture. On
top of all action server blocks lies a BT [14] for planning and
executing an experimental protocol P; € P by incorporating
ROS action clients corresponding to the ROS action servers
and structuring the switching between action sets in P;. In
other words, the BT orchestrates D and tells each device
d; € D what to do in real time according to PP; by interacting
with the ROS action servers. In practice, multiple BTs are
implemented beforehand to account for various experimental
protocols in P and users can choose the one to execute that
fits best their needs. The last piece of the architecture is a
web-based front end to ensure user-friendly operations of the
automation system. The front end has dual responsibilities:
it (1) communicates with the devices via the Socket.IO
layer to allow efficient monitoring and manual control of
the system and (2) connects with the ROS layer through
roslibjs [25] to enable convenient execution of the BT which
is usually implemented within ROS. The designed software
architecture is justified in Table I according to the desired
properties proposed in Sec. III-A.

IV. ROBOTIC PLATFORM

This section introduces the technical details of the robotic
platform for material chemical characterization built upon
the software architecture described in Sec. III.

A. Hardware

Fig. 3 shows the hardware components of the robotic
platform. The main body of the platform is a gantry system
(LEAD CNC 1010, OpenBuilds) used in CNC machining. It
has 3 degrees of freedom, actuating translational movement
in X, Y, and Z directions driven by linear stepper motors with
20 pm resolution and approximately 50 um repeatability. The
travel limit (working area) of the gantry is about 730 x 810 X
100 (mm, X x Y xZ) and is the gantry is fixed on a benchtop
within a laser safety enclosure.

An analytical instrument is mounted to the gantry head and
approaches samples placed on the working area and perform
measurement. A handheld LIBS analyzer (2300, SciAps) is
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P Pk

ROS ROS

Behavior Tree Behavior Tree

ROS N ROS

roslibjs

ROS
Action Server ~ Action Server Action Server
I i I I Socket.lO Web-based
Socket.lO = Socket.lIO Socket.lO
Action Server 5 Action Server Action Server Eront End
Device Driver ' ' Device Driver Device Driver
di da dn
Fig. 2: The complete software architecture designed for general laboratory automation systems. {dy,-- - ,dy} denotes the set
of devices integrated into the system and {Py,--- , Pk} denotes the set of experimental protocols represented by behavior

trees to be executed.

used as the analytical instrument for validating the experi-
ment efficacy of the platform (see details in Sec. V). Other
characterization probes, such as handheld X-ray fluorescence
(XRF) and Raman spectroscopy, can be mounted to the
gantry with custom 3D printed adapters. The LIBS analyzer
is capable of quantifying the presence of any element on the
periodic table, subject to limits of detection that depend on
the absolute and relative concentrations, with a spectral range
of 190 to 950 nm. We use LIBS to show lithium-rich regions
of the a mineral sample that will undergo further process for
into lithium-ion battery cathode materials.

A stereo depth camera (ZED 2i, StereoLabs) is used to
provide the gantry with visual information of samples. It
outputs red, green and blue (RGB) images with a resolution
of 1920 x 1080 at a frequency of 30 frames per second (FPS),
and depth images with a depth range of 0.3 to 20 m at a
frequency of up to 100 FPS.

B. Software

Following the software architecture presented in Sec III
we implement the action servers for the devices, BTs and
web-based front end. For the gantry, we adopt the existing
open source library [26] as the Socket.IO action server. For
the LIBS analyzer, due to lack of application programming

Fig. 3: The robotic platform for mineral and material sample
characterization tasks.
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Fig. 4: The web-based front end of the robotic platform
implemented specially for the experiment described in Sec. V
and VL

interfaces (APIs), we additionally implement the device
driver based on graphical user interface (GUI) automation,
i.e. programmatically controlling the keyboard and mouse to
interact with the device’s control software. For the develop-
ment of the web-based front end, we use TypeScript [27] and
the open source library Vue3 [28]. For the implementation
of the BTs, we use the open source libraries py_trees [29]
and py_trees_ros [30]. Fig. 4 shows the web-based front end
implemented specifically for the experiments described in
Sec. V and VI.

C. Vision

Sample detection: A You Only Look Once version 8
(YOLOV8) vision model is fine-tuned using the Ultralytics
YOLO framework [31] for detecting sample locations. The
dataset for fine-tuning, which consists of 23 images and
123 bounding boxes, is manually collected and annotated
to ensure quality. The model is fine-tuned using default
hyper-parameters for 25 epochs. The best checkpoint, which
achieves an mAPS50 of 99.2%, is used for the case studies.
Coordinate transformation: Suppose a measurement can
be represented as a point within the stereo camera’s view.
The camera provides both an RGB image and a depth image
of the view. The RGB and depth images are aligned with
each other, ie., the RGB and depth information of the
measurement point is stored in the same 2D pixel location in
the two images, respectively. The point’s depth information
is the length of the projection of the euclidean distance
between the point and the camera onto the camera’s Z-axis.
The point’s 2D pixel location and depth information need to
be transformed to its 3D location in the world coordinate for
the gantry to understand the position of the measurement.
Formally, let [u,v]T denote the point’s 2D pixel location
in the camera’s RGB image, P, = [z¢, Ye, 2¢]T denote that
point’s 3D location in the camera’s coordinate frame F,,
and P, = [Ty, Yw, 2w]T denote the point’s 3D location in
the world coordinate frame F,,. The values of v and v are
already known from the camera’s RGB image. The value
of z. is also known from the camera’s depth image. The

Digital Discovery
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values of u, v and z. need to be converted to P,, so that the
gantry can carry the LIBS analyzer to the sample location to
complete measurement.

First, the values of x. and y. are computed based on the
classic pin-hole camera model using the following equations:

Te = (u—cg) * 2¢/ fu,
Ye = (v — cy) * ZC/fy7

where f,, fy, ¢z, ¢, are the camera’s intrinsic parameters and
provided by the manufacturer.

Second, P, is transformed back to P, with a linear
transformation using the following equation:

Py = SR x (P.— £T),

where ;R and ;T are the rotational and translational trans-
formation matrices from F,, to F,, and can be computed
by the OpenCV [32] solvePnP function. The solvePnP
function requires a set of points with world coordinates and
corresponding image pixel coordinates as inputs. A way to
prepare those inputs is to image a black-and-white chess
board pattern with known world coordinates of corners, and
use the OpenCV findChessboardCorners function
to compute the corresponding image pixel coordinates of
corners.

D. Specifications

Due to the travel limit of the gantry and the dimension
of the LIBS analyzer, samples should not exceed the size
of 600 x 550 x 46 (mm, X x Y x Z). Moreover, samples
should not be less than 5 X 5 (mm, X x Y) to guarantee
that the laser aperture of the LIBS analyzer is effectively
covered and no light is scattered away from the aperture,
ensuring safe operation. As will be shown in Sec. VI, there
are no mandatory sample pre-treatments. Collision avoidance
is implemented by moving the gantry to the highest position
before any movement in X and Y directions. Because the
gantry motors have an approximate movement repeatability
of approximately 50 ym, the 2D LIBS scanning resolution
is also approximately 50 pm. The spot-size of an individual
LIBS measurement is approximately 50 pm, and the spacing
between spots can be optically raster at approximately 100
pm pitch, so in the example presented here the motor
resolution is lower than the measurement resolution.

V. CASE STUDY 1: LIBS SCANNING

We use a LIBS analyzer as the analytical instrument to
validate the efficacy of the developed robotic platform. LIBS
uses pulsed laser to form a high-temperature plasma from
a small quantity of mass ablated from a sample’s surface.
Ionized atoms are driven to electronically excited states,
which relax to lower energy states upon cooling. Electronic
transitions emit photons with characteristic wavelengths that
are element-specific and diagnostic of both the type and
concentration of the ablated element [18]. LIBS is widely ap-
plied for elemental measurement of geological samples [19]
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Fig. 5: The surface of the spodumene-bearing pegmatite core

sample cut by a diamond saw for the LIBS scan experiment.
The dashed box indicates the area for the LIBS scan.

and believed to be “the optimal way to achieve a first quick
screening and then provide valuable data prior to any further
laboratory analyses” [18] for its fast response and wide
elemental cover range.

One drawback of LIBS is that it only measures one point
at one time and would be inefficient for nonhomogeneous
samples. To address that issue, we demonstrate a dense LIBS
scan of a sample surface using the developed platform. This
is a particularly useful technique for materials containing
lithium, such as the spodumene (LiAlSi;Og)-bearing peg-
matite core sample shown in 5, because LIBS is one of only
a few techniques that provide both high fidelity and spatial
localization for lithium.

A. Methods

A cylindrical rock core was cut by a diamond saw to create
a flat surface with a dimension of about 147 x 45 mm (see
Fig. 5) for the experiment. A 4 x 10 mm rectangular area on
the surface is chosen for a dense LIBS scan with a gap of
0.2 mm between measurement points in both directions, i.e.
there are 1071 LIBS data points collected in total.

The LIBS analyzer uses a Nd:YAG laser source with a
wavelength of 1064 nm and pulse energy of 5 mJ for sam-
ple ablation. It is equipped with an on-board spectrometer
covering a spectral range of 190 to 950 nm. Before laser
ablation argon is flushed to purge the sample surface as well
as create an atmosphere that enhances LIBS signals [33].

Data is automatically reduced in four steps. First, peaks are
found and the background is identified and subtracted from
the raw spectrum to produce a data spectrum. Then, peaks are
fit with Voigt profiles. Third, the fitted profile is subtracted
from the data spectrum and peaks are fit to the residuals
to identify interfering peaks. Finally, peaks are indexed to
specific elements using an iterative refinement. Fig. 6 shows
an example of the automated data reduction.

The automated scan process is planned and executed by a
specially designed BT (shown in Fig. 7). At the beginning,
the BT stores the locations of all points to be measured.
For one single point, the gantry first moves up to a safe
level, then carries the LIBS analyzer to location of the point,
and finally moves down to align the analyzer’s aperture with

View Article Online
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the point. After that, the analyzer triggers a laser pulse and
collects raw LIBS data, which is exported to a csv file and
further analyzed by the algorithm described in the previous
paragraph. Then the BT removes that location from the list
of all locations. The BT ends when all points have been
measured. Note that the BT is designed in a way that it
would pick up any previously failed action before moving
forward, ensuring the stability of the scan.

B. Result

Fig. 8 demonstrates the distributions of various elements
(Li, K, and Si) among the scanning area on the sample
surface. Each element is characterized by the normalized
area of its most predominant peak identified during the
automated data reduction. Min-max normalization is used
to linearly transform the peak areas of each element to the
range of [0,1]. The distributions shown in Fig. 8 reveals
element-specific differences in richness among the scanning
area, showcasing the platform’s competency in autonomous
elemental characterization.

VI. CASE STUDY 2: AUTONOMOUS LIBS
CHARACTERIZATION

This case study demonstrates another use case of the plat-
form where multiple mineral samples are randomly places on
the benchtop and LIBS measurement is taken autonomously
by the platform. Without any human interference, the plat-
form is tasked with locating samples, identifying reachable
and non-measured samples, deciding the next sample to
measure, and completing the measurement, until all samples
have been measured.

A. Methods

The platform is set up with a hypothetical reach-
able area with a dimension of 450 x 205 (mm, X X
Y, gray area in Fig. 10). Three mineral samples (see Fig. 10)
with various appearance and dimensions are used this case
study. They are initially randomly placed in the reachable
area of the platform. When the platform executes the mea-
surement of the first sample, another sample is manually
moved outside of the reachable area and becomes unreach-
able by the platform. The BT used for this case study is based
on the one described in Sec. V-A with a slight modification,
as shown in Fig. 9. More specifically, the fallback node
“Main Task” is wrapped by a higher-level sequence node
“Task Branch” and two action nodes “Move Gantry Aside”
and “Identify Samples” are added prior to “Main Task”.
Details about the LIBS analyzer and data reduction are
described in Sec. V-A.

B. Result

Fig. 10 shows the sample identification and detection
results at various time points during the autonomous mea-
surement. Bounding box colors indicate whether samples
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Fig. 6: Example of automated data reduction and chemical analysis. (a) Automated peak finding. (b) Na I emission lines.
(c) H emission lines. (d) Plasma temperature calibration curves from Li I 670 nm and 610 nm lines. (e¢) Measured Li
concentration fraction as a function of plasma temperature. (f) Four to five mineralogical classes can be identified from Li
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Fig. 7: A collapsed view of the behavior tree implemented
specifically for the LIBS scanning case study. Children of
“Measure Next” are hidden for simplicity. Labels on the left
of node blocks indicate node types. P: parallel; S: sequence;
F: fallback; A: action; C: condition.

are reachable or not (red: unreachable, blue: reachable).
Underscores under IDs indicate measured samples. At the
beginning of the measurement (Fig. 10a), the platform cor-
rectly percepts that all three samples are reachable and non-
measured and measures sample 1 next. After the sample 1 is
measured (Fig. 10b), the platform knows sample 1 has been
measured and detects that sample 2 becomes unreachable.
Therefore, it skips sample 2 and measures sample 3 next.
After sample 3 is measured (Fig. 10c), the platform is aware
of that all samples in the reachable area have been measured

Li K Si

-1.0 -1.0 -1.0
«
(3]
g
<
X
0.75 0.75 0.75 S
)
o
e]
- -0.5 -0.5 -0.5 ()
= N
= ©
! £
:’6 = 025 o025 025 5
TS = o z

- o - ~—
’g’éé ‘}é’ S
= B =
> = - e 0.0 0.0 0.0
- ~—

Fig. 8: Distributions of various elements (Li, K, and Si)
among the scanning area on the sample surface. Elements
are characterized by the normalized area of their most pre-
dominant peak. Min-max normalization is used to transform
the peak areas of each element to [0, 1].

and the task is completed. The LIBS spectra of sample 1
and 3 are broadly similar, but show trace element differences
that distinguish them. For example, both samples have high
abundances of Li, K, and Si, but sample 3 has 140 ppm Rb,
as determined from the intensity of the 780.2 nm peak, while
sample 1 does not have appreciable intensity in this region.
The results highlight the platform’s autonomy in terms of
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Fig. 9: A collapsed view of the behavior tree implemented
specifically for the autonomous LIBS characterization case
study. Children of “Measure Next” are hidden for simplicity.
Labels on the left of node blocks indicate node types. P:
parallel; S: sequence; F: fallback; A: action; C: condition.

perception, dynamic decision-making, and execution.

VII. DISCUSSION

The average measurement speed of the automated LIBS
scan is 1520 bits per second (4 measurements per minute),
while a proficient operator can measure one point per minute,
on average, indicating the automated LIBS scan not only
frees researchers from tedious operations but also accel-
erates LIBS data acquisition by 3-4 times. While for the
autonomous LIBS measurement, two measurements can be
taken per minute since extra processing time is needed for
the computer vision algorithms. But this operation mode is
completely autonomous and still effectively frees researchers
from tedious lab work.

The primary hardware components, including the gantry,
camera, and computer (but excluding the LIBS analyzer) cost
about $3000, $550, and $1100, respectively, which is much
more affordable than a commonly used robot arm alone (e.g.,
a URSe robot arm manufactured by Universal Robots costs
around $40000). However, the tradeoff is that a commercial
robot arm usually has at least 6 degrees of freedom (3D
translational movements + 3D rotational movements) and
can handle a wider range of automation tasks. Even so,
the gantry-based approach would be a better choice for
tasks with lower requirements of degrees of freedom and
prototyping new automation systems with lower budgets.

The function of the robotic platform is not limited to LIBS
characterization, rather depends on the tool(s) that can be
integrated to the platform. It is possible, and future work
should explore, integrating other analytical instruments like
a handheld XRF analyzer and tools like an electronically
controlled pipette with the platform to cover a wider range
of laboratory tasks.

View Article Online
DOI: 10.1039/D5DD00263J

The software architecture is derived from a general sce-
nario of laboratory automation problems and should work
well for other laboratory systems in additional to the de-
veloped platform. Future work should further validate the
generalizability of the software architecture by developing
other robotic systems or expanding the current platform.

Future work may also include the quantitative reduction
of LIBS measurements to absolute concentrations and its
inclusion in the feedback loop of the platform’s decision-
making process. In-depth LIBS data analysis is a separate
task and is outside the scope of the current study, but its
integration into the workflow described here would enable
sample identification based on chemical composition and
downstream planning based on chemical, in addition to
location and dimension, labels.

VIII. SUMMARY AND FUTURE WORK

This work introduces a generalized custom-designed soft-
ware architecture for building robotic automation systems
in scientific laboratory environment. The basic block of
the architecture is a dual-layer (Socket.IO and ROS) action
server design which facilitates the implementation of a web-
based front end for user-friendly operations and the use of
ROS BT for convenient task planning and execution. Based
on the architecture an automated experimental platform is
developed, with a low cost gantry system capable of 3D
translational movements serving as the main robot. With the
integration of a LIBS analyzer, a LIBS scan experiment is
conducted to demonstrate the efficacy of the robotic platform
and the software architecture.

Future work should add other or more analytical instru-
ments, like an XRF analyzer, to the robotic platform to
perform more types of characterization tasks. Future work
should also combine other types of tools, like an electron-
ically controlled pipette, with the platform. Another inter-
esting direction for future work is integrating the platform
to larger laboratory automation systems to complete more
complex experimental protocols in parallel with a focus
on workflow management and device orchestration. Lastly,
future work should obtain quantitative results from raw LIBS
spectra and use those in the feedback loop of the platform’s
decision-making process.

CODE AND DATA AVAILABILITY

Data and source code for this article,
the LIBS analyzer’s driver and server, front end,
ROS 2 servers and behavior trees, automated
data reduction algorithm, and LIBS measurement
raw data are available at https://github.
com/Living-Minerals-Lab/LIBS_trigger,
https://github.com/Living-Minerals—-Lab/
mini_platform_fe, https://github.com/
Living-Minerals-Lab/mini_platform, https:
//github.com/Living-Minerals-Lab/alibz,
and https://doi.org/10.5281/zenodo.
17796049, respectively.

including
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Fig. 10: Sample identification and detection results at various time points during the autonomous measurement. Gray
color indicates the hypothetical reachable area. Bounding box colors indicate whether samples are reachable or not (red:
unreachable, blue: reachable). Underscores under IDs indicate measured samples. (a) At the beginning of the measurement.
(b) After sample 1 is measured. (c) All samples in the reachable area have been measured and the measurement is completed.
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