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Harnessing Surrogate Models for Data-efficient Predic-
tive Chemistry: Descriptors vs. Learned Hidden Repre-
sentations †

Guanming Chen,a Thijs Stuyver,a∗

Predictive chemistry often faces data scarcity, limiting the performance of machine learning (ML)
models. This is particularly the case for specialized tasks such as reaction rate or selectivity prediction.
A common solution is to use quantum mechanical (QM) descriptors—physically meaningful features
derived from electronic structure calculations—to enhance model robustness in low-data regimes.
However, computing these descriptors is costly. Surrogate models address this by predicting QM
descriptors directly from molecular structure, enabling fast and scalable input generation for data-
efficient downstream ML models. In this study, we compare two strategies for using surrogate models:
one that feeds predicted QM descriptors into downstream models, and another that leverages the
surrogate’s internal hidden representations instead. Across a diverse set of chemical prediction tasks,
we find that hidden representations often outperform QM descriptors, particularly when descriptor
selection is not tightly aligned with the downstream task. Only for extremely small datasets or when
using carefully selected, task-specific descriptors do the predicted values yield better performance.
Our findings highlight that the hidden space of surrogate models captures rich, transferable chemical
information, offering a robust and efficient alternative to explicit descriptor use. We recommend this
strategy for building data-efficient models in predictive chemistry, especially when feature importance
analysis is not a primary goal.

Introduction
A common issue faced when designing data-driven models in
chemistry is data scarcity.1,2 For many specialized predictive
tasks, e.g., prediction of reaction rates, enantiomeric excess, and
solvation energies, only limited amounts of relevant and accurate
data can be mined from the literature, and high-throughput ex-
perimentation is technically challenging and/or prohibitively ex-
pensive.3,4 As a consequence, datasets for these types of tasks typ-
ically only contain several hundred, up to a couple of thousand,
data points at best. In such a data-limited regime, conventional
machine learning (ML) algorithms tend to perform poorly.

One strategy to address the issue of data scarcity consists of rep-
resentation engineering, i.e., describing the molecules/reactions
through a limited set of (carefully selected) informative, phys-
ically meaningful descriptors, so that a robust relationship be-
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005 Paris, France. E-mail: thijs.stuyver@chimieparistech.psl.eu
† Supplementary Information available: [details of any supplementary information
available should be included here]. See DOI: 00.0000/00000000.
‡ Additional footnotes to the title and authors can be included e.g. ‘Present address:’
or ‘These authors contributed equally to this work’ as above using the symbols: ‡, §,
and ¶. Please place the appropriate symbol next to the author’s name and include a
\footnotetext entry in the the correct place in the list.

tween ML model input and output can be learned.5–7 Quantum
mechanical (QM) descriptors are a particularly popular choice in
this regard. Unfortunately, the calculation of such descriptors typ-
ically requires resource-intensive density functional theory (DFT)
calculations,8–12 which limits the applicability of this approach to
big datasets, as well as to use cases where inference is expected
at a high-throughput speed.

An alternative strategy that has been pioneered in recent years
is to avoid the explicit calculation of QM descriptors, by predict-
ing their values for unseen molecules and/or reactions with the
help of a surrogate ML model.1,13–16 Taking this approach, QM
descriptors can be inferred on-the-fly, so that the generation of
the input representation of the downstream model can be seam-
lessly integrated into a single end-to-end model. This aggregate
model then rivals regular ML models in terms of inference speed
and computational resource footprint, while enabling higher ac-
curacy and increased robustness due to the physical information
encoded in the intermediately predicted descriptors.

Of course, setting up such a surrogate model still requires an
initial training dataset, constructed through high-throughput QM
calculations. However, once generated, this data, as well as the
resulting surrogate models, can be applied to – and repurposed
for – different downstream prediction tasks. Consequently, a
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Fig. 1 Predictive chemistry with surrogate models: scheme of the surrogate model and the downstream reactivity prediction model architectures
employed in this study, taking reaction prediction as an example. The Surrogate Model is trained with external quantum chemical descriptor datasets
to generate informative representations on-the-fly. The SMILES representation of a molecule is first converted into a 2-D molecular graph, and then a
(multi-layer) D-MPNN is employed to generate hidden representations for each atom and bond within this molecule, based on which multiple FFNNs,
serving as readout functions, predict individual descriptors. The Reactivity Model uses LR, RF, FFNN or GNN as backbone and is augmented with
the on-the-fly reaction representation generated by the surrogate model to predict reactivity targets. Previous studies leveraged the explicitly predicted
descriptors, while in this study, the learned hidden representations of the surrogate model are utilized directly as input.

range of high-throughput QM datasets have been released in re-
cent years. In addition to the prototypical QM9 dataset,17 one
of the earliest large-scale examples was the QMugs18,19 dataset,
which contains a wide range of quantum mechanically (QM) com-
puted descriptors and properties for 665k biologically and phar-
macologically relevant molecules extracted from the ChEMBL20

database. Other examples include the QM4021 dataset, which
contains QM properties for 163k compounds extracted from the
ZINC22 database, the QCDGE23 dataset, which contains both
ground- and excited-state properties for 450k C, H, N, O, F con-
taining compounds, the BDE-db24 dataset, which contains QM
descriptors for more than 200k organic radicals, and the tmQM25

dataset, which contains properties for 86k transition metal com-
plexes.

The growing availability and diversity of public QM descriptor
datasets indicate that surrogate modeling will become increas-
ingly accessible — and presumably more widely adopted as a
consequence — in the years to come. As such, it is important
to establish guidelines on how the QM information, captured in
these datasets, can be leveraged optimally for downstream tasks.

Taking a closer look at the typical architecture of the surrogate
models used so far1,14,15, one can conclude that they generally
start from a SMILES string from which a molecular graph is de-
duced. The atomic vectors of this graph are subsequently embed-
ded into a learned (hidden) representation, after which multiple
feed-forward neural networks (FFNN), or readout functions, lead
to the actual QM descriptors, that is, the surrogate model targets

(Fig. 1).

Starting from this realization, a natural question arises: how
does directly using the final hidden representation of the embed-
der in the surrogate model as input for the downstream model
compare to the conventional surrogate model approach of intro-
ducing the predicted QM descriptors as the input, or as supple-
mentary features, for the downstream ML model?

Note that the alternative hidden representation strategy, intro-
duced above, is conceptually connected to a pre-training strat-
egy: a model is first trained on an extensive descriptor dataset,
after which the weights in the trained encoder are frozen, and
the prediction heads, leading to the descriptors, are detached and
replaced by pristine heads that lead to the targets of the down-
stream task.26–30

Intuitively, arguments can be devised in favor of a superior per-
formance for either the descriptors or the hidden representation
approach. On the one hand, the readout process to go from hid-
den representation to QM descriptors may result in information
loss due to the compression of certain, useful, hidden features,
i.e., the learned hidden space may contain some features that
are beneficial for downstream tasks, which are not transferred
when QM descriptors are used as input for the latter model. On
the other hand, the hidden representations themselves are usu-
ally high-dimensional (e.g., 1200 dimensions for a single atomic
representation), and hence they may be inherently non-linear,
and/or may contain a high degree of redundancy (i.e., many
dimensions either correlate only very weakly with downstream
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targets, or are largely co-linear with some of the other hidden di-
mensions). As such, the high-dimensionality may make it difficult
to fully leverage the encoded information under sparse data con-
ditions, which is typically the case for the downstream tasks for
which we would want to use a surrogate model.

In this work, incorporating predicted QM descriptors, and di-
rectly utilizing the hidden space of the surrogate model, will be
compared head-to-head for a selection of representative down-
stream tasks, mainly within the realm of chemical reactivity.

Our results suggest that only when a carefully engineered – and
complete – set of descriptors is selected, the direct use of QM de-
scriptor values may result in a superior performance of the down-
stream model. In most cases, however, and especially when de-
scriptors are selected without too much attention to the underly-
ing physics/chemistry of the downstream task (which is typically
the case when descriptors are added to a predictive model)1,14,31,
leveraging the surrogate model’s hidden space actually results in
a better predictive performance – the discrepancy is often signifi-
cant. As such, unless gaining qualitative insights through feature
importance analysis is the main goal of the study32–34, we pro-
pose as a general recommendation to focus on the hidden space of
surrogate models to enhance predictive models for downstream
tasks, not the predicted descriptors themselves.

Methodology

Selected datasets

Here, we focus on three case studies, in which surrogate mod-
els for QM descriptor prediction have been successfully applied
before.

First, we focus on the work by Alfonso-Ramos and co-
workers15 on hydrogen atom transfer (HAT) reactivity, where the
aim consisted of accurately predicting activation energies (∆G‡)
for a variety of small, downstream datasets. In this study, the
previously mentioned BDE-db database was used to construct the
surrogate model. The relevant QM descriptors were identified
through a careful Valence Bond (VB) analysis for a generic HAT
model reaction (see Section S1 in the Supporting Information for
an in-depth discussion). Specifically, the following descriptors
were mined from BDE-db: (1) partial charges and spin densities
as atom-level descriptors; (2) buried volume, frozen bond dissoci-
ation energy (BDE), and bond dissociation free energy (BDFE) as
molecule-level descriptors. The vector, obtained by concatenating
these descriptors on both the reactant and product sides, contains
14 elements.

The specific downstream datasets considered are: (1) In-
House, a dataset consisting of 1,511 DFT computed gas-phase
reaction profiles for pairs of organic compounds extracted from
BDE-db; (2) Alkoxy35, consisting of computed reaction profiles
for alkoxy radicals abstracting hydrogens from hydrocarbons and
heterosubstituted compounds in an acetonitrile solution, where
238 reactions were pre-selected for training and validation and
60 reactions for testing; (3) Exp. alkoxy36, a small dataset
of experimentally reported selectivities for 6 hydrocarbons by
CH3O·, and the corresponding 15 DFT-computed reaction bar-
riers; (4) Photoredox HAT37, 564 photoredox-mediated HAT

catalysis reactions with various allylic, propargylic, benzylic, alde-
hyde and alkyl substrates and O/N-based radical species extracted
from a larger data set published by Hong and co-workers37; (5)
Exp. cumyloxyl38, an experimental dataset containing 45 HAT
reactions from C(sp3)−H bonds by cumyloxyl radical; (6) Cy-
tochrome P45039, consisting of 24 activation energies for HAT
by the cytochrome P450 enzyme from organic compounds, where
6 reactions out of 24 are pre-selected for testing; (7) Atmo-
spheric HAT40, consisting of 73 HAT reactions encountered in at-
mospheric chemistry and extracted from RMechDB41. Except for
the In-House dataset, these sets were originally extracted from
the literature by Alfonso-Ramos et al.,15 with the aim to cover
a wide range of HAT settings (i.e., atmospheric, metabolic, and
synthetic reactivity), while staying as much as possible within the
scope of the surrogate model.

Secondly, we focus on the work by Guan et al.1 on predicting
experimentally observed regiochemistry for selective organic re-
actions extracted from the patent literature. In this case, the sur-
rogate model was trained on an in-house generated dataset of QM
descriptors computed at B3LYP/def2-SVP level-of-theory42–44 for
136k organic molecules, containing C, H, O, N, P, S, F, Cl, Br, I, Si,
B elements, curated from the ChEMBL and Pistachio45 databases.
For the selection of the descriptors, Guan et al. simply opted
to compute a series of the most frequently used local reactivity
indices, that is, (1) atomic charges, nucleophilic Fukui indices,
electrophilic Fukui indices46,47 and NMR48 shielding constants
as atomic descriptors; (2) bond lengths and bond orders as bond
descriptors.

The specific downstream datasets considered in this work, are:
(1) C-H, consisting of 2,244 aromatic C–H functionalization reac-
tions, (2) C-X, consisting of 1,024 aromatic C–X substitution, and
(3) Others, consisting of all selective substitution reactions that
do not fall in either of the previously mentioned categories (552
entries in total).

Finally, we focus on the work by Li et al.14, in which the sur-
rogate model approach was applied to a broad range of down-
stream tasks. Here, the surrogate model was trained on an in-
house generated dataset of QM descriptors computed at 6 dif-
ferent levels-of-theory for 65k organic molecules, extracted from
a range of public databases20,49–54. We decided to focus on the
descriptors computed at ωB97X-D/def2-SVP//GFN2-xTB level-of-
theory44,55,56. 37 descriptors were considered in total, 13 atom-
level descriptors (e.g., NPA charges57, Parr functions58, NMR
shielding constants, and valence orbital occupancies), 4 bond-
level (e.g., bond order, bond length, bonding electrons, and bond
natural ionicity), and 20 molecule-level descriptors (e.g., HOMO-
LUMO gap, ionization potential, electron affinity, and dipole and
quadrupole moments). In their work, Li et al., trained 3 separate
surrogate models (1 for both atom-level and bond-level, and 2 for
molecule-level descriptors). Here, because of the nature of the
downstream tasks, we focus on the surrogate models that predict
molecule-level descriptors.

In total, 16 downstream applications were considered in the
original work by Li et al.14 Here, we only consider a represen-
tative subselection of the corresponding datasets: (1) ESOL59,
an experimental regression dataset containing water solubilities
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for 1,127 molecules, (2) FreeSolv60, an experimental regres-
sion dataset, consisting of 642 hydration free energy values, (3)
QM917, a regression dataset consisting of 12 (quantum chemi-
cally computed) energetic, electronic and thermodynamic prop-
erties, for 134k organic compounds with up to 9 heavy atoms,
(4) HIV61, an experimental classification dataset indicating the
ability to inhibit HIV replication for 41,127 molecules, (5) Clin-
Tox62, an experimental classification dataset indicating the toxi-
city of 1,477 compounds. The above datasets are also available
through MoleculeNet62,63.

Note that the benchmarking datasets selected above for all
three case studies are identical to those in the original stud-
ies1,14,15, and even the same data splits are adopted to ensure
a fair comparison. Their summary is shown in Table 1.

Surrogate model architecture

In each of the three case studies mentioned above, a multi-
task deep learning model architecture, derived from the original
ChemProp model,27 was used as the surrogate. As such, this is
also the surrogate model architecture that we adopted here con-
sistently.

An in-depth discussion of the ChemProp architecture can be
found in a recent publication by Heid et al.27 In short, the
model starts by constructing a molecular graph from a SMILES
input, after which the graph is passed through a (multi-layer) di-
rected message passing neural network (D-MPNN) encoder. The
D-MPNN iteratively aggregates and updates information from
neighboring atoms and bonds and, as a result, encodes a molecule
into separate atom- and bond-level embeddings. These represen-
tations are then passed on to multiple FFNN readout functions,
where each FFNN is trained to predict one individual QM de-
scriptor. For molecule-level descriptors, the atom-level vectors
are first sum-pooled (or mean-pooled), before passing the final
hidden representation/embedding to the respective FFNN read-
out functions. For globally constrained atom-level descriptors –
e.g., the sum of all the atomic charges within a neutral molecule
should always be equal to zero – an attention-based correction is
applied to ensure that this constraint is satisfied.

For the second1 and third14 case studies, the surrogate models
were not retrained at any point, and hence, the hyperparameters
selected in the corresponding original works were adopted here
as well consistently. This means that the sizes of the atom- and
molecule-level hidden representations are also fixed and pre-set
– at 600 and 700/900, respectively.

For the first case study15, we also opted to use the original
trained surrogate model throughout the first part of our analysis.
Additionally, we also performed some tests where we retrained
the model on only a subset of the QM descriptors (vide infra),
but with the same hyperparameters. This means that the hid-
den atom- and molecule-level representations contain 1200 di-
mensions each by default. Furthermore, we also performed some
tests where we systematically modulated the hidden dimension
size, h, of the surrogate. As evident from the discussion in the fi-
nal section below, doing so does not affect the conclusions drawn
significantly.

Extraction of the hidden representation of the surrogate as
downstream model input

Before presenting the specific approach for the individual case
studies, we aim to specify more clearly what is meant in general
by “hidden representations” in our approach and where exactly
these are extracted in the surrogate model architecture. As shown
in Fig. 1, when a molecule is input into the surrogate model, it
undergoes several message-passing steps within the D-MPNN en-
coder. This results in learned vector embeddings for atoms and
bonds, with dimensionality determined by encoder settings. A
molecule-level embedding is then obtained via sum-pooling of the
atom-level vectors.

In the standard descriptor-based pipeline, these atom-,
bond-, and molecule-level embeddings are passed through
corresponding FFNNs to produce the respective (surrogate
model–dependent) descriptors. These descriptors are then con-
catenated to form the input to the downstream model.

In our hidden representation approach, we directly extract and
concatenate selected subsets of the learned atom-, bond-, and
molecule-level embeddings—bypassing the FFNNs altogether—to
construct alternative downstream model inputs. This custom se-
lection approach is necessary to ensure a fair comparison: both
approaches should only have access to the same underlying de-
scriptor information. Since descriptor generation varies between
case studies, the construction of the hidden representation inputs
must be modulated accordingly.

In the original HAT reactivity study,15 both (reactive) atom-
level, and molecule-level, descriptors, respectively on the reactant
and product side of the reaction, were extracted from the surro-
gate model as input for the downstream tasks. As such, we de-
cided to concatenate both atom-level embeddings of the reactive
atoms, i.e., the sites undergoing a bonding change, and molecule-
level embeddings in the hidden representation approach.

The general reaction scheme for HAT reactivity can be written
as follows,

R1−A−H+R2−B· −−→ R1−A·+R2−B−H (1)

The input representation we constructed for this case study
thus consists of 6 concatenated vectors: the hidden represen-
tations of the four molecules R1−A−H, R2−B·, R1−A·, and
R2−B−H, involved in the reaction, and the atom-level representa-
tions of the radical sites on reactant and product side respectively,
i.e., B· in R2−B· and A· in R1−A·.

In their study on regioselectivity prediction, Guan et al.1 fo-
cused exclusively on the effect of including (atom-level) QM de-
scriptors from the two main reactive sites of the reactants in the
downstream model. As such, we decided here to use a simple
concatenation of the corresponding atom-level hidden represen-
tations of the reactive sites as the alternative input for the down-
stream model.

Since all the downstream tasks, considered in Li et al.’s work14,
involved molecule-level properties, we simply extracted the hid-
den representations of the 2 molecule-level surrogate models they
generated, concatenated them, and used them as the downstream
model input.

4 | 1–12Journal Name, [year], [vol.],
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Table 1 Summary of datasets used in this study.

Dataset labels task
In-House 15 ∆G‡ HAT reactivity prediction (regression)
Alkoxy 35 ∆G‡ HAT reactivity prediction (regression)
Exp. alkoxy 36 ∆G‡ HAT reactivity prediction (regression)
Photoredox HAT 37 ∆G‡ HAT reactivity prediction (regression)
Exp. cumyloxyl 38 ∆G‡ HAT reactivity prediction (regression)
Cytochrome P450 39 ∆G‡ HAT reactivity prediction (regression)
Atmospheric HAT 40 ∆G‡ HAT reactivity prediction (regression)
C-H, C-X, Others, All 1 primary product formed among enumerated regio-isomers Regioselectivity prediction (classification)
ESOL 59 log(S) Molecular property prediction (regression)
FreeSolv 60 ∆Gexp

hyd, ∆Gcalc
hyd Molecular property prediction (two-task regression)

QM9 17 DFT-derived µ, α, εHOMO, εLUMO, εgap,
〈
R2〉, zpve, Cv, U0, U , H, G Molecular property prediction (multi-task regression)

HIV 61 Ability to inhibit HIV replication Molecular property prediction (binary classification)
ClinTox 62 Toxicity of drug candidates Molecular property prediction (binary classification)

Downstream model architectures

To enable optimal comparison between the two considered surro-
gate strategies, we adopted the downstream model architectures
with associated hyperparameters, if applicable, from each corre-
sponding original study1,14,15. To compare the effectiveness of
both strategies, the root mean square error (RMSE), mean abso-
lute error (MAE), and the coefficient of determination (R2) have
consistently been selected as the evaluation metrics for the re-
gression tasks, and accuracy and ROC-AUC for the classification
tasks.

For the first case study15, an ensemble of 4 FFNNs was consis-
tently set as the model architecture, and the optimal number of
layers, hidden size, learning rate and dropout rate of these FFNNs
were determined for the In-House dataset through a grid search.
The resulting settings were subsequently transferred across the
different downstream tasks.

For the second case study1, the original models for the
descriptor-based strategy were directly transferred without any
alterations, i.e., a 3-layer FFNN, respectively with 500, 250, and
125 nodes, was selected for each of the downstream datasets.

For the third case study14, we selected a 3-layer FFNN, each
with 1000 nodes, as the downstream model architecture. Note
that for the corresponding baseline model, i.e., the one that takes
the predicted descriptors as input, a radial basis function (RBF)
expansion (n=50) was performed first, as this turned out to im-
prove the performance of this model compared to just selecting
directly the descriptor values themselves (see Section S2 and S3
in the Supporting Information for more details and comparisons,
respectively).

A more in-depth discussion about the downstream models can
be found in S4 of the Supporting Information.

Results and discussion

Hidden representations versus descriptors for HAT reactivity
prediction

Table 2 presents the difference between using predicted descrip-
tors as input for the downstream reactivity model and directly
using the hidden representations from the surrogate model for
the HAT case study15. The hidden representations input, in com-
bination with an FFNN downstream model, readily outperforms
the descriptor-based baseline on 4 out of 7 downstream datasets,

already underscoring the utility of the former approach.

In line with our intuition outlined in the Introduction, we ob-
serve that for the two smallest datasets considered, with only 15
and 24 data points, respectively, the descriptor approach slightly
outperforms the hidden representation approach. This suggests
that in these extreme situations, the high dimensionality of the
downstream model input (which in this case amounts to 6 * 1,200
= 7,200 dimensions, vide supra) may indeed negatively affect the
performance. However, even if this is indeed the root cause of
this observation, it is clearly an effect that vanishes rapidly as
dataset size increases: already for the datasets with 45 and 73
datapoints respectively, i.e., Exp. cumyloxyl and Atmospheric
HAT, the hidden representation takes over as the most perfor-
mant downstream model input in our analysis.

Next to the extremely small downstream datasets, there is only
one other example for which we observe that the descriptors out-
perform the hidden representation, namely the biggest of them
all, i.e., the In-House dataset.

We hypothesize that the reason the descriptors perform so
well for this specific case is that the surrogate QM descriptor
model was, in fact, specifically set up with this dataset, consist-
ing of organic HAT reactions run in the gas phase, in mind as
the main downstream application in the original publication.15

More specifically, the constructed VB model, from which the de-
scriptors to include in the surrogate were selected, neglected
solvent/environment effects altogether, and the calculations per-
formed to construct the BDE-db database24 – the training data
for the surrogate model – were also performed in the gas-phase
(and at the same level-of-theory). Finally, the reactions in the
In-House dataset were constructed by combining radicals and
molecules from the same distribution as the BDE-db dataset, so
one can expect that the QM descriptors predicted by the surrogate
model are particularly appropriate and accurate for this dataset.

This stands in contrast to the other downstream datasets,
where measurements/calculations were either performed in a sol-
vent (or even in an enzymatic) environment, and/or molecules
were involved that are (mostly) out-of-distribution with respect
to the BDE-db database.

As a first test to verify this hypothesis, i.e., that descriptors were
able to outperform the hidden representation for the In-House
dataset only because a (close to) “ideal” representation had been
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Table 2 Comparison between descriptor-based and hidden representation-based methods in HAT activation energy prediction, where the best results
are in bold. For the descriptor-based baseline method, the best model architecture for the downstream reactivity model is indicated. For the hidden
representation-based method, an ensemble of 4 FFNNs has consistently been used. For the In-House, Exp. cumyloxyl and Atmospheric HAT datasets,
standard 10-fold cross validation (CV) was employed to report the results, while for Alkoxy and Cytochrome P450 datasets, certain datapoints were
pre-selected for the test set, and the rest were randomly split into training and validation sets, following 10-fold CV; Standard 5-fold CV is employed for
Photoredox HAT. For the evaluation of Exp. alkoxy, the reactivity model trained on Alkoxy was used without further fine-tuning. These settings are in
accordance with Alfonso-Ramos et al.’s original study 15. The mean and standard deviation are calculated across 5 different random seeds s∈ [0,1,2,3,4].
The p-value of the paired t-tests between descriptor-based and hidden representation-based RMSE: for In-House, Exp. alkoxy, Photoredox HAT, and
Exp. cumyloxyl, p < 0.001; for Cytochrome P450 and Atmospheric HAT, p < 0.05; for Alkoxy, p = 0.14. An additional baseline comparison based on
Morgan fingerprints can be found in S5 of the Supporting Information.

Dataset Size descriptor-based hidden representation-based
Best model RMSE(kcal/mol) MAE(kcal/mol) R2 RMSE(kcal/mol) MAE(kcal/mol) R2

In-House 1511 FFNNs 2.74±0.01 1.96±0.00 0.85±0.00 3.35±0.02 2.40±0.02 0.77±0.00
Alkoxy 298 RF 1.30±0.03 1.12±0.03 0.78±0.01 1.26±0.03 1.03±0.02 0.79±0.01
Exp. alkoxy 15 RF 1.29±0.03 0.97±0.02 0.62±0.02 1.61±0.02 1.25±0.02 0.41±0.02
Photoredox HAT 564 RF 1.36±0.00 0.90±0.01 0.92±0.00 0.84±0.02 0.60±0.01 0.97±0.00
Exp. cumyloxyl 45 FFNNs 0.79±0.04 0.66±0.04 0.37±0.16 0.55±0.04 0.45±0.03 0.70±0.10
Cytochrome P450 24 FFNNs 1.09±0.08 0.95±0.11 0.47±0.08 1.28±0.01 1.14±0.02 0.27±0.02
Atmospheric HAT 73 FFNNs 2.30±0.12 1.88±0.08 0.62±0.12 2.08±0.10 1.60±0.10 0.75±0.04

designed, we probed what would happen if we retrain the sur-
rogate model with only part of the QM descriptors, identified as
relevant in the VB analysis. Specifically, we kept the other config-
urations unchanged by re-using the source code and training set
from Alfonso-Ramos et al.15 and considered two alternative ver-
sions of the surrogate model where only the atom-level/molecule-
level QM descriptors were kept as targets (Figure 2).

As expected, we observe that when re-training the surro-
gate model with only atom-level descriptors, the performance of
the descriptor-based model, evaluated on the In-House dataset,
becomes significantly worse than the corresponding hidden
representation-based model, due to a sharp drop in the accuracy
of the former. Interestingly, also for the only other gas phase HAT
reactivity dataset, Atmospheric HAT, we observe a major loss
in model performance upon exclusion of the explicitly predicted
molecule-level/atom-level descriptors, accentuating the superior
performance of the hidden representation strategy for this dataset
even further. Similar, though somewhat less pronounced, results
are also obtained when re-training exclusively with molecule-
level descriptors.

In direct contrast to the results for the descriptor-based strat-
egy, the hidden-space input representations appear remarkably
robust across the board, retaining an almost constant perfor-
mance, regardless of which targets are selected for the surrogate
model. As such, using hidden representations from the surrogate
appears to be a safer option, especially when the set of QM de-
scriptors has been selected in a suboptimal manner, i.e., when
major sources of variation in the downstream target are not cov-
ered by the prediction targets of the surrogate, and/or many of
the descriptors are not causally linked with the variation of this
target. An interpretation for this phenomenon through visualiza-
tion can be found in S6 of the Supporting Information.

It should be emphasized that only in the case of the
two very small downstream datasets—Exp. alkoxy and Cy-
tochrome P450—do descriptors consistently yield better perfor-
mance, regardless of whether all descriptors or only the atom-
level/molecule-level subsets are considered. Additional exper-
iments underscore that this effect is indeed exclusively linked

to dataset size: when the amount of training data is progres-
sively reduced for slightly larger datasets (where hidden repre-
sentations normally outperform descriptor-based ones), the per-
formance gap between the two strategies systematically narrows.
In the extreme low-data regime (on the order of 50 samples), the
compact descriptor representation tends to surpass hidden repre-
sentations for these datasets as well (see Section S7 of the Sup-
porting Information for details).

Finally, we would also like to note that the results presented
above, for the full set of descriptors, are independent of the size
of the hidden representation in the surrogate model. In Fig. 4,
we show that, while the errors for both strategies are modulated
somewhat by changing the hidden size, the overall trends, i.e.,
whether the hidden representation-based or the descriptor-based
strategy is the most performant, remain consistent per individual
dataset. More results, along with re-training details, can be found
in S8 of the Supporting Information.

Hidden representations versus descriptors for selectivity pre-
diction

To further validate the conclusions drawn so far, we considered
the datasets from the second case study. As discussed before,
Guan et al.1 did not select their set of QM descriptors based on
an in-depth analysis. Instead, they simply opted to work with a
selection of the most popular local QM descriptors used in the
literature. As such, based on our preceding analysis, one would
expect that the hidden representation strategy could potentially
outperform the descriptor strategy as well.

Gratifyingly, this is exactly what we observe (see Table 3).
For each of the downstream datasets considered, the hidden
representation-based models achieve a 4-5% higher accuracy
than the corresponding descriptor-based models. Interestingly,
our hidden representation-based models even outperform the
elaborate graph neural networks that integrate the surrogate
model predicted QM descriptors, ml-QM-GNN, developed specifi-
cally for these datasets by Guan et al.1 (except for the C-X dataset,
where the two methods perform nearly the same). This observa-
tion further strengthens our hypothesis.
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In-House Alkoxy Exp. alkoxy Photoredox HAT Exp. cumyloxyl Cytochrome P450 Atmospheric HAT
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Fig. 2 Performance comparison between the strategy based on hidden representations and that based on descriptors when retraining the surrogate
model using either the full set of descriptors (hidden-full and desc-full) or only the atom-level/molecule-level descriptors (hidden-atom/hidden-mol and
desc-atom/desc-mol). The RMSE value (lower RMSE indicates better performance) of our proposed approach based on hidden space of the surrogate
model is represented in blue, while that of the baseline is in orange/yellow.

Table 3 10-fold cross validation for top-1 success rate of predict-
ing the major reaction. The best results are in bold. The perfor-
mance of predicted-descriptor-augmented GNN (ml-QM-GNN), hidden-
representation-based FFNN (hidden-FFNN) and predicted-descriptor-
based FFNN (desc-FFNN) are compared on three distinct datasets (C-H,
C-X and Others) and their merged one (All). The p-values of the paired
t-tests between desc-FFNN and hidden-FFNN are all below 0.001 across
all datasets.

Dataset Size hidden-FFNN desc-FFNN ml-QM-GNN
C-H 2,244 92.7%±0.3% 88.9%±0.1% 92.4%±0.2%
C-X 1,024 96.5%±0.3% 91.5%±0.6% 96.6%±0.4%
Others 552 95.4%±0.4% 91.5%±0.4% 94.5%±0.8%
All 3,820 94.0%±0.3% 89.7%±0.4% 93.5%±0.2%

We should note here that it is not entirely inconceivable that,
through the selection of a more complete set of descriptors (and
taking for example solvent effects into account during their calcu-
lation/prediction), the hidden representation-based model could
still be outperformed by a descriptor-based one. For the current
selection, however, there is clearly no substantial benefit of using
predicted descriptors.

Final validation on non-reactivity datasets
As a final confirmation of our hypothesis, we also considered our
third case study14. In this case, the downstream tasks are not
related to chemical reactivity prediction, and descriptor selection
has been performed in a completely unprincipled manner, i.e., a
set of 20 popular/easy-to-compute molecule-level descriptors was
selected, without any consideration of their physical connection
to the respective downstream targets. As such, if our hypothe-
sis is correct, the trends observed so far should become partic-
ularly pronounced here: we expect the hidden representation-
based strategy to outperform the descriptor-based strategy by a
significant margin. This is exactly what we observe in practice

Table 4 10-fold cross validation comparison between FFNN based on
the hidden space of molecule-level surrogate models (hidden-FFNN) and
FFNN based on predicted molecule-level descriptors (desc-FFNN), where
the better ones are in bold. The performance of ml-QM-GNN (Chemprop
augmented with atom-level, bond-level and molecule-level descriptors)
reported in the original paper 14 is added here for reference. For re-
gression datasets ESOL, FreeSolv, and QM9, RMSE values are reported
(geometric mean of RMSE is adopted for multitask data); for binary
classification datasets HIV and ClinTox, ROC-AUC values are reported.
For performance on individual targets in the multitask dataset, and the
results for desc-FFNN using the raw predicted descriptors without RBF
expansion, see Section S3 of the Supporting Information. The p-values
of the paired t-tests between desc-FFNN and hidden-FFNN are all below
0.00001 across all datasets.

Dataset Size hidden-FFNN desc-FFNN ml-QM-GNN
ESOL 1,127 0.646±0.008 1.127±0.008 0.539±0.047
FreeSolv 642 0.937±0.019 2.358±0.049 0.89±0.16
QM9 133,885 0.711±0.003 1.901±0.004 0.111±0.004
HIV 41,127 0.815±0.005 0.714±0.001 0.823±0.029
ClinTox 1,477 0.892±0.007 0.695±0.008 0.871±0.058

(Table 4). For all datasets, the hidden representation-based ap-
proach handily outperforms the descriptor-based approach. In
the case of the regression tasks, the difference in accuracy can
amount to over a factor of two.

Remarkably, despite the simplicity of the adopted downstream
model architecture, the hidden representation strategy is even
competitive with the elaborate QM-augmented graph neural net-
work (ml-QM-GNN) approach for all datasets except QM9. In
the case of QM9, the discrepancy between the hidden-FFNN and
the ml-QM-GNN result is presumably due to a limited number
of sub-tasks involving intensive properties. Indeed, the hidden-
representation input based on molecular descriptors appears ill-
suited to model properties that increase with molecule size (see
Section S3 in the Supporting Information).
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Analyzing the linearity and roughness of the respective rep-
resentations

Up to this point, we have provided empirical evidence that when
downstream model performance is the main consideration, the
hidden representation-based strategy generally outperforms the
explicit (predicted) descriptor-based strategy.

In this final section, we will attempt to analyze the characteris-
tics of the hidden spaces for the downstream tasks, with a partic-
ular focus on their respective linearity and roughness, in the hope
of gaining some more insights into this observed behavior.

As noted by Tkatchenko and co-workers64, among others, to
learn non-linearities, in particular interactions between the di-
mensions of a feature space, a sufficient number training points
is typically needed. As such, one would naively expect that the
smaller the size of the downstream dataset, the smaller the bene-
fit of using an FFNN over a linear model.

To probe this, we compared the performance of our hidden-
FFNN to its linear regression analog, hidden-LR, for a range of
hidden space sizes (h ∈ [100,200,300, ...,2000]), in the surrogate
model for the HAT case study15 (Figure 3). Remarkably, while
the performance of hidden-FFNN is relatively stable across h val-
ues, the errors achieved by hidden-LR fluctuate significantly; for
some values of h, both downstream model architectures reach a
similar performance, while for others, the hidden-FFNN outper-
forms hidden-LR by a significant margin. Note that this obser-
vation is valid for all the different downstream datasets. What
this suggests is that the extent of linearity is not an inherently
fixed property of the learned representation, but that the FFNN
is equally good at dealing with either the fairly linear, as well
as the non-linear, versions, regardless of the downstream dataset
size. This implies that the hidden space inherently carries high-
quality, readily exploitable information: the non-linearities that
may emerge in the hidden space are generally not overly complex
and easily learnable.

Interestingly, we also consistently observe that, among the di-
mensions of the hidden representation, there tends to be no sig-
nificant co-linearity, i.e., most of the dimensions are completely
independent (cf. Section S9 of the Supporting Information), fur-
ther underscoring the apparent richness of the learned represen-
tation in the surrogate model.

Finally, we also took a look at the roughness of the respec-
tive input feature spaces of the downstream models. Roughness
metrics aim to quantify the “modellability” of structure-activity
relationships (SAR) within a dataset, where rougher landscapes
contain a greater number of large target property differences be-
tween molecules/reactions that are close in feature (or hidden)
space. Such large property jumps across adjacent datapoints are
commonly known as activity cliffs and increase the challenge of
training a performant ML model.65

We selected an advanced, recently proposed roughness index
ROGI-XD66 to quantify the relationship between prediction tar-
gets and input feature spaces, with higher ROGI-XD values indi-
cating rougher landscapes. Specifically, in the ROGI-XD approach,
a dataset is progressively coarse-grained, and the evolution of the
standard deviation of the targets throughout this coarse-graining
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Fig. 3 Test RMSE of models based on hidden space with varying hidden
sizes h (surrogate model trained with the full set of descriptors) for a se-
lection of downstream datasets. The performance of FFNNs is compared
to that of LR models.

process is tracked. In other words, the dataset is iteratively sub-
divided into clusters of increasing size, and at every instance, in
each cluster, the labels of the individual samples are replaced with
the average label for that cluster. Finally, the integral over the
standard deviation of the (averaged) labels across cluster sizes
is taken, resulting in the final roughness metric. When labels
change only gradually across the feature space, the change in the
standard deviation throughout the coarse-graining process will
be limited, so that the ROGI-XD value will be small. As such,
this metric provides an assessment of the feature/hidden space’s
quality, and it has previously been demonstrated that this quantity
correlates well with the performance of ML models.

As evident from Fig. 4, we observe that for the In-House
and Exp. alkoxy datasets, the descriptor-based method results
in a smoother landscape, and this agrees with the higher per-
formance of the descriptor-based strategy for these downstream
datasets. Curiously, for most of the other datasets, the ROGI-XD
values are quite similar for both strategies, though the hidden
representation-based model tends to outperform the descriptor-
based one as indicated in Table 2 and Fig. 2. The reason for
this seemingly asymmetric behavior may be that roughness met-
rics such as ROGI-XD presumably become somewhat misleading
when very large hidden spaces are considered, due to the pres-
ence of many potentially “unproductive” dimensions (see Section
S10 in the Supporting Information for a toy model analysis). In
other words, for feature spaces with many dimensions, ROGI-XD
values can be artificially inflated compared to more compact fea-
ture spaces.

Overall, it appears that despite ROGI-XD’s limitations, differ-
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ences in roughness do seem to explain, to a reasonable extent,
the observed trends in model performance. Nonetheless, an un-
equivocal causal explanation for the trends observed throughout
this work is still lacking. This will be the focus of future research.

Conclusions
This study aimed to compare two strategies for incorporating sur-
rogate quantum chemical models into predictive chemistry work-
flows in the data-limited regime: one based on explicitly pre-
dicted QM descriptors, and one based on the learned hidden rep-
resentations of the surrogate model. Across a broad set of down-
stream tasks—spanning reactivity, selectivity, and molecular prop-
erty prediction—the hidden representation-based approach con-
sistently outperformed the descriptor-based alternative in most
scenarios. Descriptor-based models only showed an advantage
when the descriptors were carefully selected and closely aligned
with the target property, which is uncommon in practice. In con-
trast, the hidden representations provided a more flexible and
data-efficient alternative, capturing nuanced chemical informa-
tion without requiring manual feature selection. These represen-
tations also proved robust to changes in surrogate model archi-
tecture and descriptor targets, and could be effectively leveraged
even in low-data regimes.

We acknowledge, however, a key trade-off: while hidden repre-
sentations offer superior performance, they lack the transparency
of explicit descriptors, making feature attribution and physical in-
terpretability more difficult. As such, practitioners may still prefer
explicit descriptors when mechanistic insight, feature importance
analysis, or human-understandable model behavior is of central
importance—particularly in hypothesis generation or experimen-
tal design.

Nonetheless, when predictive accuracy is the primary concern,
our results strongly support the use of hidden representations
from well-trained surrogate models. Their consistent outperfor-
mance across diverse applications suggests that, in most practical
scenarios, they represent the more effective choice for enhancing
downstream models in predictive chemistry.
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Data Availability Statement： 
All the code and data used in this work (3 case studies and the synthetic experiments 
for ROGI-XD) are openly available in Zenodo at 
https://doi.org/10.5281/zenodo.17100503. The repository is maintained at  
https://github.com/chimie-paristech-CTM/Hidden_vs_Desc. For training and test sets 
of the surrogate model in the first case study, see 
https://figshare.com/projects/Hydrogen_atom_transfer_reactions/188007 by 
Alfonso-Ramos et al.[15] 
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