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anomaly detection of automated
HPLC experiments in the cloud laboratory

Filipp Gusev, ab Benjamin C. Kline,c Ryan Quinn,d Anqin Xu,c Ben Smith,c

Brian Frezzacd and Olexandr Isayev *ab

Automation of experiments in cloud laboratories promises to revolutionize scientific research by enabling

remote experimentation and improving reproducibility. However, maintaining quality control without

constant human oversight remains a critical challenge. Here, we present a novel machine learning

framework for automated anomaly detection in High-Performance Liquid Chromatography (HPLC)

experiments conducted in a cloud lab. Our system specifically targets air bubble contamination—

a common yet challenging issue that typically requires expert analytical chemists to detect and resolve.

By leveraging active learning combined with human-in-the-loop annotation, we trained a binary

classifier on approximately 25 000 HPLC traces. Prospective validation demonstrated robust

performance, with an accuracy of 0.96 and an F1 score of 0.92, suitable for real-world applications.

Beyond anomaly detection, we show that the system can serve as a sensitive indicator of instrument

health, outperforming traditional periodic qualification tests in identifying systematic issues. The

framework is protocol-agnostic, instrument-agnostic, and, in principle, vendor-neutral, making it

adaptable to various laboratory settings. This work represents a significant step toward fully autonomous

laboratories by enabling continuous quality control, reducing the expertise barrier for complex analytical

techniques, and facilitating proactive maintenance of scientific instrumentation. The approach can be

extended to detect other types of experimental anomalies, potentially transforming how quality control

is implemented in self-driving laboratories (SDLs) across diverse scientific disciplines.
1 Introduction

Laboratory automation refers to the integration of scientic
instrumentation, soware, and processes to streamline labo-
ratory workows and enhance efficiency, reproducibility, and
throughput while minimizing human error.1 Laboratory
autonomy—an advancement beyond basic automation—entails
integrating articial intelligence (AI) and self-driven systems to
conduct experiments in a closed-loop manner. In such systems,
data are continuously collected, analyzed, and used to plan
subsequent experiments, all with minimal (if any) human
intervention.2–7 Fields such as drug discovery,8,9 materials
science,10–14 and synthetic biology15—which routinely require
the rapid screening and testing of hundreds to thousands of
samples—are among the early adopters harnessing this para-
digm shi.

The emergence of cloud laboratories is transforming
autonomous experimentation by enabling remote execution of
of Science, Carnegie Mellon University,
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the Royal Society of Chemistry
complex biological and chemical research with enhanced
reproducibility, scalability, and accessibility. These facilities
integrate robotic automation and networked control systems to
conduct experiments continuously and in parallel, signicantly
reducing physical and logistical constraints. The pioneering
work by CMU alumni through Emerald Cloud Lab (ECL)
provides researchers with a suite of instruments for biological
and chemical experimentation at scale. While cloud laborato-
ries hold great promise for democratizing access to sophisti-
cated experimental infrastructure, they also introduce
challenges related to remote troubleshooting, real-time experi-
mental adaptability, and standardization across diverse
research domains. As these platforms evolve, they present an
opportunity to accelerate scientic discovery while necessi-
tating new frameworks for data integrity, automation-driven
research methodologies, and integration into traditional
experimental workows.

This study focuses on improving High-Performance Liquid
Chromatography (HPLC) in the Cloud Lab. HPLC is an essential
analytical technique used across various scientic disciplines,
from pharmaceuticals and biotechnology to environmental
studies, making it a prime target for automation in a Cloud Lab
environment. In a traditional lab, modern HPLC instruments
incorporate basic automation (e.g., for liquid handling, sample
Digital Discovery, 2025, 4, 3445–3454 | 3445
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Fig. 1 Representative examples of air bubble presence on absorbance
and pressure traces for same sample and HPLC protocol. (A) Effect on
retention time; (B) effect on peak shape; (C) effect on peak presence.
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collection, and executing predened protocols); however,
a scientist is still oen required to be present to monitor the
data readout and ensure its validity as well as proper func-
tioning of the instrument. This manual oversight enables
experts to catch issues such as pressure uctuations due to air
bubbles, clogs, leaks, empty mobile phase bottles, and other
unexpected system behaviors. In contrast, in autonomous
closed-loop systems like Cloud Lab, such real-time human
intervention is impractical given the high-throughput use of
instruments and the need for a fully closed data ow in the
Design-Make-Test-Analyze (DMTA) cycle.

Many integrated data analysis systems for HPLC instru-
ments, for example those performing peak assignment, operate
on the assumption that the recorded signal is valid, which is
true in most cases. In a eld of data-driven research, it is
common to ‘trust but verify’ historically accumulated data,16,17

or re-generate it de novo to minimize discrepancy among data
sources or avoid implicit biases. The classic ‘garbage in, garbage
out’18 principle can undermine any data-driven system; closed-
loop experiments like Bayesian optimization are among the
most vulnerable. Bayesian optimization algorithms, once mis-
directed by a false signal, will require several observations (or
rounds in batch execution) of data acquisition to self-correct at
the cost of time and resources at best and fully degrade at worst.
Currently, ensuring correct execution, a common step in
computer science, is overlooked among target metrics for the
evaluation of self-driving laboratories.19

HPLC chromatogram peaks, as frequently monitored by
absorbance, can be negatively affected by many variables,
including column health and age, purity of the sample, and—
germane for this investigation—air bubbles. Although most
modern instruments have some ways to detect common and
expected pitfalls (e.g. by qualication/controlled experiments),
complications arise when rare, stochastic events occur during
large-scale experimental campaigns. Air bubbles—one such
pitfall—can disrupt an HPLC experiment: when air enters the
buffer tubing, it will eventually reach the column, where the
chemical separation occurs. These intermittent pockets of air
alter the interactions between analytes and the stationary
phase, oen leading to unpredictable retention times (Fig. 1A),
distorted peak shapes (Fig. 1B), loss of a peak (Fig. 1C) or even
an HPLC chromatogram that is indiscernible to the scientist.
Moreover, the presence of air bubbles may be especially prob-
lematic for preparative HPLC experiments, where the entire
source sample is used up during the experiment and repeating
the protocol is not always an option.

Several user behaviors or instrument shortcomings can lead
to the introduction of air bubbles and resultant pressure uc-
tuations in an HPLC run. Air bubbles in HPLC systems are most
commonly introduced when mobile phases are not adequately
degassed, allowing dissolved gases to come out of solution
under pump pressure. Temperature uctuations between
different parts of the system can also reduce gas solubility and
trigger bubble formation. In addition, leaks at pump seals,
ttings, or inlet lines can draw air into the system, while
insufficient priming aer solvent changes may leave residual air
3446 | Digital Discovery, 2025, 4, 3445–3454
pockets in the tubing. Together, these factors represent the
primary sources of bubble formation in HPLC.20

Several factors can inuence peak shape and retention time
in HPLC, including column age or identity, mobile phase
composition, temperature, sample concentration, and ow rate
variations. A major advantage of a cloud laboratory is that all
collected data are linked within a central database, enabling
rapid root-cause analysis of problems and anomalies. The
representative data shown in Fig. 1A–C were selected such that
the other variables affecting peak shape were held constant,
with the main difference being the pressure trace during the
run. Column age or health is themost likely alternative cause; to
mitigate this, standards are routinely run on all columns to
ensure they are not used beyond their effective lifetime.

We designed our automatic anomaly detection system for
HPLC experiments that operates on-the-y and without human
intervention. The system is based on a binary classier: the ML
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 The ML-based anomaly (HPLC air bubble contamination) detection workflow. The overall workflow is organized in three major steps: (A).
Creation of the initial training data set; (B). ML-model building organized in iterative Active Learning Cycle with a human expert as an Oracle; (C).
Deployment of the trained final model to Cloud Lab and its application.
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model treats HPLC experiments affected by air bubble
contamination as the positive class (class 1) and unaffected as
the negative class (class 0). Focusing on the air bubbles, we
analyzed HPLC pressure data—which exhibit a characteristic
pattern when air is introduced into the HPLC tubing—and
employed active learning combined with a human-in-the-loop
approach to develop the model efficiently. The overall work-
ow (see Fig. 2) comprises three major steps: (i) Initialization of
Training Data (Fig. 2A), (ii) ML Model Building via Human-in-
the-Loop Approach (Fig. 2B), (iii) Deployment and Perfor-
mance measurement of the nal ML Model (Fig. 2C).

Once the ML model reached optimal performance, it was
deployed in the Cloud Lab to autonomously screen HPLC
experiments in real time. The purpose of the trained model is to
screen and identify affected HPLC traces autonomously. Two
prospective validation steps—one at the experiment level and
one at the instrument level—were performed to ensure that the
model's predictions align with real-world scenarios, thereby
conrming its reliability and effectiveness.
2 Results
2.1 ML framework for automated anomaly detection in
HPLC experiments

Traditional quality control for HPLC experiments relies on the
expertise of human operators or on hardware enhancements –

such as a parallel dual plunger system21,22 or optical sensors.
However, in high-throughput, fully automated systems like
Cloud Labs, these methods are impractical: frequent manual
© 2025 The Author(s). Published by the Royal Society of Chemistry
checks are infeasible, and manufacturer-specic solutions
compromise the universal compatibility required to operate
a diverse set of HPLC systems.

A variety of instrument- or soware-specic methods
currently exist to detect leaks, empty buffer bottles, or pressure
uctuations during experimental HPLC runs (e.g., Shimadzu
Nexera-40/LabSolutions, Waters Alliance iS/Empower, Thermo
Scientic Vanquish Core/Chromeleon, and Agilent InnityLab
1290 III/OpenLab).23–26 However, these methods oen lack
transparency regarding their underlying mechanisms and
accuracy. More importantly, users generally cannot modify or
improve commercial models to suit their specic needs. Here,
we present an open-source anomaly detection approach that is
adaptable, retrainable, and can ultimately be tailored to the
user's requirements.

We designed our automatic workow (see Fig. 2) in a data-
driven manner rather than relying on rule-based or hardware-
based approaches. This strategy makes the system adaptable
and generalizable to other rare pitfalls that become observable
as the database of HPLC experiments accumulates at scale. Our
workow began with the collection of approximately 25 000
HPLC experiments from a diverse set of chromatographic
methods, instruments, and protocols (see Initial dataset for
details, Tables S2 and S5), a dataset large enough to capture
infrequent events like air bubble contamination. An initial
subset of this data was reviewed by a human expert, who
observed and annotated anomalous cases, resulting in an initial
pool of 93 HPLC experiments affected by air bubble contami-
nation. The initial pool of affected cases is relatively small due
Digital Discovery, 2025, 4, 3445–3454 | 3447
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to infrequency of occurrence (a conservative a priori estimation
was z1%) coupled with infeasibility of explicit annotation of
the whole dataset due to its size. Although air bubble contam-
ination is a common issue in HPLC, the low observed frequency
is expected in a well-maintained system. Such an imbalance can
be challenging for an ML model and may introduce bias. To
address this, we employed Stochastic Negative Addition27 (SNA),
which stochastically adds negative (“unaffected”) examples to
the training set to ensure balanced representation while mini-
mizing further annotation effort, aer preliminary analysis (see
Classical ML for details, Fig. S1) we decided to target 1 : 10 class
ratio (the ratio of samples with positive, e.g. affected by air
bubbles, class to samples with negative, e.g. normal, class) for
the initial dataset and maintain it for the rest of the modeling
stages. SNA has been successfully applied as a balancing
strategy in other data-driven domains.27,28

During the model-building phase (see Fig. 2B), we employed
an Active Learning (AL) cycle combined with a human-in-the-
loop approach to iteratively rene the model with expert input
while minimizing overall annotation effort by focusing on the
most informative cases. This phase comprised the following
steps: (i) training set creation: a training set comprising both
affected (identied by expert annotation) and unaffected
(selected using SNA27 balancing strategy) HPLC traces were
assembled in each annotation round. (ii) ML model building:
a ML model was built using the training set, then the model
screened the dataset of 25k HPLC experiments to identify traces
that were potentially affected (requiring further annotation) as
well as those most likely unaffected (which were used for SNA
later). (iii) Human expert annotation: the agged traces were
reviewed by a human expert who annotated each as affected or
unaffected, further enriching the dataset and improving the
model's accuracy. This iterative cycle continued until the ML
model achieved satisfactory performance; in total, only three
rounds (one initial and two AL) of annotation were conducted to
sufficiently train our model.

For the air bubble contamination we focused on HPLC
pressure traces. Since the pressure trace, by its nature, is a time
series, we started our modeling from classical ML approaches
for time series data. The classical featurization approach29 (see
Methods for details) performed well (Fig. S1); however, its
resource demands—in terms of memory footprint and pro-
cessing delays—made it unsuitable for on-the-y deployment in
the Cloud Lab. Therefore, we transitioned to an end-to-end
Deep Learning approach utilizing a 1D convolutional neural
network (CNN) coupled with automatic architecture and
hyperparameter optimization.30

With complete pressure traces available during analysis, the
1D CNN minimized model size, memory usage, and response
time, while preserving the capacity to generalize to other HPLC
anomalies in future developments. This approach also avoids
the need for labor-intensive, manual feature engineering
required by rule-based methods.

The model perception (Fig. 3A), visualized as a UMAP
projection (see Methods for details) of the latent representation
from the 1D CNN model, reveals the learned feature space
structure. There are two regions of very high artifact probability
3448 | Digital Discovery, 2025, 4, 3445–3454
that were sampled through the three rounds of expert annota-
tion (Fig. 3B). Unlike normal experimental cases (Fig. 3C),
Fig. 3D–G illustrate varying levels of uncertainty in trace anno-
tation. These traces fall between “clean” samples and those
clearly containing air bubbles. As annotation progressed
through multiple rounds, the focus shied from simply iden-
tifying air bubbles to investigating potential causes of anoma-
lous behavior, particularly for traces near the ML-model's
decision boundary. Fig. 3G highlights traces exhibiting
pressure-related anomalies likely caused by factors other than
air bubbles.

These anomalies can be attributed to several technical issues
in the HPLC system. Insufficiently tightened barrel-tubing
connections oen lead to pressure uctuations as uid
escapes through minute gaps in the assembly. When HPLC
buffers run dry, a characteristic pattern emerges where pressure
gradually drops toward zero as the system attempts to pull
nonexistent uid through the lines. Pump malfunctions repre-
sent another common source of pressure anomalies, creating
irregular patterns in the trace data that differ distinctly from the
signature patterns of air bubbles but nonetheless require
identication and remediation to ensure experimental validity.

Validating these hypotheses would require either generating
controlled error states in the laboratory or further accumulation
of historical data. Although the anomalous traces shown in
Fig. 3G represent only a minor fraction of the total HPLC
experiments—and are not yet a signicant concern—the
continuous aggregation of data in the Cloud Lab facilitates
ongoing model retraining. This will enable future renements
to distinguish among various pressure-related artifacts.

For deployment in Cloud Lab, the ML model was serialized
in ONNX format. This enabled seamless integration into the
Emerald Cloud Lab backend by loading it directly into Wolfram
Language to analyze HPLC data for bubble likelihood,
expressed as a Class 1 probability. Immediately aer HPLC data
from the experiment are parsed and imported into the Cloud
Lab database, the pressure traces undergo brief preprocessing
to ensure compatibility with the model and to eliminate false
positives due to early retention-time pressure instabilities. Each
preprocessed pressure data set is then passed to the model to
yield a predicted likelihood (between 0 and 1) that the corre-
sponding experiment was contaminated by air bubbles, and the
predictions are added to the experiment's metadata.
2.2 Prospective experiment validation

For prospective validation, we compiled a dataset of 967 HPLC
traces (see Methods) that were fully annotated by a human
expert. In this real-world evaluation (Fig. 4), the model achieved
an accuracy of 0.96, an F1 score of 0.92, an AUC of 0.98, and an
average precision of 0.91. These metrics conrm that our model
effectively distinguishes between bubble-affected and unaf-
fected traces and handles class imbalance, supporting its
deployment in the Cloud Lab environment.

Interestingly, the frequency of air bubble-affected HPLC
experiments was higher than expected. This observation
prompted us to apply the ML model for instrument validation-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Characterization of ML Model perception and representative traces from investigated dataset. (A) UMAP projection of the CNN latent
space for the initial dataset (25k traces). Points are colored by the model's predicted probability that a trace contains air bubbles. The red
rectangle marks the bubble-rich region presented at (B). (B). Zoom-in of the boxed area in (A), with points colored by the round in which they
were annotated, illustrating how active learning progressively sampled this region. (C) Examples of normal pressure traces (n = 20); each
experiment is shown in a different color. (D) Examples of pressure traces drawn from Round 2 annotations, selected for high predicted air bubble
probability. (E) Examples of pressure traces drawn fromRound 2 annotations, selected for highmodel uncertainty. (F) Examples of pressure traces
drawn from Round 3 annotations, selected for high model uncertainty. (G) Examples of abnormal pressure traces attributed to causes other than
air bubbles.

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2025, 4, 3445–3454 | 3449
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Fig. 4 Prospective validation of the deployed HPLC air bubble detection model. (A) Confusion matrix illustrating model performance in clas-
sifying pressure traces as containing bubbles or not. (B) Receiver operating characteristic (ROC) curve, with an area under the curve (AUC) of
0.98, demonstrating high classification performance. (C) Precision-recall (PR) curve, with an average precision (AP) of 0.91, indicating strong
model reliability in detecting bubbles. (D) False positive HPLC pressure traces, where the model incorrectly identified bubble presence. (E) False
negative HPLC pressure traces, showing cases where the model failed to detect bubbles. The model exhibits high accuracy and generalizability,
with misclassifications predominantly occurring in ambiguous pressure fluctuations.
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to assess whether the fraction of bubble-affected traces for
a given instrument deviates from expected norms. Although
routine qualication experiments (using known standards)
ensure instrument reproducibility, their infrequent scheduling
(weekly or monthly) may overlook subtle, stochastic shis in
experimental quality.

A qualication experiment is an in-depth control experiment
that tests the performance and health of an instrument. In the
Cloud Lab, every qualication generates an automated report
that can be easily compared to previous reports to give users
condence in their experiments. Each automated report is
assigned a pass/fail grade that is conrmed by a human expert.
If an instrument is passing its latest qualication test, it is
“qualied” to run experimental samples.

Most qualication tests are focused on testing for reproduc-
ible experimental outcomes. For HPLC the test targets auto-
sampler, fraction collection, lineshape, etc. For the most part
(>90% of the time), the air bubbles in the lines are a transient
3450 | Digital Discovery, 2025, 4, 3445–3454
issue and do not cause any appreciable difference in the experi-
mental result based on what was tested in the qualication runs.
2.3 Prospective instrument validation

We collected a prospective dataset comprising at least 100
HPLC experiments per instrument from eight systems equipped
with UV-vis detectors (see Methods). Kernel density estimation
of the air bubble class probabilities revealed a noticeable shi
for instrument #8 (Fig. 5A), which led to the identication of
malfunctioning check valves. These valves, critical for prevent-
ing backow and maintaining pressure stability, were subse-
quently replaced on the HPLC pump module, restoring normal
performance (Fig. 5B).

This approach appears to be more sensitive than the quali-
cation experiments in detecting air bubble-associated issues
(e.g. pump malfunctions). Incorporating this model into the
instrument quality control pipeline will further enhance overall
Cloud Lab performance. This enabled us to “ag” all affected
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Bubble Class probability densities (normalized) per instrument
and pre/post-repair comparison for instrument #8. (A) Density distri-
bution of Bubble Class probabilities across eight instruments, with the
number of HPLC traces more than 100. (B) Density distributions for
instrument #8 comparing data collected 3 months before (blue) and 3
months after (orange) a repair event. The post-repair distribution
shows a shift in Bubble Class probability profiles after maintenance,
with a reduction in high-probability occurrences.
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HPLC experiments that had bubbles in the lines, not just those
that had obvious noticeable negative impacts on the sample
elution data. Overall, this will have a few positive impacts for the
lab: (1) increase reproducibility of elution times and peak
widths (2) improve troubleshooting turnaround time for HPLC.

Implementing the air bubble detection ML model reduces the
learning curve for scientists new to HPLC by demystifying one of
the major error modes. Researchers will no longer need months
or years of experience analyzing various pressure traces alongside
experimental outcomes to pinpoint failures. Instead, this model
represents a step toward making complex experimentation
accessible across disciplines and skill levels. For the more expe-
rienced users who typically review key experimental parameters
(such as column age, standard and blank traces in a neat window,
etc.) as part of their workow during troubleshooting, the ML
model predictions are used for displaying the average bubble
likelihood for an entire batch run—as well as the minimum and
maximum values—providing a rapid quality assessment.
© 2025 The Author(s). Published by the Royal Society of Chemistry
3 Discussion

Recent advances in autonomous scientic discovery offer
exciting opportunities but also present formidable challenges,
specically in managing the accumulation and propagation of
errors in closed-loop systems, an issue that is oen overlooked.
One effective strategy to mitigate this risk is to integrate
autonomous workows with robust, on-the-y quality control
and validation of experimental execution.

In this study, we proposed a protocol-agnostic, instrument-
agnostic, and, in principle, vendor-neutral framework for on-
the-y detection of common errors in High-Performance
Liquid Chromatography (HPLC) experiments. Leveraging
a Cloud Lab's rigorous management of all experimental data
provides a foundation for adapting and generalizing our end-to-
end, data-driven anomaly detection framework to address rarer
types of errors as they accumulate over time.

The machine learning model developed in this study
demonstrated strong performance in prospective validation
across a diverse set of HPLC traces, achieving an accuracy of
0.96 and an F1 score of 0.92 in detecting HPLC traces affected by
air bubble contamination, formulated as a binary classication
problem. Furthermore, we provided a proof-of-principle
demonstration of repurposing the ML model for validation of
HPLC instruments based on systematic performance evaluation
over a large set of experiments, which appeared to have higher
sensitivity compared to individual control experiments.

Future development could enhance the feedback loop in Cloud
Lab environments to operate at the level of individual experiments
rather than post-batch analysis, enabling automatic retries for
affected experiments. The successful application of our frame-
work, using HPLC experiments as a case study, demonstrates its
viability for both experiment and instrument validation, address-
ing key challenges in closed-loop experimental automation.

This study represents a signicant advancement in the eld
of autonomous laboratory operations and has several far-
reaching implications for scientic research. At its core, the
work addresses a fundamental challenge in automated labora-
tories: the need for continuous quality control without human
oversight. By developing a system that can detect experimental
anomalies in real-time, we have eliminated a task that tradi-
tionally required experienced human operators.

The implications for democratizing science are particularly
noteworthy. The system signicantly reduces the learning curve
for scientists new to HPLC by automating the detection of
common error modes. This means researchers no longer need
months or years of experience to identify certain types of
experimental failures, making complex experimentation more
accessible across disciplines and experience levels.

Our approach to maintenance and quality control represents
a signicant improvement over traditional methods. It demon-
strated higher sensitivity in detecting certain equipment issues
compared to conventional qualication tests, thereby enabling
proactive maintenance through early identication of systematic
problems before they cause major failures. Unlike periodic
checks, our method provides continuous quality monitoring.
Digital Discovery, 2025, 4, 3445–3454 | 3451
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Looking toward the future, this work opens possibilities for
automatic retrial of failed experiments in real-time and repre-
sents a crucial step toward fully closed-loop experimental
automation. The framework could be expanded to detect other
types of experimental anomalies as more data accumulates in
the Cloud Lab. From a practical standpoint, this work helps
prevent waste of valuable samples, reduces equipment down-
time through predictive maintenance, and potentially lowers
operational costs by preventing failed experiments.

The present work marks an important milestone in making
automated laboratories more reliable and accessible, while
potentially reducing costs and enhancing research quality
across scientic disciplines. As laboratories increasingly move
toward automation and cloud-based operations, models like
this will become essential for maintaining rigorous standards of
scientic research while democratizing access to advanced
analytical instrumentation.
4 Methods

We formulated the anomaly detection problem as a binary
classication task on the pressure traces. Experiments known to
be affected by air bubbles were labeled as the positive class
(class 1), while experiments known to be unaffected—along
with additional samples selected via (SNA) from the initial
dataset (randomly chosen based on the low expected frequency
of air bubble anomalies or guided by model predictions,
forming)—were labeled as the negative class (class 0).

The model development workow (Fig. 2B) was organized
into three iterative rounds of annotation. In Round 1 (the initial
round) we obtained the initial dataset to start the Active
Learning cycle. In Round 2, a classical ML modeling approach
was employed to create an ensemble of models, allowing us to
balance selecting candidates for annotation between cases that
were likely positive (specically “class1_prob_mean > 0.5 and
class1_prob_std < 0.1” yielding 287 candidate cases) and
uncertain cases (specically “class1_prob_std $ 0.1 yielding
213 candidate cases). This process—aer expert evaluation—
resulted in a pool of 567 experiments affected by air bubbles. In
Round 3 we utilized DeepLearning modeling (see Methods for
details), which led—aer expert evaluation—to a nal accu-
mulation of 700 experiments affected by air bubbles.

At this stage, the pool of traces with high uncertainty (0.1 <
“class1_prob < 0.9”) signicantly decreased, compared to previous
rounds, to 93, suggesting that no further rounds of annotation
were required. The accumulated data were then used to train the
nal ML model for deployment—with an optimized architecture
and hyperparameters (see S1). The model performance was
measured on prospective experiment validation—to assess gener-
alizability—and on prospective equipment validation.
4.1 Datasets

4.1.1 Initial dataset. The initial dataset—comprising HPLC
experiments collected over an extended period—consisted of
approximately 25 thousand experiments (25 423). The majority
of the data fell into the following three categories: (1) semi-
3452 | Digital Discovery, 2025, 4, 3445–3454
preparative size exclusion chromatography experiments sepa-
rating small molecules away from target oligonucleotides; (2)
preparative reverse phase ion pair chromatography experiments
separating a desired oligonucleotide from a mixture of small
molecules and undesired oligonucleotides; and (3) reverse
phase chromatography experiments aimed at small molecule
analysis mainly for the purpose of qualifying and ensuring the
health of the HPLC instruments. (see Table S2 for detailed
counts per chromatography type, instrument model and
manufacturer) Among these, 93 experiments were annotated by
a human expert as being affected by air bubble contamination.

4.1.2 Prospective experiment validation. To measure
model performance in a real-world scenario, we constructed
a prospective experiment validation dataset consisting of 967
HPLC experiments conducted aer deploying the nal model to
the Cloud Lab. All experiments were annotated by human expert
and compared with the deployed model's predictions (Fig. 4).
Detailed performance breakdown across chromatography types
and instrument models is provided in Table S4.

4.1.3 Prospective instrument validation. To validate
model's ability to detect instruments for which air bubble
affected HPLC records are overrepresented, we constructed
a separate dataset for eight instruments with each of which
performed at least 100 experiments. For the affected instrument
#8, data were collected for the three months preceding and the
three months following a repair, ensuring an adequate sample
size (over 100 experiments for each time period).
4.2 Machine learning modeling

4.2.1 Classical ML. The initial dataset (see above) was
processed as follows. First, pressure traces were extracted and
treated as time-series data. Experiments with traces exceeding
10 000 time steps, shorter than 100 time steps, or longer than 75
minutes were discarded, yielding a nal set of 25 036 experi-
ments. Next, we featurized the remaining experiments using the
tsfresh29 default set of 783 features. Features that contained
undened values in any experiment were removed, reducing the
feature set to 585. We then processed these features using Sci-
kit-learn:31 (1) each feature was scaled using aMinMaxScaler; (2)
features with a variance of less than 0.01 were ltered out—
resulting in 122 features; and (3) a pairwise Spearman correla-
tion matrix was computed; for each pair of features with an
absolute correlation greater than 0.9, only one was retained.
This procedure resulted in a nal processed dataset comprising
99 features suitable for classical machine learning modeling.

Notably, before applying classical ML modeling, we tried
several non-ML, simple mathematical models like pressure
oscillation or the derivative of pressure with respect to time, and
signal processing approaches. All of them were deemed not
suitable for the project because of their lack of transferability
and extensibility.

Since the classication task is sensitive to class imbalance,
and due to usage of SNA framework we evaluated three class
ratio variants: 1 : 1, 1 : 10, 1 : 100. The positive class was repre-
sented by the 93 initially annotated as affected by air bubble
contamination, while the negative class examples were
© 2025 The Author(s). Published by the Royal Society of Chemistry
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randomly sampled from the Initial dataset according to desired
class ratio. The Random Forest algorithm was used for classi-
cation. The dataset was split using StratiedKFold in 5 folds,
hyperparameters ({‘max_depth’:[2,4,8,16,32,64,None], ‘n_esti-
mators’:[10,25,50,100,250,500,1000], “max_features”:[‘auto’,
‘sqrt’, ‘log 2’]}) were optimized using GridSearch inner loop
cross-validation with F1 score as objective function. The model
with the best hyperparameters was tted on the whole fold of
the outer 5-fold cross-validation loop.

Based on model performance (Fig. S1) 1 : 10 class ratio was
considered optimal (forming a training set of 1023 traces: 93
affected + 930 SNA-sampled unaffected) and used for all other
modeling stages. For Round 1, an ensemble of 5 models ob-
tained for the 1 : 10 class ratio was used.

4.2.2 Deep learning ML. We employed a 1D deep con-
volutional neural network for binary classication. Pressure
traces were represented as 1D vectors, with rst SKIP_FIRST_N
values skipped; the remaining values were trimmed to lengths
of 1000 time steps and le-padded with zeros. SKIP_FIRST_N
was treated as a hyperparameter and optimized. The model was
implemented using PyTorch Lightning. The CNN consists of
a series of 1D convolutional layers interleaved with ReLU acti-
vations and Batch Normalization layers, followed by fully con-
nected layers with ReLU activation and a dropout layer (dropout
rate: 0.1) for aggregation.

The model was trained using binary cross-entropy loss
(BCELoss) with the Adam optimizer. The initial learning rate
was treated as a hyperparameter, and a learning rate scheduler
(ReduceLROnPlateau: factor 0.5, patience 20) was employed.
The model was trained for up to 500 epochs, with early stopping
based on validation loss (patience: 150) and batch size of 100.
Performance metrics—including F1 score, accuracy, precision,
and recall—were tracked across the training, validation, and
test splits.

The model's hyperparameters (and architecture) were xed
for Round 2 and later optimized for deployment using Optuna30

by maximizing the validation F1 score with an optimization
budget of 2000 trials.

For Round 3 annotation using the CNN, the dataset was
constructed as follows. From the Round 2 and initial sets, 567
traces annotated as affected by air bubbles were combined with
5670 SNA samples randomly drawn from the initial dataset—
preselected using an Upper Condence Bound (UCB) threshold
of < 0.05 (where UCB is dened as “class1_prob_mean” +
“class1_prob_std” from the Round 1 RandomForest ensemble).
The combined dataset—forming the dataset for Round 3—was
then split into training, testing, and validation sets in an 80 :
10 : 10 ratio with class stratication.

For training the CNN intended for deployment to Cloud Lab,
we used 700 traces annotated as affected by air bubbles
(acquired by the end of Round 3), 261 traces annotated as
normal, and sampled SNA examples from the initial dataset (to
accumulate in total 7000 normal traces preserving the desired
class ratio)—preselecting those with a Round 3 ML model pre-
dicted class 1 probability < 0.05—to construct the deployment
training dataset (Table S1 and Fig. S2 for further details). This
dataset was split into training, testing, and validation sets in an
© 2025 The Author(s). Published by the Royal Society of Chemistry
80 : 10 : 10 ratio with class stratication. Finally, the trained
model was converted to ONNX to ensure native compatibility
with the Wolfram Mathematica-based backend of the Cloud
Lab.
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