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Abstract
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Atomistic simulations driven by machine-learned interatomic potentials (MLIPs)

Open Access Article. Published on 30 October 2025. Downloaded on 11/22/2025 5:10:54 AM.

are a cost-effective alternative to ab initio molecular dynamics (AIMD). Yet, their

(cc)

broad applicability in reaction modelling remains hindered, in part, by the need for
large training datasets that adequately sample the relevant potential energy surface,
including high-energy transition state (TS) regions. To optimise dataset generation and
extend the use of MLIPs for reaction modelling, we present a data-efficient and fully
automated workflow for MLIP training that requires only a small number (typically
five to ten) of initial configurations and no prior knowledge of the T'S. The approach
combines automated active learning with well-tempered metadynamics to iteratively and
selectively explore chemically relevant regions of configuration space. Using data-efficient
architectures, such as the linear Atomic Cluster Expansion, we illustrate the performance
of this strategy in various organic reactions where the environment is described at different

levels, including the Sy 2 reaction between fluoride and chloromethane in implicit water,
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the methyl shift of 2,2-dimethylisoindene in the gas phase, and a glycosylation reaction
in explicit dichloromethane solution, where competitive pathways exist. The proposed
training strategy yields accurate and stable MLIPs for all three cases, highlighting its

versatility for modelling reactive processes.

Introduction

Understanding the mechanisms underlying chemical reactions is key in modern chemistry.

Empirical observations are increasingly complemented by mechanistic insight and predictive

modelling, essential for optimising synthetic procedures and discovering new molecules.

Central to this goal is the adequate description of the potential energy surface (PES).%?
Wavefunction and density functional theory (DFT)-based methods are well-established
approaches characterising stationary points on the PES, including reactant state (RS),
transition state (TS), and product state (PS). However, these static methods have limitations
as, in addition to being computationally costly, they do not account for dynamics, which is
essential for exploring bifurcating PESs,? flexible molecules* and solvent effects.>¢
Dynamics simulations driven by ab initio methods, where energies and forces are computed
“on the fly” by solving the Schréodinger equation at each time step, such as ab initio molecular
dynamics (AIMD)” and quasiclassical trajectories,® enable realistic modelling of reaction
mechanisms. These approaches have been applied, for example, in the identification of
entropic intermediates,? the prediction of product ratios for reactions exhibiting bifurcating

1011 and the modelling of reactions in solution.'?>1* Despite these successes, the

surfaces,
high computational cost of the underlying ab initio method limits the size, complexity, and
timescale of the systems that can be studied. Moreover, these methods often require trade-offs
between accuracy (level of theory used) and simulation time, leading to insufficient sampling
and a failure to achieve a converged free energy surface (FES).

Machine-learned Interatomic potentials (MLIPs) offer an efficient alternative to electronic

structure methods used in AIMD simulations. MLIPs map a set of molecular structures to
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energies and, often, forces, leveraging various machine learning (ML) architectures, such as

19-21

neural networks (NNs), 1516 graph NNs, 171 kernel-based approaches, and linear regression

techniques. 22?3 MLIPs have found applications in a wide range of areas, including the study

25,26

of organic molecules,?* the exploration of materials and the reproduction of the physical

properties of bulk water.?” However, their capability in reaction modelling remains relatively

underexplored, with only a few studies investigating the dynamics of chemical reactions,

28,29

typically in the gas phase and implicit solvent, such as pericyclic and photochemical

30,31

reactions. Examples of organic reactions modelling solvent explicitly include works by

the groups of Parrinello,3? Corminboeuf,® and our recent work on modelling a Sx2 reaction
in water3 and a Diels-Alder reaction in water and methanol.?

A bottleneck in the use of MLIPs for reaction modelling is the computational cost
associated with the generation of training data sets representative of the PES, including
configurations in the TS regions.3® Common strategies for data generation include dynamics
37,38

sampling through AIMD from QM-optimised T'Ss or with enhanced sampling methods.

Techniques such as the Nudged Elastic Band (NEB)3® and normal mode sampling®® tech-

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

niques are also used to collect representative configurations on the PES. Active learning

(AL)%142 can further speed up training by iteratively exploring the PES to help identify

Open Access Article. Published on 30 October 2025. Downloaded on 11/22/2025 5:10:54 AM.

under-represented regions, thereby improving the performance of the MLIP while minimizing

(cc)

structural redundancy. A common approach for sampling from the PES is molecular dy-
namics (MD), where the forces are computed with preliminary versions of the trained MLIP
(MLIP-MD) This process helps to identify under-represented regions, thereby improving the
performance of the MLIP while minimising structural redundancy.

Several research groups have combined AL with other strategies to sample high-energy
configurations. For example, Meuwly et al. used AL based on a query by a committee at
1000 K to train MLIPs for a set of Diels-Alder*® and hydrogen transfer reactions in the gas
phase.** Bombarelli et al. integrated AL and NEB driven by MLIP to iteratively explore

the PES of several organic reactions.? Our group has employed AL coupled to MLIP-MD
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downhill sampling from an optimised TS structure to model reactions in the gas phase,
implicit, and explicit solvent.?83435 While acknowledging these successes, generating training
data remains a bottleneck, in particular for systems involving flexible molecules or explicit
solvent, where multiple local minima may be populated at the temperature of interest.
Recent efforts toward the development of reactive MLIPs have integrated metadynamics,*3
or their variants,*647with AL.4®¥ ! These include reactions in the gas phase, such as Diels-
Alder reaction,®? and explicit solvent (urea decomposition in water,?? oxygen reduction at

5

Au-water interfaces,®® ring opening of N-enoxyphthalimide,?? Sy2 reaction,®? phosphoester

bond formation and breaking,*® peptide bond formation,?® and a Menshutkin reaction.?*)
While these studies have significantly improved the quality and efficiency of the generated
potential compared to early approaches, they still rely on extensive preliminary AIMD data,
incurring significant computational costs in the early stages, which is prohibitive for large
systems.

Approaches aimed to remove the need for predefined CVs in metadynamics have employed
uncertainty-driven enhanced sampling techniques. Using this approach, MLIPs have been
trained for modelling alloys and polymers,®® glycine and alanine dipeptide, metal-organic
frameworks, as well as the proton transfer reaction in acetylacetone.?®>” While these techniques
have been shown to improve the accuracy and stability of the generated MLIPs by sampling
regions with large uncertainty, their effectiveness is still dependent on the careful tuning of
biasing parameters,’” which are system-dependent and influenced by factors such as energy
barrier heights and interatomic forces.

28,35 and well-tempered

In this work, we integrate our previously reported AL strategy
metadynamics (WTMetaD) to create an automated workflow that reduces the computational
cost associated with dataset generation while ensuring sufficient sampling, thereby eliminating
the need for prior AIMD simulations. Furthermore, we extend our strategy to include

inherited bias well-tempered metadynamics (WTMetaD-IB), allowing us to carry forward

the accumulated bias from previous AL iterations, and further increase the efficiency of the
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training process. This approach parallels the recently published incremental learning scheme
applied in metal-organic frameworks.®® However, it directly incorporates the AL framework
to enable the training of MLIP for flexible systems.

We demonstrate the performance of the WTMetaD-IB AL approach using linear Atomic
Cluster Expansion (ACE) potentials?* to model three organic reactions, namely the Sy?2
reaction between fluoride and chloromethane in implicit water (R1), the methyl shift of
2,2-dimethylisoindene in the gas phase (R2), and the glycosylation reaction between glucosyl
a-trichloroacetate and -PrOH in explicit dichloromethane (DCM) solvent (R3). For the
first two examples, we compare the accuracy and sampling efficiency against our previously
reported AL + downhill dynamics strategy. 283435 We show that the integration of WTMetaD-
IB and AL results in accurate and data-efficient MLIPs,; without requiring a priori knowledge
of the relevant TSs and/or reaction pathways. The accuracy and stability of the MLIP
trained using WTMetaD-IB AL demonstrate the broad applicability of the proposed method,
reducing computational cost and human intervention and facilitating the widespread use of

MLIPs in modelling reactivity.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.
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Methodology

(cc)

The workflow presented here builds on our previous work on an automated AL strategy for
reactive MLIPs (Fig. 1a).?35 The AL cycle starts with a training set of around five to ten
configurations. These configurations can be obtained by a random displacement of atoms
from an input structure, e.g., RS or optimised TS in the gas phase or implicit solvent, or
by generating a solvated cluster where solvent molecules are placed around the solute. The
structures are then labelled with energies and forces computed at the ground-truth level of
theory and used for training the initial version of MLIP. Subsequently, the potential is used
to propagate several independent MLIP-MD trajectories in parallel for n+2 fs, where n is

the index of the MD run in the AL loop, starting from zero.
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The last frame from each MLIP-MD trajectory is evaluated by a chosen selector to
determine whether the structure will be added to the training set or not. If the frame is not
selected, the index n is incremented, and the MD simulation continues. The cubic increase in
simulation time as (n® + 2) ensures gradual and continuous exploration of the PES, sampling
more frequently regions near the starting point and promoting rapid exploration of the PES
as the potential becomes more stable. Different scaling with n may also be suitable, although
it may lead to slower exploration of the PES or generate too distorted configurations during
MLIP-MD. The automated process iterates until the MD simulation reaches the maximum
time (1 ps by default) or the maximum number of AL iterations, with a default value of 50.
The resulting MLIP is then considered final, and its performance is validated on testing data
sets generated independently.

Exploration of the PES can be performed by MLIP-MD using downhill dynamics, WT-
MetaD, or WTMetaD-IB during the AL (Fig. 1b). In the first case, training starts from a
predefined TS, represented by the stationary dark blue points in the left panel of Fig. 1b.
Random displacements around this point provide the initial configurations for the first version
of the MLIP. Each iteration involves propagating downhill MLIP-MD simulations towards
either the RS or PS, with the direction determined by the randomly assigned initial velocities.

Contrary to downhill sampling, WTMetaD can start from any point on the PES without
prior knowledge of the TS geometry, making it applicable to a wider range of scenarios.
However, it still requires careful selection of collective variables (CVs) that accurately represent
potentially relevant pathways. For WTMetaD simulations in the AL process, energy barriers
between minima are overcome by depositing Gaussians on the PES, resulting in a bias
potential as indicated by the light blue regions in the middle panel of Fig. 1b. These biases
are introduced along CVs, such as the lengths of breaking and forming bonds specific to
the reaction. In WTMetaD, the height of the deposited Gaussians decreases with time to
ensure smooth convergence of the free energy surface.*” Combining this with AL provides

additional stability to the sampling, as it prevents the accumulation of large biases which
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configurations (No bias) (Same bias) (Inherited bias)
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Figure 1: a Schematic representation of the Active Learning (AL) strategy for training a
Machine Learning Interatomic Potential (MLIP). b MLIP-MD sampling can be performed
using either downhill, well-tempered metadynamics (WTMetaD) or WTMetaD with inherited
bias (WTMetaD-IB). Dark blue points denote the starting points in MLIP-MD, yellow
points indicate the existing training data and dark orange points denote the training points
selected in each iteration. The different blue shades shown in WTMetaD-IB indicate that
the biases are updated after each iteration, while in WTMetaD the same bias is maintained.
c Hlustration of the inherited bias scheme used to update the bias in WTMetaD-IB AL.
The bias from the previous iteration (highlighted in pink) is used as the initial bias in this
iteration, while the bias for the next AL iteration is the averaged bias across the parallel runs
in this iteration.

i
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could otherwise impede dynamics across the reaction profile.

To increase the efficiency of the AL loop and avoid redepositing identical Gaussians at
approximately the same positions of the PES at the beginning of each AL iteration, we
introduce the WTMetaD-IB approach, employing an inherited bias scheme (Fig. 1c). In
WTMetaD-IB, the bias potential generated from the previous iteration (I-1, pink region in
Fig.1c) is carried forward to the current iteration (I). During this iteration, the new WTMetaD

Gaussians are deposited atop the existing inherited potential, ensuring a varying exploration
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of PES in each AL iteration (right panel, Fig. 1b). When n MLIP-MD simulations run
with WTMetaD-enhanced bias are executed in parallel, the bias potentials produced in each
trajectory (light orange, Fig. 1c) are summed up, with the height of each potential scaled by
1/n. This approach yields a smooth average bias that serves as the initial bias for all the
trajectories in the subsequent AL iteration.

This smoothing effect is beneficial as it further mitigates the artificial roughness of the
potential caused by the frequent deposition of steep Gaussians. Additionally, the starting
point of MLIP-MD in each iteration is updated based on the lowest biased energy (DFT energy
+ inherited bias energy) among the points in the current dataset to prioritise unexplored
regions (right panel, Fig. 1b). By introducing the inherited bias scheme using the updated
starting points, our sampling method demonstrates increased efficiency relative to WTMetaD

sampling. A comparative analysis of WTMetaD and WTMetaD-IB is presented below.

Results and Discussion

WTMetaD-IB AL vs. Downhill AL — Sy2 Reaction as Case Study

As an initial step, we compare the performance of the combined WTMetaD-IB AL strategy
against downhill AL, using the reaction between the fluoride ion and chloromethane (R1)
as a model system. The MLIPs were trained at the CPCM (water)-PBE0-D3BJ/def2-SVP
level of theory. While this study uses a relatively simple hybrid functional to compute the
reference data, the same procedure could be applied with more accurate electronic structure
methods. For WTMetaD-IB, the difference between two distances, C-Cl and C-F (r¢ — )
was used as CV, while for downhill dynamics a TS, optimised at the ground-truth level of
theory, was used to generate initial training data.

Fig. 2a shows the gradual exploration of the PES for this reaction, with the training
configurations depicted as black dots. Downhill AL starts from a series of structures generated

by random displacement of the DF T-optimised TS (AL iteration 0). These structures are
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located in the high-energy region of the PES (inner plot). In contrast, WTMetaD-IB AL
begins with distorted (not optimised) RS configurations, as evidenced by the extended C-F

bond and energies comparable to TS configurations (see Fig. 2 and Fig. 3a).

Open Access Article. Published on 30 October 2025. Downloaded on 11/22/2025 5:10:54 AM.
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Figure 2: MLIP training for the Sy2 reaction between fluoride and chloromethane in implicit
water using a downhill and b WTMetaD-IB for AL sampling. The number of AL iterations
and configurations generated is listed at the top of each sub-plot. Black dots represent
training data collected during the AL iterations. The illustrative 2D PESs as a function of the
forming (rg)/breaking (r¢)) bonds were generated by a relaxed potential energy scan using
the MLIP. The probability density (ranging from 0.00 to 0.06) of energy on the generated
data points during training is shown in the inner plots relative to the optimised RS.

In subsequent iterations, both approaches successfully sample the PES, as shown in the
right panel of Fig. 2a and Fig. 2b. The AL process consisted of 21 iterations for downhill AL
and 33 iterations for WTMetaD-IB AL, resulting in 45 and 78 training points, respectively.
The fewer iterations required for downhill sampling are due to its ability to sample both

RS and PS from previously calculated T'S within a single iteration (Fig. 2a), facilitated by
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propagating such dynamics at high temperature (500 K). In contrast, WTMetaD-IB AL,
conducted at a lower temperature (300 K), explores the reaction space in a more unidirectional
manner. Despite this, WT'MetaD-IB AL provides a more uniform distribution of energies in
the training data, resulting in better accuracy of the MLIPs in both energies and forces.
The accuracy of the MLIPs was evaluated by comparing the predicted energies with those
obtained from the ground-truth method (CPCM(water)-PBE0-D3BJ/def2-SVP) along the
intrinsic reaction coordinate (IRC, Fig. 3a) obtained from DFT calculations. The mean
absolute error (MAE) in the energy for the trained MLIPs is 2.66 meV atom™' for downhill
AL and 2.12 meV atom™! for WTMetaD-IB AL. Both values are within chemical accuracy (1
kcal, equating to 43 meV and 7.17 meV atom™! for this system). The predicted energy errors
for each configuration in the IRC are depicted in the subplot of Fig. 3a. The individual
predicted energy errors for both MLIPs are below 1 kcal mol™! as well, except for one data
point predicted by MLIP trained using the downhill AL with an error of 7.17 meV atom™*
(1 kcal mol™1). Interestingly, while the TS optimised by the ground-truth method was not
provided in WTMetaD-IB AL, the MLIP trained using this method still reached a higher

Lin comparison to 2.63 meV atom™! by

accuracy for the T'S with an error of 2.37 meV atom™
downhill sampling. This shows the applicability of the WTMetaD AL in sampling the region
close to TS and the ability of the resulting MLIP to predict the energy of the TS.

We evaluated the quality of the trained MLIPs using an independent test set obtained from
a 3.2 ps umbrella sampling (US) simulation at the ground-truth level of theory (US/AIMD).
This simulation produced 322 testing data points collected every 10 fs. Fig. 3b depicts the
probability distributions of the training data sampled along the reaction coordinate r¢; — rp
for downhill AL (blue), WTMetaD-IB AL (red), in comparison with the testing US data
(grey). This analysis indicates that training data generated via downhill AL is concentrated
in the TS region, with clear gaps between the RS and PS regions. The high probability

of structures near the TS in downhill AL is influenced by the selection of the five initial

configurations encompassing the TS and its randomly displaced geometries. On the other
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hand, the data collected using WTMetaD-IB AL does not show any significant gaps, further
confirming it leads to a more uniform sampling of the PES.

When comparing downhill AL and WTMetaD-IB AL, WTMetaD-IB AL shows slightly
lower energy and force errors (1.83 meV atom™! and 93.29 meV At respectively) compared
to downhill AL (2.14 meV atom™" and 115.74 meV A1), as depicted at Fig. 3c and

d. The marginally better performance for WTMetaD-IB can be attributed to its more
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uniform sampling across the energy and reaction coordinate space (Fig. 3b). Downhill AL
demonstrates higher accuracy around the TS region, defined as configurations with r¢ — rg
+0.1 A from the optimised TS (dashed line in Figure 3¢ and d), with energy and force errors
of 1.71 meV atom™! and 74.99 meV A1, respectively.

The PS region, similarly defined by the deviation from the optimised PS (dashed line in
Fig. 3c and d) within £0.1 A, shows the largest energy prediction error along the IRC for
both methods (Fig. 3a). However, these inaccuracies are not observed in the testing data
generated from US/AIMD simulations. The contrasting MLIP performance on the two test
sets arises from the different configurations generated by IRC and US/AIMD, where the
former presents an idealised scenario, with the CI-C—F bond angle remaining almost constant
at 180° during the reaction, while during US/AIMD, it ranges from 150° to 180° illustrating
the dynamic nature of the reactive processes (Fig. S3). In addition to the accuracy validation
across the PES of interest, the stability of the resulting MLIPs, employing both downhill
and WTMetaD-IB sampling methods, was evaluated using 100 ps of MLIP-MD simulations
under the NVE ensemble (see Fig. S4). The total energies remained constant throughout the
100-ps simulation, indicating that both sampling techniques yield stable MLIPs.

In summary, while WT'MetaD-IB AL requires more iterations than downhill AL, its ability
to generate uniformly represented training sets results in an overall better accuracy of the
resulting MLIP at only a small additional computational cost compared to downhill AL. For
example, for this reaction, WT'MetaD-IB AL consumes only about 10 CPU hours more than
downhill AL (240 vs 230 CPU hours in total), which is largely balanced by the time required
for T'S optimisation. However, this come at the cost of slightly reduced accuracy in the TS
region, where downhill sampling performs better due to the explicit inclusion of near-TS
configurations in the training data, as summarised in Table S4.

We further compared the performance of WTMetaD-IB and standard WTMetaD during AL
for MLIP training. WTMetaD required 46 iterations and generated 130 training configurations,

with a total computational cost of 462 CPU hours. In contrast, WTMetaD-IB required only
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33 iterations and 78 configurations, using 240 CPU hours—nearly half in both data volume
and compute time. Despite using fewer configurations, WTMetaD-IB achieved better MLIP
accuracy than standard WTMetaD on the US/AIMD test set (listed in Table S2), with
lower MAEs for energies (1.83 vs. 2.22 meV atom™') and forces (93.29 vs. 119.42 meV A~1).
Notably, significant deviations in energy predictions were observed for the WTMetaD trained
model in the RS and PS regions (9.95 meV atom™! and 10.79 meV atom ™!, respectively), as
shown in Fig. S5.

The efficiency of WTMetaD-ID arises from the use of enhanced sampling with iterative
bias, which steers exploration toward chemically relevant, high-uncertainty regions of the PES
while avoiding repeated sampling of already well-explored areas. This reduces redundancy in
the training set and enhances the diversity and relevance of sampled configurations. Overall,
our results demonstrate that WTMetaD-IB substantially improves data and computational

efficiency and the accuracy of the resultant MLIPs. Further details are provided in SI§52.2.

Free Energy Barriers through the WTMetaD-IB AL Approach -Methyl

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Rearrangement
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To evaluate the general applicability of the WTMetaD-IB AL approach to other reaction mech-

(cc)

anisms, we studied the methyl shift of 2,2-dimethylisoindene, leading to 1,2-dimethylindene,
in the gas phase (R2, Fig. 4). Rearrangement reactions play a significant role in synthetic
organic chemistry,® with methyl shift being a key step in the Meinwald rearrangement %
and the synthesis of meroterpenoids.®* R2 has previously been studied experimentally in
pentane, % reporting an activation free energy (AG*) of 29.2 & 1.1 kcal mol~! at 365.6 K and
suggesting a concerted mechanism based on experimental and computed thermodynamic data.
Since solvent is unlikely to influence the mechanism of this reaction, MLIPs were trained only
in the gas phase.

As observed for reaction R1, for R2 downhill AL also generates fewer data points (131)
than WTMetaD-IB AL (192), with WTMetaD-IB AL exhibiting a more uniform sampling

13
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(Fig. S9). Furthermore, WTMetaD-IB samples longer bond lengths than umbrella sampling.

Such broader sampling can help the MLIP learn physically relevant but less frequently visited
configurations, particularly in high-energy regions, which can improve the robustness of the
trained MLIP when encountering out-of-distribution geometries during longer MD-MLIP
simulations.

The quality of the resulting MLIPs was evaluated using an independent test set from
a 3 ps US/AIMD simulation at the PBE0-D3BJ/def2-SVP level of theory, with a reaction
coordinate of r; — ry, where r; corresponds to the C-C distance between the shifted methyl
group and its original position and ry is the C-C distance between the same methyl group
and its new position (upper part in Fig. 4). This simulation provided 326 testing data points,
collected every 10 fs. Fig. 4a depicts the overlap between the data in the training set and
test set in terms of r; and 79 distances. The training data generated by both AL methods
cover the PES explored by the test data, but WI'MetaD-IB AL also includes metastable
regions characterised by the formation of one C-C bond while the other C-C bond remained
longer than in stable regions (points beyond the RS and PS, i.e., r; > 3 Aorry,>25Ain
Fig. 4a right panel).

On this test set, WT'MetaD-IB AL performs slightly better than downhill AL, with energy
and force errors of 1.49 meV atom™* and 161.76 meV A1, respectively, which are 0.27 meV
atom™' and 13.34 meV A~ lower than those obtained using downhill AL (Table S3). The
MLIP trained with WTMetaD-IB AL shows the highest errors around the TS region, defined
as -0.2 A <7 —ry < 0.0 A, with the DFT TS located at r; —ry &~ —0.1 A (Fig. S9). In this

region, MAE in energy and force are 4.27 meV atom™! and 290.24 meV A~!, respectively.

The MLIP trained by downhill AL has a high error in the region between TS and PS (MAE
of 4.85 meV atom™' and 319.26 meV A~! for energy and force, respectively), correlating
with the sampling gap between TS and PS. This suggests that the better performance of
WTMetaD-IB AL arises from a more uniform sampling compared to downhill AL.

We use the MLIP generated by WTMetaD-IB to calculate the free energy of R2 along
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Figure 4: a Final training datasets from downhill and WTMetaD-IB sampling, and the test
set obtained with a short US/AIMD simulation for reaction R2 in the gas phase. b AG*
obtained from US, WTMetaD and WTMetaD with inherited bias (IB, WTMetaD+IB) using
the MLIP trained with WTMetaD-IB AL. Shaded regions represent 95% confidence intervals
derived from independent repetitions. The experimental and DFT-estimated AG*, calculated
using the quasi-rigid-rotor-harmonic-oscillator (QRRHO) approximation, are denoted by
orange and grey squares, respectively. The bottom panel provides a zoomed-in view of the
TS region, indicating the point of highest free energy, TS, in each simulation.

the reaction coordinate of r; — 75 using US and WTMetaD. The US/MLIP-MD calculations
used 30 windows with 40 ps per window, totalling 1.2 ns, while WTMetaD /MLIP-MD ran
for 500 ps, during which the MLIP remained stable. The computed activation free energy
(AG*) from US/MLIP-MD was 28.2 4 0.1 kcal mol~! and 28.1 £ 0.3 kcal mol™! from
WTMetaD/MLIP-MD. For comparison, the AG* was computed at the ground-truth level
of theory (PBE0-D3BJ/def2-SVP) using the quasi-rigid-rotor-harmonic-oscillator (QRRHO)
approximation, yielding a value of 26.6 kcal mol~!. The dynamics results from MLIP-MD are
in excellent agreement with the experimentally measured value in pentene (29.2 £+ 1.1 kecal
mol ™! at 365.6 K,%%% Fig. 4b), while the static DFT prediction underestimates the barrier
by 2.6 & 1.1 keal mol~!. Moreover, the T'S geometries obtained from both methods deviate
by only 0.01 A from the DFT-optimised TS geometry (r; — 75 = -0.10 A) along the reaction
coordinate. These results further confirm the accuracy of the MLIP, besides the prediction of

energies and forces.
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The bias potential from WTMetaD-IB AL can be used to speed up the free-energy
WTMetaD simulation. While this bias potential is not directly proportional to the actual free
energy, it serves as a good starting point for WTMetaD.4" Specifically, the bias generated
after the 16" iteration from WTMetaD-IB AL was used as the initial bias in the WTMetaD
simulation, referred to as WTMetaD+inherited bias (WTMetaD-+IB) simulation. This
accelerated convergence while maintaining the accuracy of WTMetaD started from the
unbiased surface (Fig. S12). The free energy barrier computed by WTMetaD+IB is 28.4
+ 0.4 kcal mol™!, which is consistent with standard WTMetaD (Fig. 4b). It is important
to note that careful selection of the initial inherited bias is necessary to avoid potential
instabilities in the dynamics. These can occur due to a large initial Gaussian height in
WTMetaD combined with significant biasing potential accumulated during the AL. This
scenario might push the dynamics into irrelevant high-energy regions not sufficiently sampled
during the AL. A cautious approach to avoid this behaviour is to select the bias potential
from the middle iteration, here iteration 16 (out of 37). However, more work is needed to

provide a robust guideline on the selection of initial bias from the WTMetaD AL.

Explicit solvation — Glycosylation reaction

Having successfully applied our training strategy to R1 and R2, we extended this approach
to model the acid-catalysed glycoside bond formation between glucosyl a-trichloroacetate

and -PrOH in explicit DCM, R3 (Fig. 5a). Controlling the stereoselectivity of glycosylation,

a key step in carbohydrate synthesis, remains a significant synthetic challenge (Fig. 5a).%6°

This arises from the range of mechanistic pathways available, ranging from concerted Sy2

to stepwise Sy 1-type, the latter involving a transient oxocarbenium intermediate, 57 or an

68,69

Sni pathway, characterised by a contact ion pair (Fig. 5a). Both experimental™ and

computational studies'*™ have shown that stereoselectivity is influenced by multiple factors,

including the nature of the leaving group, substituents, temperature, and solvent choice.

Generally, non-polar solvents promote the SN2 mechanism, whereas polar solvents favour

16
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an Sy1 mechanism by solvating the ions to form solvent-separated ion pairs.”>™ In DCM
(dielectric constant, €, of 8.93) at 223 K, the -glycoside product is favoured, suggesting an
Sn2-like mechanism. However, this preference diminishes at 303 K, indicating a change to
Sx1-like mechanism.% This behaviour further illustrates the complexity of the competition
between the reaction mechanisms and the importance of an accurate description of the subtle
interactions with the solvent.

Computational studies on these systems have typically employed implicit solvation mod-

,67™ overlooking the potential solvent stabilisation of intermediates. Liu and co-workers

els
applied AIMD using the PBE-D3/DZVP level of theory to explore the reaction of a glucosyl
trichloroacetimidate donor with different alcohol acceptors in DCM, acetonitrile and methyl
tert-butyl ether.™ Their work revealed that the preferred pathway depends on the solvent and
its ability to stabilise the oxocarbenium intermediate.” This agrees with the experimental

1.,5¢ demonstrating that while the leaving groups do not significantly

study by Seeberger et a
affect stereoselectivity, the solvent and temperatures can lead to variations in the outcome.

Here, we employ the WT'MetaD-IB AL workflow to train an MLIP for modelling a reaction

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

similar to that studied by Liu et al. in Ref. 71 in DCM. To reduce the number of elements

in the system, we replaced trichloroacetimidate leaving group with trichloroacetate. This

Open Access Article. Published on 30 October 2025. Downloaded on 11/22/2025 5:10:54 AM.

change was motivated by the computational and memory requirements of ACE potential,

(cc)

which encountered out-of-memory issues when more than four elements were present. An
experimental study in Ref. 64 shows that the leaving group does not significantly influence
the product ratio or the overall reaction mechanism.

The training dataset consists of three independent subsets generated by WTMetaD-1B
AL, each designed to capture different interactions. Subset 1 consists of 154 gas-phase
configurations describing the intrinsic reactivity of the system. Subset 2 consists of 245
configurations of the solute solvated with 44 DCM molecules randomly placed within an 18.5
A box, targeting solvent-solute interactions. Finally, subset 3 includes 166 configurations of 28

DCM molecules in a 12.5 A box, describing bulk solvent-solvent interactions. Subsets 1 and 2
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Figure 5: a Reaction pathways available in glycosylation. The specific reaction studied in
this work (R3) with a possible intermediate with key bond distances highlighted is shown at
the bottom. b (top) Multidimensional scaling (MDS) map of the SOAP descriptor centred
on the anomeric atom, C!, for 1,004 testing data points. The points are colour-coded as
RS, Interl, Inter2, and PS. Interl and inter2 are determined by rci_gre and roi_onu: If
rci_oNe > Tol_oue, the configuration is assigned as Interl; otherwise, it is considered Inter2
(detailed in SI§S4.1). The same MDS map is also colour-coded based on the energy error
of the MLIP prediction compared to the ground truth method (wB97X-D3BJ/def2-TZVP),
with high errors in red and low errors in blue.

were generated by WTMetaD-IB AL initiated from the RS with CV of bond length difference
between rci1_gre and rqi_ove, minimising potential bias towards a specific mechanism, while
subset 3 was collected without any bias. During WTMetaD-I1B AL, configurations were
labelled with energies and forces computed at the PBE-D3BJ/def2-TZVP level of theory,
balancing computational cost and reliable prediction of structures along the reaction paths.
This strategy yielded 565 configurations in total (subset 1-3).Validation of the MLIP revealed
that the highest errors were located at a small number of configurations in the PS region
(see Fig. S15). To improve the accuracy of MLIP in this region, the six structures with the
highest errors were selected from the validation sets, the solvent molecules were removed,

and the remaining gas-phase configurations were added to the training set. This improved
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the accuracy in the out-of-equilibrium region in PS (Fig. 5, detailed discussion is provided in
SI§S4.1).

To further increase the accuracy of the predicted reaction barriers, the 571 configurations
were re-labelled at the ®B97X-D3BJ/def2-TZVP level of theory, which has been shown to
better describe non-covalent interactions and activation energies in organic systems. " This
re-labelled dataset was then used to train the final ACE MLIP. Further details on the training
method are provided in SI§S4.1.

To prevent data leakage, the MLIPs were tested on configurations of the substrate
immersed in 56 solvent molecules, representing a slightly larger system not included in
the training. These configurations were generated through four independent uphill MD
simulations, resulting in a total of 1,004 configurations (Fig. S14); further details can be
found in SI§S4.1. Visualisation of the chemical space covered by this test set, using a
multidimensional scaling (MDS) map with the smooth overlap of atomic positions (SOAP)
descriptor,”” shows that it includes configurations across the PES, including RS, intermediates,

and PS (Fig. 5b). The intermediate region is divided into two subregions, Interl and Inter2,

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

based on the rci_gue and rgi_ow distances. If rci_ovu > roi_oue, the intermediate is

classified as Interl, structurally closer to RS; otherwise, it is considered Inter2, closer to

Open Access Article. Published on 30 October 2025. Downloaded on 11/22/2025 5:10:54 AM.

PS. As shown in Fig.S18, no systematic trend is observed across these classes, and the error

(cc)

distributions are similar in width. The MAD in energy and forces between the ground truth
and the MLIP-predicted values on the test set are 0.60 meV atom ~! and 36.50 meV A1,
respectively. The maximum energy error is found in the Interl class (1.51 meV atom™!). The
accuracy and absence of correlation between energy errors and configuration classes indicate
that WTMetaD-IB AL collected relevant structures along the reaction R3 pathway. The
MLIP thus achieves high accuracy for configurations across the whole PES of interest.
Using the trained MLIP at ®B97X-D3BJ/def2-TZVP level of theory, the mechanism of R3
was studied through WTMetaD, using as the collective variable (CV) the two coordination

numbers (CN(rgi_ona) and CN(rci_ora)) representing the breaking and forming bonds,
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Figure 6: a Free energy surface of R3 calculated using WTMetaD /MLIP-MD with wB97X-
D3BJ/def2-TZVP level of accuracy along the collective variable (CV) defined by the coordi-
nation numbers (CN): CN(rc1_ona) and CN(rqi_gra ), representing the breaking and forming
bonds. The reaction pathway and critical points are highlighted in white. b Snapshots from
WTMetaD simulation illustrating RS, T'Ss intermediates (Inter) and PS regions, highlighting
rei_ove and ro1_gre distances. ¢ Percentage of trajectories that lead to solvent-separated ion
pairs (SSIP) in 100 MLIP-MD simulations initialised from Inter2 extracted from WTMetaD
trajectories over 40 ps at different temperatures. SSIP is characterised by rci_ove > 2.6 A
and roi_ore > 7 A.

where a value of zero represents no bond and a value of one indicates full bond formation.
The resulting FES suggests that the reaction follows a stepwise mechanism (Fig. 6a), which is
consistent with the FES obtained using MLIP at the PBE-D3BJ/def2-TZVP level of theory
( SI§S4.2.1). TS1 corresponds to a dissociative TS with an activation energy of 8.9 kcal
mol~! relative to the reactant complex. This reference, which omits the additional entropy
cost of bringing the molecules together, was chosen for ease of comparison with Ref. 71. TS1
adopts a chair configuration, with bond distances of 2.08 A for r¢i_oue and and 3.87 A for
rai_one (Fig. 6b).
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Following TS1, rc1_gue increases further, leading to an intermediate state, Interl. This
state adopts an envelope (E3)-like ion conformation with 7ci_gLe of 2.67 A. TS2 links the
(E3)-like and half-chair (*Hj)-like oxocarbenium (Inter2). Inter2 is 6.8 kcal mol™' lower in
energy than the RS and is stabilised by hydrogen bond interactions between the leaving group
and nucleophile (Fig. S25b). Finally, TS3, corresponding to the addition of the nucleophilic
group leading to the final PS," presents an energy barrier of 10.7 kcal mol™! (measured from
Inter2, 3.9 kcal mol~! higher relative to RS) and is characterised by rc1_gre of 3.94 A and
roi_ona of 2.62 A (Fig. 6b).

Our results are overall consistent with the AIMD study at the PBE-D3/DZVP level of
theory from Ref. 71, showing a similar reaction mechanism but with slight differences in
relative energies and distances at the TSs. For example, we computed an energy barrier for
TS1 of 8.9 kcal mol™!, while Liu et al. reported a value of only 1.8 kcal mol~*. Moreover, the
computed energy for Inter2 is much lower than that of Ref. 71.

The computed FES indicates that R3 occurs via a stepwise mechanism at 300 K; however,

it does not provide sufficient information to distinguish between the Syi and Sy1 pathways.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

The key difference between these mechanisms is the formation of a solvent-separated ion

pair (SSIP) in the Sy1 pathway, forming both the a-product and S-product (Fig. 5a). In

Open Access Article. Published on 30 October 2025. Downloaded on 11/22/2025 5:10:54 AM.

contrast, the Syi mechanism maintains the contact ion pair, providing access solely to the

(cc)

B-product, similar to the SN2 pathway. Experimental data suggest that the mechanisms vary
with temperature, as reflected by the temperature-dependent ratio of the o and S-product
formation.% To investigate how the mechanism changes with temperature, 100 MLIP-MD
simulations were conducted at 223 K, 263 K, and 303 K, respectively (Fig. 6¢). These
simulations were initiated from the contact ion pair, Inter2, extracted from WTMetaD
trajectories in explicit DCM and propagated for 40 ps without any bias. We monitored
the formation of the SSIP, defined by the distances rci_oic > 7 A and rci_ove > 2.6 A,
where the LG is already far enough from the sugar to allow the insertion of the DCM solvent

molecule, but the incoming Nu is further than the rc1_g~e bond distance in TS3, ensuring
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that the ion pair can separate while S-product has not been formed yet. As anticipated,
with increasing temperature, the prevalence of the contact ion pair decreased, leading to an
increase in the percentage of SSIP from 14% at 223 K to 36% at 303 K. This trend confirms
the decreasing stability of the contact ion pairs in DCM as temperature increases, which
agrees with experimentally observed trend of ratios of a and 3-product.%*

It is important to emphasise that we reached our conclusions without making any pre-
liminary assumptions about the reaction mechanism. Furthermore, compared to AIMD
simulation, the total time required for training and evaluating the MLIP for FES calculations

is negligible, less than 0.001% of the AIMD cost, considering each femtosecond takes more

than 22 hours with 8 CPUs (more details can be found in SI § 4.2.1).

Conclusions

One of the challenges in using reactive MLIPs is the efficient acquisition of training datasets
that include both minima and non-equilibrium configurations. In this study, we propose a
training strategy that combines MLIP-driven WTMetaD and, optionally, inherited bias with
active learning, termed WTMetaD AL and WTMetaD-IB AL, respectively. By integrating
enhanced sampling with AL, we create datasets that cover the entire relevant PES, including
high-energy regions, without prior knowledge of the PES.

The performance of this methodology is demonstrated across diverse organic reactions, an
Sn2 reaction between the fluoride ion and chloromethane in implicit water (R1), the methyl
shift of 2,2-dimethylisoindene to 1,2-dimethylindene in the gas phase (R2) and glycosylation
reaction between acid-activated glucosyl a-trichloroacetate and i-PrOH in explicit DCM (R3).
Overall, the WTMetaD/WTMetaD-IB AL provides an efficient approach to training MLIPs
for reaction modelling without prior knowledge of T'Ss or reaction pathways. This allows for
an in-depth study of the reaction dynamics and the influence of temperature and solvent on

the mechanism. While WTMetaD-IB still requires some knowledge of the system to define
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CVs, we envision that the use of emerging automated methods to identify CVs from limited

trajectory data will further improve its efficiency.

Computational details

MLIPs training

MLIPs were trained using ACE.jl v0.8.4 wrapped with pyjulip via mlp-train package.™

MLIPs for reactions R1 and R2 were trained with the energy selector with an energy threshold
of 0.1 eV, while the similarity selector with a similarity threshold of 0.9995 using SOAP
descriptor was applied for the reaction R3. MLIPs were evaluated using Atomic Simulation
Environment (ASE) v3.23.0b1,% and WTMetaD bias was calculated using the PLUMED
plugin integrated with ASE.%%%2 Hyperparameters of ACE, selectors and WTMetaD bias,
used in training ACE MLIPs, are listed in Table S1. The MD-MLIP simulations in AL
were performed at a constant temperature of 500 K in the case of Downhill AL and 300 K

for WT'MetaD-IB AL. Constant temperature MD was performed using Langevin dynamics

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

with a friction coefficient of 0.02 in inverse ASE time units (Ay/u/eV where u is the atomic

Open Access Article. Published on 30 October 2025. Downloaded on 11/22/2025 5:10:54 AM.

mass unit) and a timestep of 0.5 fs. Velocities were initialised using the Maxwell-Boltzmann

(cc)

distribution at the corresponding temperatures (Downhill AL at 500 K and WTMetaD AL
at 300 K). More details on hyperparameters of MLIPs and WTMetaD in AL are provided in
SI§S1.

Electronic structure calculations were performed using ORCA 5.0.3%%%* wrapped with
autodE® via mip-train package.®® The PBE0-D3BJ/def2-SVP 8" % method with Conductor-
like Polarizable Continuum Model (CPCM)% for water was selected as the ground-truth
method for reaction R1. The IRC for the reaction R1 was obtained by directly using ORCA
5.0.3 at the same level of theory. The independent testing set was generated by US/AIMD for
the reaction R1 with a reaction coordinate of ¢y — rg, where r¢; is the bond length between C

and Cl atoms and rp is the bond length between C and F atoms, with 16 windows, which were
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equally spaced in [-0.73, 1.85] A with the force constant k& = 15 eV A~2, for 200 fs per window
at 300 K in the NVT ensemble at the ground-truth level of theory. The PBE0-D3BJ/def2-SVP
level of theory was used as the ground-truth method for R2. US/AIMD ran along r; — 7y
with 30 windows equally spaced in [-0.97, 1.03] A with k& = 20 eV A=2, for 100 fs per window
at 300 K at the same level of theory. The PBE-D3BJ/def2-TZVP 192 method was used to
label energies and forces during AL iterations, while the wB97X-D3BJ/def2-TZVP? was

used to relabel all training data and as the ground-truth method for reaction R3.

Free energy calculations

For R2, the US/MLIP-MD free energy profile was computed using r; — 7o as the reaction
coordinate, split into 30 equally-spaced windows with a force constant of 20 eV A=2. The
simulation ran for 40 ps at 365.6 K in every window and the first 10 ps in each window were
used for equilibration and discarded from the analysis. Free energy was calculated by the
weighted histogram analysis method (WHAM)% as implemented in mlp-train. WTMetaD was
performed along the same reaction coordinate, r; — 19, as the US. The width of the deposited
Gaussians was 0.07 A with the initial height %kBT =0.0158 €V at 365.6 K to be consistent
with the experimental condition and the bias factor of 50. Gaussians were deposited every

100 fs. WTMetaD was run in 10 independent replicas for 500 ps each, starting from the same

configuration but with different velocities initialised using the Maxwell-Boltzmann distribution.

WTMetaD+IB was performed using the inherited bias from the 16" AL iteration as an
initial bias. The parameters of the deposited Gaussians were the same, with the bias factor
increased to 80. Ten independent WTMetaD+IB runs were performed with a simulation
time of 250 ps each. The free energy profile was reconstructed by reweighting based on the
final bias potential,®® using kernel density estimation as implemented in PLUMED with a
bandwidth of 0.02 to compute the histograms. 5182

For R3, the free energy surface was investigated using WTMetaD/MLIP-MD. The

simulation system comprised the substrate in 8 DCM molecules within a box with the size of
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22 A using periodic boundary conditions (PBC) to maintain the density of DCM (1.33 g/cm?).
The box size was chosen to prevent the interaction of the substrate with its periodic copies.
Before the WTMetaD simulation, the solvated system was optimised with the substrate
fixed in its DFT-optimised geometry, followed by 5-ps MD dynamics in the NVT ensemble.
The metadynamics parameters were taken from the study of Liu et al.,”* employing the
coordination numbers (CNs)? as CVs, namely the CN between C! and OY¢ and C! and
ONv. The CN was defined as [1 — (r/79)%]/[1 — (r/r0)'?], with r representing the bond length
of interest and 7o set at 2.5 A. Additional constraints were imposed to maintain the bond
lengths in a range of 1.35 A to 5.0 A to prevent sampling of the leaving and nucleophile too
far or too close to the reaction centre. The WTMetaD simulations were conducted at 298 K,
depositing a Gaussian potential with a height of 0.013 ¢V and width of 0.1 A for both CNs
with a bias factor of 50. The Gaussian was deposited every 25 fs. Three independent 300-ps

simulations were executed, each initiating from the same configuration.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Data availability

The open-source mip-train package is available at https://github.com/duartegroup /mlp-train

Open Access Article. Published on 30 October 2025. Downloaded on 11/22/2025 5:10:54 AM.

and archived on Figshare (DOI:10.6084 /m9.figshare.25816864.v2). The training and testing

(cc)

datasets are available on Figshare (DOI: 10.6084 /m9.figshare.28631591), along with detailed
instructions and ready-to-run Python scripts for reproducibility.

The dataset consists of three folders (R1-R3), each corresponding to one reaction. Each
folder contains Input geometries (.xyz files), Python scripts for training, and ground-truth
electronic energy data (energy and forces). For R1 and R2, AL training was performed
using both downhill and WTMetaD-IB sampling, whereas R3 was trained exclusively via
WTMetaD-IB-based AL; the relevant scripts are located within subfolders named after the
sampling methods (e.g., al downbhill). Additionally, each folder also includes MLIP-predicted

energies and forces (*npz format).
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For R2, free energy calculations were performed by three enhanced sampling techniques
(umbrella sampling, WTMetaD and WTMetaD-IB). Input files and configurations for each
of them are organised into their own subfolders. For reaction R3, the initial and final
configurations from the trajectories, used to investigate the solvent-separated ion pair (Fig.

6(c) in the main text), are included.
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Data Availability Statement: DOk 101030 Db bO0seIC
The open-source mlp-train package is available at https://github.com/duartegroup/mlp-

train and archived on Figshare (DOI:10.6084/m9.figshare.25816864.v2). The training and

testing datasets are available on Figshare (DOI: 10.6084/m9.figshare.28631591), along with
detailed instructions and ready-to-run Python scripts for reproducibility.

The dataset consists of three folders (R1-R3), each corresponding to one reaction. Each
folder contains Input geometries (.xyz files), Python scripts for training, and ground-truth
electronic energy data (energy and forces). For R1 and R2, AL training was performed using
both downhill and WTMetaD-IB sampling, whereas R3 was trained exclusively via
WTMetaD-IB-based AL; the relevant scripts are located within subfolders named after the
sampling methods (e.g., al_downhill). Additionally, each folder also includes MLIP-predicted
energies and forces (*npz format).

For R2, free energy calculations were performed by three enhanced sampling techniques
(umbrella sampling, WTMetaD and WTMetaD-IB). Input files and configurations for each of
them are organised into their own subfolders. For reaction R3, the initial and final
configurations from the trajectories, used to investigate the solvent-separated ion pair (Fig.
6(c) in the main text), are included.
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