
Digital
Discovery

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
2/

20
26

 9
:2

9:
24

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
High-throughpu
aThermodynamics, Technische Universität B

Germany. E-mail: vrabec@tu-berlin.de
bMolecular Thermodynamics Group (MTG),

Straße 44, 67663 Kaiserslautern, Germany

Cite this: Digital Discovery, 2025, 4,
3191

Received 11th June 2025
Accepted 9th September 2025

DOI: 10.1039/d5dd00259a

rsc.li/digitaldiscovery

© 2025 The Author(s). Published by
t application and evaluation of the
COSMO-SAC model for predictions of liquid–liquid
equilibria

Ivan Antolović, a Simon Stephan b and Jadran Vrabec *a

The predictive power of the COSMO-SAC activity coefficient model is rigorously put to the test using an

extensive dataset of binary liquid–liquid equilibria (LLE). Two model variants, COSMO-SAC-2010 and

COSMO-SAC-dsp, are evaluated across 2478 binary systems and nearly 75 000 experimental data points.

They achieve a success rate exceeding 90% in detecting the occurrence of LLE, demonstrating strong

qualitative performance across chemically diverse systems. In benchmark comparisons, COSMO-SAC-

2010 sets the standard for nonaqueous systems, while COSMO-RS performs best for aqueous mixtures,

placing the two at a broadly comparable overall level with complementary strengths. COSMO-SAC-dsp

yields larger deviations but provides broader coverage, particularly for polar and hydrogen-bonding

systems. Both reliably capture systematic trends across homologous series, making them effective tools

for solvent screening and thermodynamic consistency analysis. A high-throughput and fully automated

computational framework—integrated into the open-source package ThermoSAC—enables adaptive

Gibbs energy screening, LLE tracing, and anomaly detection. This work establishes COSMO-SAC as

a leading framework for predictive thermodynamics and offers reproducible benchmarks and tools for

future model development, such as those based on machine learning.
1 Introduction

Liquid–liquid equilibria (LLE) are critical to many industrial
processes, including solvent extraction, multiphase separation,
and pharmaceutical formulation. The ability to accurately
predict phase behavior is crucial for designing efficient sepa-
ration units, optimizing solvent selection, and ensuring process
stability. While experimental determination of LLE data
remains the gold standard, it is time-consuming, expensive,
and oen impractical for screening a large number of potential
solvent systems. Thus, predictive thermodynamic models are
essential for guiding research and industrial applications.

In recent years, LLE modeling has gained signicant atten-
tion in various elds, including the development of sustainable
separation processes and pharmaceutical drug formulation.
The advent of green solvents, such as ionic liquids (IL) and deep
eutectic solvents (DES), has necessitated predictive models for
screening viable solvent systems efficiently.1 Similarly, predic-
tive modeling has been applied to aqueous sugar solutions and
fruit juices to enhance separation processes in the food
industry.2 Moreover, LLE play a crucial role in biphasic CO2

capture, where phase separation is used to facilitate solvent
erlin, Ernst-Reuter-Platz 1, 10587 Berlin,

RPTU Kaiserslautern, Erwin-Schrödinger-

the Royal Society of Chemistry
regeneration and energy-efficient CO2 recovery.3,4 In pharma-
ceutical applications, LLE principles govern the partitioning of
drugs in aqueous two-phase systems (ATPS) and inuence the
miscibility of amorphous solid dispersions (ASD), impacting
drug stability and bioavailability.5,6

A widely used predictive model for uid-phase equilibria is
based on the continuum-solvation formalism COSMO
(COnductor-like Screening MOdel),7 which forms the founda-
tion of a family of COSMO-based approaches that avoid
component-specic empirical parameters by using molecular
surface charge distributions (s-proles) from quantum-
chemical calculations. These distributions are used to esti-
mate activity coefficients, enabling fully predictive phase
behavior modeling. The approach was later extended to
COSMO-RS (COSMO for Real Solvents)8–10 and COSMO-SAC
(COSMO – Segment Activity Coefficient).11 COSMO-SAC has
been applied to vapor–liquid (VLE),12–14 solid–liquid (SLE),15–17

and LLE,18,19 offering a unied thermodynamic framework for
diverse systems.

Building upon prior research on the prediction of phase
equilibria, this study extends the application of COSMO-SAC to
the complex domain of LLE, representing a critical test of its
generalizability. Specically, the focus lies on the ab initio
prediction of LLE using two COSMO-SAC variants: COSMO-SAC-
2010 (no dispersion term) and COSMO-SAC-dsp (with disper-
sion). A large-scale evaluation is conducted on the basis of 2478
Digital Discovery, 2025, 4, 3191–3207 | 3191

http://crossmark.crossref.org/dialog/?doi=10.1039/d5dd00259a&domain=pdf&date_stamp=2025-11-02
http://orcid.org/0009-0007-3650-2781
http://orcid.org/0000-0002-4578-3569
http://orcid.org/0000-0002-7947-4051
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00259a
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD004011


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
2/

20
26

 9
:2

9:
24

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
binary systems, systematically assessing themodels' accuracy in
predicting experimental phase behavior.

The primary objectives of this work are to (i) benchmark the
predictive power of COSMO-SAC against experimental LLE data,
(ii) assess whether dispersion corrections included in COSMO-
SAC-dsp systematically improve predictions, (iii) develop and
validate an automated workow for high-throughput LLE
screening, and (iv) provide an open-source benchmark dataset
to facilitate future advancements in LLE modeling. Through
large-scale computational predictions combined with rigorous
validation, the study aims to rene the applicability of COSMO-
SAC across diverse solvent systems and separation processes.

Beyond its methodological contributions, this work supports
broader efforts to advance predictive thermodynamics for
industrial applications. The large-scale evaluation highlights
strengths and limitations of COSMO-SAC-2010 and COSMO-
SAC-dsp for LLE modeling and informs future improvements
in phase equilibrium predictions. Ultimately, the ndings
contribute to the development of more efficient, sustainable
separation technologies and reinforce the role of computational
models in solvent selection and process design.
2 Methodology

This section outlines the methodology used in this study,
detailing the workow from data acquisition to statistical
analysis. The process includes compiling experimental data,
determining initial values, performing LLE calculations,
handling anomalies, ne-tuning results, and computing
statistical metrics. Specic computational models and tools
utilized in the analysis are described as well.
Table 1 Summary of experimental LLE data and s-profile matches. Of
the 2262 profiles, 1076 match substances in the dataset—demanding
profiles for both components reduces this to 933 (COSMO-SAC-2010)
or 870 when dispersion parameters are also required (COSMO-SAC-
dsp)

Systems Data points Substances

Experimental data 6153 120 476 2462
COSMO-SAC-2010 2478 74 296 933
COSMO-SAC-dsp 2258 71 280 870
2.1 COSMO-SAC models

Two variants of the COSMO-SAC model were employed in this
work: COSMO-SAC-2010 11,12,20and COSMO-SAC-dsp.21 A full
description of this model can be found in the
literature11,12,14,20–23 so that only a brief overview of some key
aspects is provided here. The COSMO-SAC model combines
quantum-chemical calculations with a statistical thermody-
namic framework to predict activity coefficients and the excess
Gibbs energy. Molecular surfaces are dened and described by
the screening charge density s and surface area A, which are
obtained from density functional theory (DFT) calculations
using a polarizable continuum model. These s-proles serve as
an input for a statistical segment interaction model.

2.1.1 Hydrogen bonding and s-proles. Both COSMO-SAC-
2010 and COSMO-SAC-dsp account for hydrogen bonding by
categorizing molecular surface segments into non-hydrogen-
bonding (NHB), hydroxyl-related hydrogen bonding (OH), and
other hydrogen bonding (OT), where the latter includes
segments associated with nitrogen (N), oxygen (O), and uorine
(F) atoms, as well as hydrogen atoms bonded to N or F. This
segmentation is reected in the University of Delaware (UD)
database,13 an extension of the VT-database,24,25 developed in
collaboration with Sandler's research group, which includes
three separate s-proles for each hydrogen bonding type in
3192 | Digital Discovery, 2025, 4, 3191–3207
a single .sigma le. The University of Delaware s-proles, as
provided by Bell et al.,23 were used in this work via the open-
source COSMO-SAC implementation available at https://
github.com/usnistgov/COSMOSAC.

2.1.2 Dispersion term. The main difference between the
two consideredmodel variants is the treatment of the dispersive
interactions. While COSMO-SAC-2010 does not explicitly
include dispersion, COSMO-SAC-dsp incorporates a dispersion
term. The dispersion parameter for a given molecule is deter-
mined from atomic contributions by

3molecule

kB
¼ 1

Natom

Xn

i¼1

3atom;i

kB
; (1)

where 3atom,i is the dispersion parameter of atom i, kB the
Boltzmann constant, n the total number of atoms in the mole-
cule, and Natom the number of atoms with non-zero dispersion
parameters (i.e., for which j3atom,ij > 0). However, as noted by
Hsieh et al.,21 dispersion parameters were determined for a large
set of s-proles to demonstrate the feasibility of the approach,
but not comprehensively for all available proles. As a result,
COSMO-SAC-dsp can only be applied to substances with an
assigned dispersion parameter, reducing the number of appli-
cable s-proles by approximately 10%. The resulting molecular
dispersion parameter is then used in a combining rule to
compute a binary interaction parameter, which contributes as an
independent term to the total activity coefficient.
2.2 Experimental data

The predictive power of the COSMO-SAC model variants was
evaluated using a comprehensive dataset compiled from the
Dortmund Data Bank (DDB),26 which contains experimental
LLE data for binary mixtures. This dataset allows for a rigorous
evaluation of model predictions against real-world measure-
ments. To ensure meaningful statistical analysis, preprocessing
was applied to retain only binary systems for which COSMO
segment data (s-proles) are available. Additional constraints
were imposed for COSMO-SAC-dsp, which requires valid
dispersion parameters. The following subsections detail the
dataset selection, the categorization of chemical substances,
and the classication of LLE systems.

2.2.1 Dataset selection and processing. Based on the
compiled experimental LLE dataset, a systematic selection and
preprocessing step ensured valid COSMO-SAC model compari-
sons. The dataset includes 6153 unique binary systems, 120 476
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Classification of chemical families with representative
examples, arranged by increasing polarity

Family Members Examples

Gases 4 Carbon dioxide, hydrogen sulde,
sulfur dioxide

Multifunctionals 158 Tetrachloromethane, furfural,
vinyl acetate

Other nitrogens 20 Nitrobenzene, hydrazine, nitric acid
Alkanes 129 Cyclohexane, biphenyl, n-undecane
Alkenes 52 Cyclohexene, ethylene, 1-pentene
Alkynes 8 Phenylacetylene, ethyne, 1-hexyne
Aromatics 59 Benzene, phenol, furan
Carbonates 4 Ethylene carbonate, propylene

carbonate
Epoxies 2 1,2-Propylene oxide,

2,2-dimethyloxirane
Esters 86 Ethyl acetate, dimethyl adipate,

amyl formate
Halogenated
hydrocarbons

77 Ethyl iodide, chloroform,
dichloromethane

Halogens 2 Bromine, iodine
Ethers 43 Diethyl ether, tetrahydrofuran,

ethoxybenzene
Peroxy (no acids) 2 1-Methyl-1-phenylethyl hydroperoxide
Acids 55 Formic acid, hydrogen iodide,

lauric acid
Anhydrides 2 Acetic anhydride, maleic anhydride
Amines 45 Aniline, ethylenediamine, piperidine
Carbonyls 56 Acetone, 2-butanone, acrolein
Thiols 10 Ethanethiol, 2-propanethiol,

hexylmercaptan
Thioethers 3 Diethyl sulde, dimethyl sulde,

dibutylsulde
Alcohols 91 2-Propanol, cyclopentanol,

n-tridecanol
Amides 11 Acetamide, acetanilide, formamide
(Iso)nitriles 11 Acetonitrile, 1,4-dicyanobutane,

benzylcyanide
Sulfoxides and
sulfonyls

2 Dimethyl sulfoxide, sulfolane

Water 1 Water
Total 933
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data points, and 2462 substances. To ensure consistency in
model evaluation, only systems with available s-proles for
both components were retained for the COSMO-SAC calcula-
tions. A summary of the dataset statistics is provided in Table 1.

In total, 2262 s-proles are present in the UD database.
Among the 2462 substances compiled in the experimental
dataset, 1076 have a matching s-prole. However, only 933 can
form binary systems where valid s-proles are available for both
components, resulting in 2478 systems and 74 296 data points
for evaluation.

For COSMO-SAC-dsp, an additional constraint was imposed,
requiring s-proles to have a valid dispersion parameter.
However, 237 out of the 2262 s-proles had a missing disper-
sion parameter, as the value 3molecule dened in eqn (1) was
absent. This led to a reduction by 220 systems. Consequently,
the COSMO-SAC-dsp dataset comprises 2258 binary systems
with 71 280 data points formed by 870 unique substances.

Most experimental LLE data (70.1%) were measured at
ambient pressure, either indicating values near 1 bar or cases
with absent pressure information, for which ambient pressure
was assumed. The remaining 29.9% span elevated pressures
from 1.2 bar to 12 000 bar, with the majority below 2000 bar.
The temperature ranges from 87.6 K to 694.6 K and exhibits
a pronounced clustering around standard laboratory condi-
tions, with 51.0% of data concentrated in the interquartile
range of 293.1 K to 344.3 K.

The COSMO-SAC activity coefficient model solely depends on
temperature and mole fraction, with no explicit pressure
dependence. As a result, all model predictions correspond to
ambient pressure conditions. Although activity coefficients in
the liquid phase are oen considered pressure-invariant due to
low compressibility, elevated pressures can still affect phase
behavior. Therefore, high-pressure experimental data were
omitted during quantitative comparisons.

2.2.2 Categorization of chemical substances. Beyond
dataset selection, categorizing substances by chemical nature is
essential, as the predictive accuracy varies across functional
groups. Each substance was assigned to a chemical family
based on the scheme by Fingerhut et al.,14 enabling a systematic
evaluation of model performance and insight into how molec-
ular interactions inuence its predictive power. It groups
substances based on their dominant functional properties,
arranging them in increasing order of polarity. This organiza-
tion allows for the identication of trends in model perfor-
mance across different chemical families. Representative
examples of these families, along with their respective number
of members, are presented in Table 2.

2.2.3 Classication of LLE types. To enable a systematic
evaluation of LLE, a classication based on phase behavior was
performed for both experimental data and predicted LLE
curves. This classication is essential for understanding trends
in phase separation and for rening the statistical analysis of
temperature deviations. While the experimental dataset inher-
ently distinguishes between two liquid phases (L1 and L2), it
does not explicitly indicate whether a system is subject to an
upper critical solution temperature (UCST) or a lower critical
solution temperature (LCST) regime. Since this distinction is
© 2025 The Author(s). Published by the Royal Society of Chemistry
crucial for adequate interpretation, a manual classication was
conducted by visually inspecting and annotating all binary
systems.

The following classication scheme applies specically to
the experimental data, distinguishing LLE systems based on
their phase separation behavior:

�UCST: phase separation occurs upon cooling, meaning that
the homogeneous phase is stable at higher temperatures, but
undergoes demixing as the temperature decreases.

� LCST: phase separation occurs upon heating, where the
homogeneous phase is stable at lower temperatures, but
demixes as the temperature increases.

� Closed-loop: the system exhibits both UCST and LCST
behavior, forming a phase separation loop with a miscibility
gap in an intermediate temperature range.

� Other: unusual patterns that do not conform to classical
UCST or LCST behavior, including island-type, hourglass-
shaped, or diagonally aligned phase separation regions.
Digital Discovery, 2025, 4, 3191–3207 | 3193
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Table 3 Classification of experimental LLE systems based on visual
inspection

LLE type Number Percentage

NoType 905 36.5%
WithType 1573 63.5%

-UCST 1445 91.9%
-LCST 63 4.0%
-Closed-loop 40 2.5%
-Othera 25 1.6%

a Other = island-type, hourglass-shaped, and diagonally aligned LLE
types.
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� NoType: insufficient data prevents reliable classication.
Most classied experimental systems exhibit UCST behavior

(∼92%), while LCST and closed-loop systems form smaller
fractions. This predominance aligns with expectations, as many
known LLE systems exhibit temperature-dependent phase
behavior favoring UCST-type separation. Table 3 summarizes
the classication results of the experimental data.

This classication provides a framework for subsequent
statistical analyses. Specically, the interpretation of tempera-
ture deviations depends on whether a system follows UCST,
LCST, or closed-loop behavior. Systems with a closed-loop
phase behavior, for instance, may exhibit non-monotonic
temperature deviations that require specialized analytical
treatment, as discussed in Section S4 of the SI.
2.3 Initial value detection

Unlike VLE and SLE, where pure component properties such as
vapor pressure or melting temperature can oen serve as
reference points, LLE have no such xed anchor points. Instead,
the LLE curve is detached from the pure component boundaries
and must be located within the temperature-mole fraction (T −
x) plane at a given pressure. As a result, generating suitable
initial values is an essential part of the calculation process.

Beyond the lack of anchor points, LLE calculations also
present challenges in solving the equilibrium conditions.
Unlike other phase equilibrium types, LLE calculations require
evaluating activity coefficients for each component in all pha-
ses. For a binary system, this results in four separate evalua-
tions—compared to just one for SLE and two for VLE. This
means that all four activity coefficients must be considered
simultaneously, making LLE calculations more demanding.
The fundamental equilibrium conditions for each phase equi-
librium type are given by

VLE : xL
i g

L
i ¼ yi$4

V
i

pLV0i $4
LV
0i $P

LV
0i

; (2)

SLE : xL
i g

L
i ¼ exp

�
� DfusgiðTÞ

RT

�
; (3)

LLE: xL1i gL1
i = xL2i gL2

i , (4)
3194 | Digital Discovery, 2025, 4, 3191–3207
where xLi and xL1i , xL2i represent the mole fractions of component
i in the liquid phase(s), gL

i , gL1
i , and gL2

i denote the corre-
sponding activity coefficients, yi is the vapor-phase mole frac-
tion, and 4V

i and 4LV
0i are the fugacity coefficients of the

component in themixture and as a pure substance, respectively.
The term pLV0i refers to the pure component vapor pressure,
while PLV

0i denotes the Poynting correction. For SLE, Dfusgi(T)
represents the Gibbs energy change upon fusion at the
temperature T, with R being the gas constant.

As shown in eqn (2)–(4), each phase equilibrium type
imposes different modeling requirements when expressed in
terms of activity coefficients. The VLE includes fugacity coeffi-
cients of the vapor phase, while SLE depend on the Gibbs energy
of fusion to describe the equilibrium between the solid and
liquid phases. In contrast, LLE rely solely on activity coeffi-
cients, without the need for experimental reference data or an
equation of state. This makes LLE structurally distinct in
modeling and highly sensitive to the choice of the activity
coefficient model. At the same time, LLE are an ideal bench-
mark for evaluating thermodynamic models, as any discrep-
ancies directly reect their ability to capture liquid-phase
interactions.

Due to its sole dependence on the activity coefficient model,
LLE are highly sensitive to model congurations. Unlike VLE
and SLE, which show minor variations upon parameter
changes, LLE predictions can shi drastically. This was evi-
denced in our preceding work,6 where altering the combinato-
rial term—switching from Staverman–Guggenheim to free
volume or removing it—led to an “entropic catastrophe”. While
SLE remained relatively stable upon such changes, LLE showed
extreme variations, highlighting strong model sensitivity.

2.3.1 Forward screening. Initially, experimental data were
used as starting values for LLE calculations, but in most cases,
neither temperature nor composition were suitable. Consid-
ering 2478 binary systems with about 75 000 data points further
underscored this challenge, highlighting the need for a more
systematic approach. Instead of relying on experimental data,
the focus shied entirely to the model itself to generate reliable
initial values for LLE calculations.

To achieve this, a structured screening approach was devel-
oped to identify initial values solely from the thermodynamic
model. By systematically evaluating the Gibbs energy of mixing
Dgmix across a range of temperatures and a xed number of
mole fractions, a comprehensive search was conducted in the T
− x plane, independent of system-specic experimental data, as
shown in Fig. 1. The Gibbs energy of mixing was determined by

Dgmix

RT
¼

X
i

xilnai ¼
X
i

xilnðxigiÞ; (5)

where xi denotes the mole fraction of component i and ai
corresponds to its activity.

The temperature range for screening was set between 0 K
and 1000 K. To improve computational efficiency, an adaptive
temperature step size was implemented. For temperatures
above 200 K, a step size of 40 K was applied, while in the
intermediate range between 100 K and 200 K, a ner step size of
20 K was used. Below 100 K, where phase separation is expected
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Forward screening process for identifying initial values during
LLE tracing, illustrated for the system ethylene glycol + 2,5-di-
methyltetrahydrofuran. Screening progresses from low to high
temperatures, systematically evaluating the Gibbs energy of mixing
Dgmix across the T − x space. Mole fraction spacing followed
a sigmoidal transformation to improve resolution near the infinite
dilution limits. The temperature range was adaptively sampled
between 0 K to 1000 K, with finer steps at lower temperatures where
phase separation is more pronounced. For clarity, a reduced
number of grid lines is shown; actual screenings discretized the
mole fraction space with 201 to 1001 points depending on system
complexity. The green square marks the melting point of ethylene
glycol.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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to be more pronounced, the step size was further rened to 10 K
to enhance resolution.

It is important to note that the predicted LLE curves may
extend below the melting point of one or both components,
indicating metastable states with respect to SLE. For example,
pure ethylene glycol solidies near 260 K (see Fig. 1). While SLE
are not modeled in this study, the associated thermodynamic
constraint is acknowledged and has been addressed previously
in the context of COSMO-SAC-based SLE modeling.6

To improve LLE detection, mole fraction spacing was
adapted in addition to temperature. While initial scans used
uniform spacing, analysis of 2478 binary systems showed that
higher resolution near the innite dilution limits signicantly
improved detection and initial value quality. A sigmoidal
transformation based on a logistic function was applied to
redistribute the originally equidistant grid accordingly. The
mapping function is given by

SðxiÞ ¼ sðlðxi � 0:5ÞÞ � sð�l=2Þ
1� 2sð�l=2Þ ; (6)

where s(t) = 1/(1 + exp(−t)) is the logistic sigmoid function, the
inection parameter was set to l = 25 to concentrate sample
points near the innite dilution limits. This rened sampling
strategy not only improved accuracy in critical phase separation
regions, but also reduced the need for additional scans, making
the detection process more efficient.

Since most experimental systems exhibit a UCST (91.9%),
screening was performed from low to high temperatures,
denoted as forward screening. Larger miscibility gaps typically
occur at lower temperatures and yield more pronounced Gibbs
energy curves, facilitating LLE detection by providing clearer
separation signals.

Conversely, screening from high to low temperatures oen
rst encounters the UCST region, which is already challenging
to detect, even when its exact location is known. Furthermore,
initial values found near the UCST oen lead to uncertainties
about whether true equilibrium conditions have been identi-
ed, as calculations in this region tend to scatter and require
renement (see Section S1 of the SI). To ensure stability and
robustness in detecting LLE, it is therefore preferable to begin
the search at temperatures far away from critical solution
temperatures.

However, reverse screening from high to low temperatures
was conducted as well to identify and mitigate “early scan
errors”. This step ensures that no relevant phase separation
regions are overlooked during forward screening. Once
a potential LLE binodal was detected, screening was stopped to
avoid unnecessary computational effort, as this initial value
served as a starting point for subsequent LLE tracing, which is
described in Section 2.4.

From the Gibbs energy of mixing curve, the binodal was
determined using the alternating tangents method proposed by
von Solms et al.27 First, the spinodal points were identied, and
the derivative was approximated using central differences.
Starting from one spinodal point, a tangent was constructed
toward the opposite spinodal point, as shown in Fig. 2. This
approach was found to be both robust and reliable. While the
Digital Discovery, 2025, 4, 3191–3207 | 3195
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Fig. 2 Identification of the binodal with the alternating tangents
method. The Gibbs energy of mixing Dgmix/(RT) was analyzed to locate
the spinodals, which served as starting points for tangent construction.
Alternating tangents were drawn between the spinodals to determine
equilibrium compositions, refining the binodal. Additional boundary
refinement, based on local minima of Dgmix, improved accuracy,
particularly in cases with multiple LLE regions.

Fig. 3 The system water + valeronitrile shows two disconnected,
island-type LLE regions with COSMO-SAC-dsp (red), while COSMO-
SAC-2010 predicts a single continuous LLE (black). Forward screening
detected only LLE1; reverse screening revealed the second island LLE2.
Blue markers indicate the first detected binodal in each direction.
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original method denes bounds between the spinodal points
and the pure component edges, an improvement was intro-
duced by incorporating derivative information. Since the
tangent must have equal slopes at the equilibrium points, the
boundaries were further rened to lie between the spinodal and
local minima of the Gibbs energy of mixing curve. This rene-
ment is particularly useful when handling multiple LLE regions
at a single temperature.

Ultimately, the initial value screening provides two key
pieces of information: (1) whether an LLE exists for the given
system, and (2) its temperature and mole fraction (T − x)
coordinates. These data form the basis for further calculations,
ensuring that numerical solvers start from well-dened initial
conditions. By combining systematic screening with bidirec-
tional evaluation, the accuracy and robustness of LLE detection
are signicantly improved.

2.3.2 Reverse screening. While the forward screening
approach provides a systematic route to detect LLE regions, it
was primarily optimized for identifying the dominant misci-
bility gap at lower temperatures. Some systems, however,
exhibit detached island-type regions—phase separation pockets
3196 | Digital Discovery, 2025, 4, 3191–3207
that appear at higher temperatures, disconnected from the
primary miscibility gap. Since screening was halted once an LLE
region was detected, these isolated regions could remain
unnoticed, necessitating an additional step to ensure compre-
hensive phase equilibrium detection.

To address this, a reverse screening procedure was intro-
duced, screening from high to low temperatures. This method
served as a safeguard against early scan errors, where the
algorithm terminates aer identifying the rst LLE region,
potentially missing additional phase separation regions. Such
errors were particularly evident in systems where the detected
LLE did not align with experimental data, suggesting the pres-
ence of another, previously undetected binodal at higher
temperatures. By reversing the screening direction, these
additional LLE regions—otherwise overlooked—were success-
fully identied.

Reverse screening revealed previously undetected phase
separation in four water-containing systems. These island-type
LLE regions appeared only with COSMO-SAC-dsp, while
COSMO-SAC-2010 predicted a single, continuous region. A good
example is water + valeronitrile, as shown in Fig. 3, where
COSMO-SAC-dsp predicts two distinct LLE regions, while
COSMO-SAC-2010 yields just one. Forward screening became
trapped in the smaller LLE1, missing the larger LLE2 at higher
temperatures. Reverse screening successfully identied LLE2,
resolving early scan errors and improving agreement with
experimental data.
2.4 LLE tracing

Once initial values T0, x
L1
0 , and xL20 were found, the rst binodal

was obtained by solving eqn (4). Subsequent points were
computed by advancing a temperature step DT and using the
previous binodal as the initial guess. This tracing approach is
conceptually similar to isochoric tracing,28,29 where phase
© 2025 The Author(s). Published by the Royal Society of Chemistry
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boundaries are constructed starting from a pure component
and marching into the mixture, as demonstrated by Bell and
Deiters30 and further explored in later works.31,32

As the tracing proceeds in temperature direction, LLE curves
can terminate in two distinct ways: (a) at a critical point, where
the compositions of the two liquid phases become identical, or
(b) at a vapor–liquid–liquid equilibrium (VLLE), where the LLE
binodal intersects a VLE envelope, forming a three-phase
region. While this study does not explicitly resolve VLLE due
to the absence of vapor-phase fugacities, binodal termination
behavior was still considered during anomaly detection and
binodal classication.

However, selecting an appropriate step size DT is not trivial.
If too large, it can produce rough or inaccurate curves, partic-
ularly near the critical solution temperatures, where the slope
(vT/vxi)p of the binodal approaches zero. In extreme cases, the
UCST or LCST may be missed due to overshooting. Conversely,
a very small step size ensures high resolution, but signicantly
increases computational cost due to the large number of
required steps.

Manual step size adjustment is feasible for a small number
of systems, but impractical for tackling 2478 systems and two
model variants, amounting to approximately 5000 different LLE
curves. A constant step size may perform well in steep regions
but remains inadequate near the UCST. To ensure robustness,
reproducibility, and computational efficiency, an adaptive
sampling method with a dynamically adjusted DT was required.

2.4.1 Adaptive sampling. To improve upon the constant
step size approach, several adaptive methods were tested. The
most straightforward approach was to couple the step size to the
width of the miscibility gap, dened as Dx h jxL2i − xL1i j. By
making DT proportional to that width, the step size naturally
decreases near the UCST, where Dx approaches zero, leading to
a higher resolution in critical regions. Conversely, in steep
regions of the LLE curve, a larger step size is permitted

DT f Dxn. (7)
Fig. 4 Comparison of adaptive sampling methods for LLE tracing. (a) Co
guesses improve accuracy and convergence. (c) Step size scaled wit
compromising efficiency.

© 2025 The Author(s). Published by the Royal Society of Chemistry
The exponent n was introduced to rene resolution near the
UCST when necessary (n > 1), as seen in a polymer amorphous–
amorphous phase separation study.6 However, in this work, the
exponent was kept at unity, n = 1. This simple adjustment
signicantly improved results over the constant step-size
method, as illustrated in Fig. 4a and c.

Several adaptive methods were explored, including those
inspired by mechanical motion (velocity, acceleration),
geometric concepts (arc length), and Taylor approximations.
While some offered theoretical advantages, they oen suffered
from numerical instability or lacked robustness across all
systems. Further details, including equations and performance
insights, are given in Table S1 of the SI. Ultimately, the simple
miscibility-gap scaling according to eqn (7) proved to be most
reliable and broadly effective.

2.4.2 Predictive initial guess. Beyond the temperature step
size DT, the efficiency and accuracy of LLE curve calculations
depend on the choice of an initial guess for subsequent itera-
tions. A naive approach—using the previous result as the next
initial guess—becomes problematic near the UCST, where the
slope Dx0 = v(Dx)/vT is large and the true solution may deviate
signicantly from the previous result. In regions with
pronounced curvature (large second derivative Dx00 = v2(Dx)/
vT2), this approach can lead to poor predictions, requiring more
iterations for convergence that increase computational cost.

To improve efficiency, a dynamically adjusted initial guess
was implemented using a Taylor expansion. Although the step-
size methods discussed earlier are formulated in terms of the
miscibility gap width Dx, the actual predictive update applies to
the vector of mole fractions, xLLE1 = (xL11 , xL21 ). Nevertheless, for
consistency with the previous equations, we retain the notation
Dx in the predictive expression

DxðT þ DTÞzDxþ Dx
0
DT þ Dx

00

2
DT2 þO

�
DT3

�
; (8)

where the term OðDT3Þ accounts for higher-order contribu-
tions, which were neglected. This predictive adjustment
improves robustness, particularly in challenging LLE regions,
nstant step size yields rough curves near the UCST. (b) Adaptive initial
h Dx enhances resolution and smoothness near the UCST without

Digital Discovery, 2025, 4, 3191–3207 | 3197
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as shown in Fig. 4b. By accounting for both the rst and second
order derivative terms, the initial guess better aligns with the
true solution, reducing the number of required iterations and
thereby improving computational efficiency.

2.4.3 Resolving anomalies. Initial screening typically
resulted in well-dened LLE curves, though some systems
showed anomalies that required further analysis. Common
cases—such as single data point results from premature equi-
librium detection—were resolved by rescreening or rened
initial guesses. More persistent issues, including temperature
jumps, widening miscibility gaps, and irregular binodal shapes,
oen stemmed from overly large step sizes. These were
addressed with targeted corrections; further details are
provided in Section S4 of the SI.

The most frequent anomaly observed was a sudden bend of
the LLE curve with rising temperature, inconsistent with
meaningful phase separation. This irregularity, termed here as
a bifurcation anomaly, involves an abrupt slope change in one
curve branch—typically the one farther from the pure compo-
nent boundary. While the widening miscibility gap initially
suggests a UCST, the distorted curvature signals a breakdown of
equilibrium. An analysis of the Gibbs energy of mixing reveals
the root cause: instead of two, these systems exhibit four spi-
nodal points, allowing for two distinct LLE regions, each with its
own LCST. As temperature rises, the curves intersect at a point
where the inner binodal points coincide, marking the onset of
the anomaly. Beyond this point, the tangents connecting inner
and outer binodal points intersect, and the system transitions
into a single LLE.

This transition is illustrated in Fig. 5, where inset (a) shows
the Gibbs energy of mixing below the intersection point,
featuring two well-separated miscibility gaps. These represent
two independent LLE regions governed by their respective
Fig. 5 Illustration of the bifurcation anomaly of the water + hexanal
system predicted by COSMO-SAC-2010. The LLE curve initially widens
but bends sharply at higher temperatures (bold red line). Gibbs energy
analysis reveals two distinct LLE regions with separate LCST that merge
into a single LLE. Panel (a) shows two LLE regions below the merging
point; panel (b) shows one stable LLE above.

3198 | Digital Discovery, 2025, 4, 3191–3207
LCST. As temperature rises, the inner binodal points converge,
merging the two curves. Inset (b) captures the behavior above
the intersection, where only a single LLE remains and the inner
binodal tangents become unstable, as described by Novák
et al.33 Notably, four spinodal points do not always yield dual
LLE curves unless the tangents connecting binodal pairs are
true tangents, not secants—a condition requiring the inner and
outer points to align consistently without producing physically
unrealistic crossings.

Such complex phase behavior is not merely theoretical. The
binary system methylisopropyl ketone + water exhibits two
biphasic regions at different pressures and even three coexist-
ing liquid phases (LLLE) at intermediate pressure, as shown
experimentally by Steiner and Schadow.34 COSMO-SAC predicts
this behavior from rst principles, supporting the plausibility of
bifurcation anomalies and demonstrating its capability to
capture complex multiphase equilibria. The alternating
tangents method27 was extended to handle multiple spinodal
regions, enabling robust treatment and preventing
misinterpretation.

2.5 Statistical evaluation

Following the computational modeling of LLE with the COSMO-
SAC framework, a quantitative assessment of the predictive
accuracy was performed by comparing calculated and experi-
mental values of key thermodynamic properties. The primary
variables of interest are temperature T and mole fraction xi.
Another variable that lends itself for statistical evaluation in the
context of LLE is the distribution coefficient Ki, which
condenses the entire phase equilibrium information of
a system into a single value

Ki ¼ xL1
i

xL2
i

¼ gL2
i

gL1
i

: (9)

Here, xL1i and xL2i are the mole fractions of component i in the
two liquid phases, and gL1

i , gL2
i are the corresponding activity

coefficients. To quantify deviations from experiment, the
average deviation (AD) and average absolute deviation (AAD)
were computed

ADX ¼ 1

N

XN
k¼1

�
X calc

k � X
exp
k

�
; (10)

AADX ¼ 1

N

XN
k¼1

��X calc
k � X

exp
k

��: (11)

Therein, X serves as a placeholder for the variables x1, T, or K1,
while N is the number of experimental data points. The AAD
reects the average magnitude of deviation, while the AD
captures systematic bias, with positive and negative values
indicating over- or underprediction, respectively.

2.5.1 Projection alignment for statistical evaluation.
Unlike mole fraction deviation, which primarily requires phase
consistency between experimental and predicted values,
temperature deviation demands additional structural consid-
erations. Mole fraction deviations are calculated by matching
each experimental point to the corresponding phase (L1 or L2)
© 2025 The Author(s). Published by the Royal Society of Chemistry
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on the predicted binodal. Temperature deviations, by contrast,
require distinguishing between different regions of the binodal
curve—particularly in systems with closed-loop or non-UCST
behavior. In such cases, experimental points must be pro-
jected vertically onto the corresponding section of the calcu-
lated curve (see Fig. S4 of the SI).

3 Results

COSMO-SAC-2010 and COSMO-SAC-dsp were benchmarked for
their ability to detect LLE, classify phase behavior, and quan-
titatively predict experimental binodals. Qualitative prediction
success is rst assessed, followed by a detailed classication of
LLE types and critical phenomena. Quantitative accuracy is
then analyzed through deviations in terms of mole fraction,
temperature, and distribution coefficient. Finally, systematic
trends of homologous series are examined, highlighting the
models' capabilities in solvent screening applications.

3.1 Preliminary assessment of LLE predictions

The rst step in evaluating the model performance is to
examine their ability to qualitatively predict whether LLE exist
for a given binary system. While this comparison does not yet
evaluate the accuracy of the predicted phase boundaries, it
merely provides an overview of how the models differ in their
general capability to capture LLE occurrence.

Fig. 6 summarizes the success rates of both model variants
under two conditions: the full dataset comprising 2478 binary
systems with available experimental data and s-proles, and
a reduced dataset limited to 2258 systems with assigned
dispersion parameters 3molecule. In the full dataset, COSMO-
SAC-2010 identied LLE in 2155 systems and COSMO-SAC-dsp
Fig. 6 LLE prediction success rates of COSMO-SAC-2010 and
COSMO-SAC-dsp. (a) Full dataset of 2478 binary systems with avail-
able experimental data and s-profiles. (b) Reduced dataset of 2258
binary systems where valid dispersion parameters 3molecule are also
available. The asterisk (*) indicates an estimated 7% increase in pre-
dicted LLE occurrences, if dispersion parameters would be available
for all relevant substances.

© 2025 The Author(s). Published by the Royal Society of Chemistry
in 2075, with combined predictions capturing 2240 systems
(90.4%). This number is likely to be higher if dispersion
parameter data were complete.

Because COSMO-SAC-dsp applies only to systems with valid
3molecule values, its predictions are restricted to a subset of 2258
binary systems. Within this set, COSMO-SAC-2010 and COSMO-
SAC-dsp predict LLE in 1994 and 2075 cases, respectively, with
a combined success rate of 92.1%. Importantly, COSMO-SAC
does not predict LLE by default; each result emerges from the
model's underlying thermodynamics. The high success rates
thus reect genuine predictive performance, not an artifact of
the method.

The results in Fig. 6 reveal several key trends: COSMO-SAC-
2010 achieves success rates of 87.0% and 88.3% in the full
and constrained datasets, respectively. COSMO-SAC-dsp rea-
ches 83.7% in the full dataset, with an estimated increase to
90.5% if dispersion parameters were available for all s-proles.
Despite its broader coverage, COSMO-SAC-dsp does not super-
sede the 2010 variant: it misses LLE in four systems captured by
COSMO-SAC-2010, while uniquely identifying 85 systems not
detected by the latter. These differences underscore the
complementary nature of the two model variants.
3.2 Classication and characterization of LLE types

To evaluate the diversity of phase behavior predicted by the
COSMO-SAC model, a classication scheme was established
based on structural features in computed phase diagrams.
Unlike experimental data, which reveal a broad range of LLE
types, COSMO-SAC predictions consistently yield at least one
UCST per system—except in rare diverging cases.

Fig. 7 shows typical phase behaviors predicted by COSMO-
SAC. Most common are (a) UCST and (b) closed loop LLE with
both UCST and LCST. Other topologies include (c) hourglass
shapes, (d) droplet-like boundaries, and (e) valley-shaped gaps.
Some systems exhibit (f) emerging or (g) fully detached
immiscibility regions. More complex cases include (h) double
LCST, (i) LCST with an island, and (j) two UCST and two LCST
forming distinct, closed loops. The most intricate case is (j),
with two UCST and two LCST. Unlike bifurcation anomalies,
both form distinct closed loops, resembling a fused dual LLE
system.

Further deviations from classical behavior appear in panels
(k) and (l). One system exhibits a diverging LLE, with bound-
aries extending beyond the screening range. Another reveals
a chromosome-like topology where the solver passed a pinch
point and uncovered a second stable solution. The lower
branch, indicated by a dashed line, is interpreted as a meta-
stable artifact, reecting the occasional stabilization of
spurious LLE solutions in systems with island-type complexity.
Interestingly, none of the COSMO-SAC predictions display
a purely LCST-driven demixing—a signicant departure from
experimental observations. Since LCST behavior is generally
associated with entropy-driven phase separation,35,36 this
discrepancy suggests that the COSMO-SAC models may over-
emphasize enthalpic interactions, potentially due to inherent
modeling assumptions.
Digital Discovery, 2025, 4, 3191–3207 | 3199
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Fig. 7 Qualitatively different LLE types predicted by COSMO-SAC-2010 (black) and COSMO-SAC-dsp (red). The classification distinguishes
between traditional behaviors, such as UCST (a) and closed-loop (b), andmore complex structures, including hourglass (c), raindrop (d), valley (e),
and island (g). No purely LCST-driven separations were predicted, but multiple UCST or UCST-LCST combinations. Systems shown are listed in
Table S3 of the SI.
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3.3 Mutually exclusive binodals and critical point
distribution

An intriguing observation emerges when comparing the LLE
curves predicted by COSMO-SAC-2010 and COSMO-SAC-dsp:
their binodal envelopes are always distinct and either fully
envelop or are enveloped by the other, without mutual inter-
section. This strict nesting behavior, evident in Fig. 7, permits
a signicant simplication: each LLE curve can be represented
by a single scalar value, namely the UCST. Since the binodals
never intersect, a higher UCST directly implies a broader
miscibility gap, making it a robust metric for comparing the two
model variants. This also reveals systematic tendencies—if one
model overestimates the miscibility gap, the other necessarily
does so to a greater extent.

This trend is visualized in Fig. 8, which shows the UCST
distribution and associated critical mole fractions. For clarity,
mole fractions were mirrored such that COSMO-SAC-2010 data
appear in the le half (xi ˛ [0, 0.5]) and COSMO-SAC-dsp in the
right half (xi ˛ [0.5, 1]). This transformation—xi / min(xi, 1 −
xi) or xi / max(xi, 1 − xi), depending on the variant—preserves
physical validity while enhancing interpretability and
symmetry. It enables a clearer analysis of clustering and
systematic behavior across both models.
3200 | Digital Discovery, 2025, 4, 3191–3207
Most predicted UCST lie between 200 K to 500 K, with critical
mole fractions clustering around xi = 0.25 to 0.75. A noticeable
high-temperature cluster above 700 K, composed almost
entirely of aqueous systems, appears in both model variants
(see Fig. S5 of the SI). At lower temperatures, critical points tend
to shi toward composition edges, suggesting broader asym-
metry. Despite the lack of thermodynamic anchor points and
the model's sole reliance on gi, nearly all predicted UCST lie
within the experimentally sampled range of 87.6 K to 694.65 K,
underscoring the predictive power of COSMO-SAC.

Statistically, COSMO-SAC-dsp predicts a higher UCST than
COSMO-SAC-2010 for 79.6% of all systems, indicating
a systematic overestimation of the miscibility gap width. In the
subset of cases where COSMO-SAC-dsp yields a lower UCST,
87.7% involve aqueous mixtures, suggesting that dispersion
corrections disproportionately affect strongly polar or
hydrogen-bonded systems.

3.3.1 Absence of UCST. About 9% of COSMO-SAC-dsp
predictions (192 out of 2075 systems) exhibit no UCST within
the scanned range up to 2000 K, indicating diverging LLE
behavior. This anomaly, shown in Fig. 7k, is exclusive to
COSMO-SAC-dsp and strongly linked to carbon dioxide (54.7%),
nitromethane (39.6%), and nitroethane (5.2%). These
compounds share polar double-bonded oxygen groups—such
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Predicted UCST and corresponding mole fractions for all
systems where both COSMO-SAC-2010 (black) and COSMO-SAC-
dsp (red) yield LLE. To enhance visual clarity and distinguish between
model variants, mole fractions were mirrored: COSMO-SAC-2010 is
shown on the left half (xi ˛ [0, 0.5]) and COSMO-SAC-dsp on the right
half (xi ˛ [0.5, 1]). Histograms display the distributions of UCST and
critical mole fractions, respectively. Green horizontal lines indicate
bounds where experimental LLE data are available.
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as the linear carbonyl-like C(]O)]O structure of CO2 and the
nitro group N(]O)O−—which may promote long-range direc-
tional interactions. Further details are provided in Section S5 of
the SI.
3.4 Quantitative assessment of predictive accuracy

To provide a more detailed quantitative assessment of model
accuracy, the AADx of the mole fraction was evaluated across all
systems, grouped by chemical family combinations. Each
binary system was assigned to a pair of chemical families,
enabling a dense and informative matrix representation of
family–family interactions, as shown in Fig. 9. The focus on
mole fraction deviations is motivated by the fact that LLE are
inherently dened at a xed temperature, and mole fractions
directly describe the composition of the coexisting liquid pha-
ses, offering a natural basis for comparison. This focus enables
a detailed evaluation while retaining a concise discussion.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Deviations in other quantities—such as T, K1, x
L1
1 , and xL12 —

are provided in the SI.
To ensure a robust quantitative comparison, additional data

exclusion steps were applied beyond that for the qualitative
assessment. Specically, all experimental data points measured
at pressures above 10 bar were excluded, following the proce-
dure of Fingerhut et al.14 In their VLE study, this threshold was
chosen to approximate ideal gas behavior. In the context of LLE,
although the liquid phase is oen treated as incompressible,
pressure effects cannot be fully neglected at elevated pressures.
Experimental LLE data frequently showed steep or discontin-
uous curve segments, which likely belong to remote isobars and
are not directly comparable to ambient-pressure predictions.

3.4.1 Pairwise evaluation of chemical family interactions.
Fig. 9 uses a dual-circle grid to compare the AADx of both model
variants for each family pair. In total, 107 family–family
combinations were evaluated. Among these, 87 are shared by
both model variants, while 20 are only represented by COSMO-
SAC-dsp. This does not necessarily imply that COSMO-SAC-2010
failed to predict LLE in those cases; rather, it may reect the
absence of corresponding experimental data points at compa-
rable x1 values, which are required for evaluating AADx under
the applied projection scheme.

Among the 87 directly comparable chemical family pairs,
COSMO-SAC-2010 performs better in 44 cases (i.e. 50.6% of all
pairs), COSMO-SAC-dsp in 20 cases (23.0%), with near-identical
accuracy (<1% difference) for the remaining 23 cases (26.4%).
The most notable improvements from dispersion were found
for amines + aromatics (AADx reduced from 50.5% to 21.9%),
alkanes + halogenated hydrocarbons (DAADx: −12.7%), and
acids + aromatics (DAADx: −11.6%). Aqueous systems also
benet notably, e.g., water + epoxies (DAADx:−11.0%) and water
+ (iso)nitriles (DAADx: −8.6%).

Conversely, the highest AADx for COSMO-SAC-dsp occurs for
esters + multifunctionals (48.2%) and gas-containing pairs, due
to carbon dioxide. The largest deteriorations appear for other
nitrogens with ethers, alkenes, alcohols, or alkanes (up to
DAADx: +21.6%), and for alkanes + anhydrides. Still, over
a quarter of family pairs yield comparable AADx for both
models, especially in weakly interacting systems, such as alco-
hols + gases or alkanes + ethers. Best performance is seen for
water with alkynes, alkanes, alkenes, or halogenated hydrocar-
bons, and for (iso)nitriles or amides with aromatics.

3.4.2 Individual family contributions to predictive error.
Fig. 10 shows the AADx for each individual chemical family.
Across most families, COSMO-SAC-dsp exhibits systematically
larger AADx compared to its 2010 counterpart, reaffirming
earlier observations of a general overprediction of the misci-
bility gap width upon inclusion of the dispersion term. A
notable exception is observed for epoxies, where COSMO-SAC-
dsp yields a smaller AADx. However, this result is based on
a single data point versus 23 data points in COSMO-SAC-2010,
rendering the comparison statistically unreliable.

The largest individual AADx values occur for the “Gases” and
“OtherNitrogens” families, though closer inspection reveals
that these families are represented by only a few components
aer exclusion based on pressure, dispersion parameters, and
Digital Discovery, 2025, 4, 3191–3207 | 3201
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Fig. 9 Grid of all occurring chemical family pairs, with circle areas indicating the AADx values for COSMO-SAC-2010 and COSMO-SAC-dsp. The
smaller circle is always plotted on top to visualize which model variant performs better. Pairs involving water are treated separately and shown
below the main grid with a dedicated bar plot.
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data availability. In the case of “Gases”, only carbon dioxide
remains, while the “OtherNitrogens” family is dominated by
nitromethane and nitroethane—precisely the systems where
COSMO-SAC-dsp predicts diverging LLE behavior, leading to
disproportionately large deviations. In contrast, chemically
more balanced families, such as acids and esters, exhibit
similar AADx values across both model variants. Overall, the
AADx amounts to 9.9% for COSMO-SAC-2010 and 13.0% for
COSMO-SAC-dsp, with the difference largely driven by these few
problematic systems.

This result is remarkable when viewed in the broader context
of previous studies. The total AADx for LLE predictions aligns
closely with previous solubility studies applying COSMO-SAC to
pharmaceutical systems (12.6%),6 despite the absence of
3202 | Digital Discovery, 2025, 4, 3191–3207
external anchor points such as the melting temperature used in
SLE. Furthermore, activity coefficient deviations of COSMO-SAC
can span a wide range—from 0% near the pure component
limit to as much as 300% at innite dilution.14 Given that LLE is
determined solely by gi across the entire composition space,
this level of accuracy is notable. By contrast, the lower AADx

typically observed in VLE can be partially attributed to the
presence of a reference point, such as a boiling point, which
constrains both temperature and composition predictions.
Furthermore, the evaluation by Fingerhut et al.14 was limited to
vapor-phase mole fractions, whereas LLE requires accurate
predictions for both coexisting liquid phases.

3.4.3 Overall model accuracy and systematic deviations.
Table 4 summarizes the statistical performance of both
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 AADx in terms of mole fraction for each chemical family,
comparing COSMO-SAC-2010 (black) and COSMO-SAC-dsp (red).
Bar lengths scale with 100$AADx; numerical labels indicate the number
of experimental data points per family. Dashed lines mark the total
AADx of the two model variants. COSMO-SAC-dsp generally shows
larger deviations, mainly driven by outliers such as CO2 (“Gases”) and
polar nitrogen compounds (“OtherNitrogens”).

Table 4 Statistical comparison of COSMO-SAC-2010 and COSMO-
SAC-dsp over all evaluated LLE systems, reporting AD, AAD, and the
effective number of data points Neff for mole fractions x1,
xL11 , xL21 , temperature T, and distribution coefficient K1

COSMO-SAC-2010 COSMO-SAC-dsp

AD AAD Neff AD AAD Neff

x1 0.0021 0.0988 40 449 0.0017 0.1298 43 269
T 35.85 K 81.83 K 40 444 62.56 K 99.85 K 39 069
K1 −0.0717 0.1344 9803 −0.1031 0.1707 10 343
xL11 −0.0587 0.1052 20 212 −0.0959 0.1369 21 659
xL21 0.0627 0.0923 20 237 0.0995 0.1227 21 610
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COSMO-SAC model variants across all evaluated systems. It
reports the AD, AAD, and number of contributing data points
Neff for the key variables, including temperature T, overall
composition x1, phase-specic mole fractions xL11 , xL21 , and
distribution coefficient K1. While the total AADx offers a general
measure, a phase-specic analysis reveals systematic trends.
For example, both COSMO-SAC variants consistently underes-
timate xL11 and overestimate xL21 , resulting in a near-zero overall
AD for x1 due to cancellation—yet clearly indicating a tendency
to overpredict the miscibility gap width. This is also reected by
the negative ADK values of K1.

The contributing data points are well balanced not only
between phases, but also between temperature and mole frac-
tion for COSMO-SAC-2010, ensuring an overall unbiased eval-
uation. COSMO-SAC-dsp generally covers more data by
predicting LLE for a larger number of systems, but also exhibits
more temperature mismatches. This is because diverging LLE—
© 2025 The Author(s). Published by the Royal Society of Chemistry
predicted exclusively by COSMO-SAC-dsp—lack a dened UCST,
preventing meaningful comparison and thus reducing the
effective sample size for AADT.

The AADT reaches approximately 82 K for COSMO-SAC-2010
and 100 K for COSMO-SAC-dsp, which may appear large.
However, due to the geometry of typical LLE envelopes—at
near the UCST and steep at the binodal edges—small compo-
sition errors can produce large temperature deviations, and vice
versa. This sensitivity is examined in Section S7 of the SI using
synthetic LLE curves. The results show that minor shis inmole
fraction can cause signicant temperature errors when pro-
jected onto steep binodal regions, and small temperature
offsets can distort composition near the critical points. These
effects highlight the need for caution when interpreting AAD in
LLE contexts and suggest that additional metrics may help to
provide a fuller picture of model performance.
3.5 Benchmark against other predictive models

A dedicated benchmark was performed to compare COSMO-
SAC with established predictive models using a reference LLE
dataset. This dataset was compiled and analyzed in the context
of model comparison by Elliott et al. and is published in the 6th
edition of the textbook The Properties of Gases and Liquids.37 It
contains 96 binary systems composed of 78 substances and
a total of 12 546 individual data points, offering a solid basis for
reliable benchmarking. The dataset is provided by the NIST
Thermodynamics Research Center (TRC) and is accessible at
https://pgl6ed.byu.edu/.

Table 5 compares the performance of various LLE prediction
methods using the reference dataset. Unlike the AADx metric
used throughout this work, the textbook employs the
percentage average absolute logarithmic deviation (AALDS),
dened as

AALDSh
1

n

Xn

i¼1

����ln
�
xcalc
i

x
exp
i

������ 100; (12)

where xi is the mole fraction of the dilute component.
Among all models considered in ref. 37, COSMO-SAC

outperforms COSMO-RS for nonaqueous systems, with
COSMO-SAC-2010 setting the benchmark by achieving the
lowest AALDS of all models. For aqueousmixtures, the picture is
reversed: COSMO-RS performs best, while COSMO-SAC-2010 is
Digital Discovery, 2025, 4, 3191–3207 | 3203
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Table 5 Evaluation of methods for LLE prediction. Results for UNIFAC and COSMO-RS are adapted from Elliott et al.37 COSMO-SAC results were
calculated in this study

Method

Nonaqueous Aqueous Overall

Systems Points AALDS Systems Points AALDS Systems AALDS

UNIFAC-VLE 47 4334 86.3 42 7576 62.1 89 70.9
UNIFAC-NIST/KT 42 3982 79.8 42 7576 124.6 84 109.2
UNIFAC-NIST/Mod 47 4334 49.5 41 7537 66.9 82 60.5
UNIFAC-Dortmund 43 5063 65.1 36 5962 68.2 79 66.8
COSMO-RS/FSAC2 25 3419 124.4 27 4376 61.0 52 88.8
COSMO-RS/GAMESS 40 4204 139.9 36 5905 55.3 76 90.5
COSMO-SAC-2010 34 3121 37.9 47 7772 112.6 81 91.2
COSMO-SAC-dsp 39 3805 116.7 45 7178 130.9 84 126.0
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moderate and COSMO-SAC-dsp weakest. Overall, COSMO-SAC-
2010 reaches a level comparable to COSMO-RS, with each
showing complementary strengths. While the UNIFAC-NIST/
Mod variant attains the lowest overall AALDS, this reects
extensive parameterization to experimental data, whereas
COSMO-SAC and COSMO-RS are fully predictive. From this
perspective, COSMO-SAC emerges as a solid, open-source
alternative to COSMO-RS.
3.6 Capturing systematic behavior with COSMO-SAC

Beyond overall predictive accuracy, it is worthwhile to assess
how well COSMO-SAC captures systematic trends within
homologous series. This aspect is particularly relevant when
absolute agreement with experimental data is less critical than
understanding the relative behavior of similar systems. One
representative case is shown in Fig. 11, which depicts the pre-
dicted LLE envelopes for mixtures of acetonitrile with n-alkanes.

Despite deviations in the exact location of the binodal
curves, COSMO-SAC-2010 successfully reproduces key qualita-
tive trends observed experimentally. In particular, it captures
the systematic shi of the critical point toward higher temper-
ature and higher acetonitrile mole fraction as the chain length
Fig. 11 Predicted LLE envelopes for mixtures of acetonitrile with n-
alkanes (n-butane to n-hexadecane) using COSMO-SAC-2010.

3204 | Digital Discovery, 2025, 4, 3191–3207
increases. This behavior reects the rising hydrophobicity of
longer alkanes and their reduced affinity for polar solvents such
as acetonitrile.

Moreover, the model accurately predicts the change of the
LLE envelope shape across the series: while the n-butane
mixture exhibits an almost symmetric phase diagram, the
systems with longer alkanes—such as hexadecane—show
pronounced asymmetry, with the binodal curve being increas-
ingly skewed toward pure acetonitrile. The fact that such shis
in topology are qualitatively captured without any parameter
optimization, highlights the power of COSMO-SAC in predicting
relative tendencies within chemical families.

From a practical perspective, this makes COSMO-SAC
particularly useful for solvent screening tasks, where relative
positioning of miscibility gaps may be more informative than
exact critical temperatures. Applications include the selection of
extraction solvents, where homologous series like alkanes,
alcohols, or esters are frequently evaluated, as well as the design
of phase-change solvent systems for separations or pharma-
ceutical formulations. In such contexts, the ability to reliably
capture directional trends within chemical families—even
without perfect numerical agreement—can signicantly accel-
erate and de-risk early-stage decision making. This underscores
the potential of COSMO-based models not just as quantitative
predictors, but as powerful qualitative guides in chemical
process design.

While only COSMO-SAC-2010 results are shown in Fig. 11 for
clarity, it is worth noting that COSMO-SAC-dsp exhibits
comparable predictive behavior.
3.7 Enhancing reproducibility and screening with
ThermoSAC

The complete LLE workow developed in this study is available
in the open-source Python package ThermoSAC. It also inte-
grates the SLE functionality from previous work,6 continuing
the SLE.solubility() method from COSMOPharm and com-
plementing it with a substantially expanded LLE.miscibility()
interface. Built with a modular, object-oriented design inspired
by phasepy,38 ThermoSAC represents components and mixtures
as class objects that interface with activity coefficient models,
enabling unied workows across SLE and LLE.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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The LLE.miscibility() method encapsulates the full adaptive
tracing algorithm developed in this work, including forward
and reverse screening, automatic step-size control, and optional
spinodal detection. A dedicated GMixScanner class further
supports robust and parallelizable detection of initial LLE
regions through Gibbs energy scans, with methods such as
nd_rst_binodal() and nd_all_binodal() tailored for early
screening and anomaly detection. The package, including
documentation and examples, is available at https://
github.com/ivanantolo/thermosac and is intended as
a reusable tool for model development, reproducibility, and
educational applications.

4 Conclusion

This study presents a systematic and large-scale evaluation of
the COSMO-SAC activity coefficient model for predicting LLE
across diverse binary systems. Two model variants—COSMO-
SAC-2010 and COSMO-SAC-dsp—are assessed over more than
2400 binary mixtures and nearly 75 000 experimental data
points, providing a detailed benchmark of predictive capabil-
ities, limitations, and applicability across chemical families and
LLE types.

A central contribution of this work lies in the development of
an automated, robust workow for high-throughput LLE
tracing, featuring forward and reverse screening, adaptive
sampling, and anomaly detection. The framework allows for
precise localization of phase boundaries and critical points, and
facilitates comprehensive statistical evaluation across systems
with diverse phase behaviors—including UCST, LCST, and
complex bifurcating or closed-loop topologies.

The COSMO-SAC model achieves a qualitative success rate
exceeding 90% in identifying LLE occurrence, demonstrating
robustness across chemically diverse systems without reliance
on system-specic tuning. Benchmarking against other
predictive models shows that COSMO-SAC outperforms
COSMO-RS for nonaqueous systems, with COSMO-SAC-2010
setting the benchmark. For aqueous mixtures the trend is
reversed, with COSMO-RS performing best, while COSMO-SAC-
2010 is moderate and COSMO-SAC-dsp weakest. Overall,
COSMO-SAC-2010 is comparable to COSMO-RS, with comple-
mentary strengths, whereas the UNIFAC-NIST/Mod variant
attains the lowest total AALDS through parameterization to
experimental data.

Both COSMO-SAC variants effectively capture systematic
trends within homologous series, correctly predicting relative
shis in critical temperature and asymmetry of the miscibility
gap. This capability is valuable for solvent screening and
process design, where relative performance within chemical
families oen outweighs the need for exact numeric agreement.
Quantitatively, COSMO-SAC-2010 achieves a total AADx of 9.9%
and AADT of 81.8 K, conrming it as the more precise variant
overall. COSMO-SAC-dsp provides broader coverage, though
with slightly larger deviations (13.0% AADx, 99.9 K AADT).

In summary, this work delineates the performance land-
scape of COSMO-SAC for LLE prediction and provides an open-
source infrastructure with benchmark data to support future
© 2025 The Author(s). Published by the Royal Society of Chemistry
model development. The present insights advance the use of
COSMO-based methods in solvent screening and process
design, with implications for separation technologies, green
chemistry, and pharmaceutical applications. Ongoing research
into rened interaction terms, extended segment descriptors,
and hybrid modeling strategies—as exemplied by develop-
ments in openCOSMO-RS, which incorporates London-type
dispersion potentials39–42—promises to further enhance the
reliability and reach of rst-principles phase equilibrium
predictions.
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