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Journal Name

A Physics-Informed Measurement Protocol for Expecta-
tion Values of Fermionic Observables

Davide Bincoletto,aand Jakob S. Kottmann∗a,b

A central roadblock in the realization of Variational Quantum Eigensolvers on quantum hardware
is the high overhead associated with measurement repetitions, which hampers the simulation of
complex systems, such as mid- and large-sized molecules. We propose a novel measurement protocol
which relies on computing an approximation of the Hamiltonian expectation value. It involves an
iterative procedure that measures easily accessible operator groups in different Fermionic bases. The
measured elements are defined by the Hard-Core Bosonic approximation, which encode electron-pair
annihilation and creation operators. These can be decomposed into three self-commuting groups
to measure simultaneously. Applied to molecular systems, the method achieves a reduction of 30%
to 80% in the number of measurement and gates depth in the measuring circuits compared to
state-of-the-art methods. This provides a scalable and cheap measurement protocol, advancing the
application of variational approaches for simulating physical systems.

1 Introduction
The Variational Quantum Eigensolver (VQE)1,2 are often consid-
ered promising candidates for practical applicable quantum algo-
rithms.3–6 One of the main roadblocks for successful applications
is the significant overhead of circuit executions (shots) to estimate
a single expectation value of a given Hamiltonian. Even outside
the scope of variational algorithms, this bottleneck will still be
present, as for example reduced density matrices remain a cru-
cial observable for many applications.7,8 Consider the electronic
structure problem of quantum chemistry, which aims to find the
eigenstates of many-electron systems. Measuring the Hamilto-
nian in second quantization reduces to measuring the terms:

⟨H⟩=
N

∑
kl

hkl⟨a†
kal⟩+

1
2

N

∑
klmn

gklmn⟨a†
ka†

l anam⟩ (1)

with N being the number of spin-orbitals in the system. In this
form, O

(
N4) types of individual shots have to be realized in or-

der to estimate the full expectation value. On noisy hardware,
but also with respect to estimated runtimes, this overhead is
currently preventing practical demonstrations of VQEs already
on moderate-sized systems.9,10 A class of strategies out of this
dilemma are so-called grouping methods that identify commut-
ing cliques in the individual parts of the Hamiltonian which can
then be measured simultaneously – therefore reducing the over-

a Institute for Computer Science, University of Augsburg; E-mail: jakob.kottmann@uni-
a.de
b Centre for Advanced Analytics and Predictive Sciences, University of Augsburg.

head from O
(
N4) to the number of commuting cliques. As find-

ing the optimal cliques is an NP-hard problem, various heuris-
tics based on qubit11–13 and Fermionic14–16 representations have
been proposed. So far, these methods focus on (near-) exactly
decompositions of the full Hamiltonian without taking advantage
of physical approximations tailored to the system of interest. Fur-
thermore, there are other methods which consider adaptive pro-
cedures.17–19

Our work presents a method for reducing measurements over-
head by exploiting the structure of the given electronic instance.
The procedure aims to approximate the expectation value of the
Hamiltonian with respect to a specific target state (in this case,
the ground-state of the electronic system). The goal is to heuristi-
cally leverage the structure of the quantum state at hand instead
of aiming to partition the Hamiltonian into commuting cliques,
which can become computationally expensive and often comes
with an increased overhead in circuit depth. We show that the
proposed methods achieves significant reductions in measure-
ment types as well as in circuit overheads.

2 Central Ideal
The O(N4) overhead described above can be eliminated by
approximating the electronic system as a collection of spin-paired
quasi-particles, called Hard-Core Bosons (HCB).20 This approx-
imation allows the Hamiltonian to be divided into exactly three
commuting groups, regardless of the system size. However, this
approach often falls short in accurately describing electronic sys-
tems, particularly those where quantum computers are expected
to provide significant improvements in precision. Therefore,
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Fig. 1 Illustration of the measurement routine used in this article leveraging HCB approximation and basis rotations. The general procedure is applied
to hydrogenic systems like H4 (depicted in the Figure), H6 and H8. Here diagonal and off-diagonal matrix elements (green and blue) are used to
represent HCB and residual Hamiltonian elements.

limiting variational algorithms to HCB Hamiltonians is not a
viable solution. The core idea of this research is to leverage the
straightforward grouping of HCB Hamiltonians and combine
them with orbital rotations to switch between different frames
of the approximation in order to iteratively improve the estimate
of the expectation values at hand. At this point, it is important
to note that the electronic states of interest are not formulated
using the HCB approximation.

3 Technical Background

In the following we will introduce Hard-core Bosonic Hamiltoni-
ans in the specific (non-compressed) form necessary for the mea-
surement protocols developed in this work, followed by a recap
of orbital rotations and their implementation as quantum circuits.
The experienced reader might skip this section.

3.1 Hard-Core Boson Hamiltonian

In the Hard-Core Boson approximation (see for example Ref. 20
for an application for VQEs) spin-paired-electrons are treated as
quasi-particles, occupying the spatial orbitals. Applied to an elec-
tronic system, this breaks the invariance of the Hamiltonian with
respect to orbital rotations, meaning that different choices of spa-
tial orbitals lead to different approximations. In 21 this was used
to approximate electronic eigenstates as linear combinations over
HCB states in different orbital “frames” which served as the initial
motivation for this work. The approximation can be formulated
as

HHCB = ∑
k

αk +∑
kl
(βkl + γkl +δkl) (2)

where

: αk = ∑
σ

hkka†
kσ

akσ = ∑
σ

hkknkσ ,

: βkl = ∑
σ ,σ ′

gkklla
†
kσ

a†
kσ ′alσ ′alσ

: γkl = ∑
σ ,σ ′

gkllka†
kσ

a†
lσ ′alσ ′akσ = ∑

σ ,σ ′
gkllknkσ nlσ ′

: δkl = ∑
σ ,σ ′

gklkla
†
kσ

a†
lσ ′akσ ′alσ (3)

are the operators that encode spin-paired creation and anni-
hilation. And the residual Hamiltonian is Hres = H −HHCB. The
resulting HCB Hamiltonian, once mapped into Pauli operators,
naturally decomposes into three commuting groups: {I0, Z0, Z1,
Z0Z1, ...}, {Y0X1X2Y3, X0Y1Y2X3, Y0X1X4Y5, ...} and {Y0Y1X2X3,
X0X1Y2Y3, Y0Y1X4X5, ...}. Namely, αk and γkl parse into the first
group, and βkl and δkl parse in the second and third groups. This
makes it possible to do measurement on multiple elements at the
same time, highly reducing the computational overhead. Note
that, the formulation used here differs from other works20,22–24

that use a compressed representation (single qubit for a spatial
orbital) – this is however only possible if the quantum state is
also in the HCB approximation, which is not the case here.
Since the standard measurement on quantum computers consists
of reading out the classical bit values of the qubits (this corre-
sponds to measuring in the Z-basis), we need to transform all the
other Pauli operators in the Hamiltonian. This means finding a
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set of unitary operators such that

P(d)
i ≡ Pz

i =UiPiU
†
i (4)

where P(d)
i is a diagonal matrix in the form of a tensor product

consisting only of Pauli-Z and unit matrices. In this work, the
unitary operators, or measurement circuits, were identified using
the Sorted Insertion (SI) method, with an asymptotical scaling
of O

(
N2

q/ log
(
Nq
))

in the number of 2-qubit entangling gates and
single qubit rotations.12,25 However, in principle, they can be fur-
ther optimized by tailoring them to the three groups, as the Pauli
string pattern exhibits repetition.

3.2 Orbital Rotation Operations

An orbital basis is a unitary N×N matrix B operating on the initial
set of spatial orbitals. In order to rotate a basis we need to define
a operation that preserves the electronic Hamiltonian structure.
An effective 2D rotation (Givens rotation) acts as a proper basis
change for consecutive orbitals. Thus, in order to rotate any or-
bital we can use a sequence of effective 2D rotations acting on the
atomic orbital space. To illustrate, this is the matrix representa-
tion in the space of two spatial orbitals p and q:

R{p,q}(θ)≡ R(θ) =

(
cos(θ/2) sin(θ/2)
−sin(θ/2) cos(θ/2)

)
(5)

where θ is a free parameter. This operation is applied to the
molecular integrals to define a global unitary transformation of
the Hamiltonian operator. We will refer to this operation as or-
bital rotation.

Such an effective 2D rotation can be also represented as a
quantum circuit, given the correspondence between atomic or-
bital space and qubit space.26–28 In fact the unitary operator

UR{p,q}(θ)≡UR(θ) = e
θ

2 (a
†
p↑aq↑+a†

p↓aq↓−h.c.), (6)

which acts on the qubit space, achieves the same result of an
orbital rotation operation.28 Here p and q represent the spatial
orbitals affected by the rotation. Thus, analogously to the
atomic orbital space, an orbital rotation operation in the qubit
space is achieved with a sequence of UR(θ). While the matrix
representation is an N ×N operation on the space of of N spatial
orbitals, the circuit representation correspond to a 22N × 22N

transformation applied on the qubit register.

4 Detailed Description
The proposed method consists of four steps: a preprocessing
phase (steps 1–2), performed once, a recursive phase (step 3),
and a final phase (step 4), executed for each estimation of the
expectation value of the whole Hamiltonian.

1. Choose orbital bases B = {Bk}.

The orbital bases are given as unitary N ×N matrices which
operates on the initial set of orbitals, called “reference or-
bitals”. Note that they do not need to be “Hartree-Fock” or-
bitals, they merely define the reference for Bk. Each matrix

in B is compiled into a orbital rotation operation forming
the set R = {Rk} = {URk} of rotation matrices and corre-
sponding quantun circuits.

2. Prepare the quantum state of interest.

This can be defined as

|Ψ⟩=U |0⟩ , (7)

where U is a quantum circuit, and |0⟩ the quantum register.
This is the state of which we aim to compute the expectation
value.

3. Iteratively approximate the expectation value of H

H is transformed into H = H̃R1
HCB +H ′, with

H̃R1
HCB = (R1HR†

1)HCB (8)

H ′ = (R1HR†
1)res (9)

An expectation value of H̃R1
HCB can be estimated straight-

forwardly since all the terms can be collected into three
commuting groups, as shown before. The error of this es-
timate is contained within the residual operator H ′ which
can be recursively processed in the same way we did for H.
Each cycle will take a new rotation operation from the set
{R1,R2,R3, ...}, rotate back in the original basis, rotate for-
ward in the new basis and extract HCB and residual Hamil-
tonian.

4. Accumulate all contributions

Finally, we have collected a series of expectation values that
approximate the expectation value of the original Hamilto-
nian H.

⟨Ψ|H |Ψ⟩ ≈ ∑
Rk∈R

⟨Ψ|R†
kH̃Rk

HCBRk |Ψ⟩ (10)

The expectation value over the last constructed residual op-
erator H ′ quantifies the error exactly. The approximation
neglects this final residual.

The crucial point of the method is that an accurate approx-
imation is bound to a correct choice of the orbital rotations,
this is the heuristic part in step 1. In the following, we present
two typical scenarios for practical applications, where we guess
orbital bases based on the structure of the given electronic system
and leverage concepts from Valence-Bond Theory. We further
showcase some instances with randomly selected bases.

4.1 Numerical Results: Measurement Groups
To analyze and illustrate the method proposed above, we will
consider two explicit scenarios. One uses the exact ground state
and we will employ valence-bond based heuristics to generate the
orbital rotations necessary in the first step of the method. In the
second scenario we will illustrate co-design with existing circuit
designs to generate the orbital rotations.
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Scenario I: we make no assumption on the quantum circuit that
produces the state. In order to run the simulations we computed
the true ground-state through exact diagonalization. This ensures
that all essential correlations are represented in the wavefunction
of interest. For the rotation operations we leverage Valence-Bond
Theory for chemical bonding construction29 following some of
our previous works.21,28 For example, for a H4 molecule arranged
in a linear geometry we can define a graph identified by only
paired edges, namely G1 = {{0,1},{2,3}}:

G1 =

Then, given a set of reference orbitals, we can associate one or-
bital rotation operation to each graph. In a minimal STO-3G
atomic basis, G1 corresponds to a rotation in a four orbitals space.
By arranging the values in rows {0,1},{2,3}, corresponding to the
graph nodes, the operation can be represented by the matrix (for
θ = π

2 ):

RG1

(
π

2

)
= R{{0,1},{2,3}}

(
π

2

)
=

= R{0,1}

(
π

2

)
R{2,3}

(
π

2

)
=

=
1√
2


1 1 0 0
−1 1 0 0
0 0 1 1
0 0 −1 1

 (11)

The coefficients show that the orbitals are now in an equal super-
position, thus, we can interpret the first row as a bonding molec-
ular orbital between atomic orbitals 0 and 1 and the second row
as an anti-bonding molecular orbital, likewise for the third and
fourth rows. Therefore, the rotation operation RG1 is the trans-
formation from the set of reference orbitals B0, where atomic or-
bitals have no interaction among them, to the orbital basis B1,
where orbital pairs {0,1},{2,3} are delocalized into bonding and
anti-bonding motifs. The graph G1 corresponds to p,q = 0,1 and
p,q = 2,3. We will represent such circuits graphically as

URG1

(
π

2
)
≡

, (12)

where the lines represent spatial orbitals (and therefore 2-qubits
in most encodings). The corresponding unitary operators are:

URG1
=UR{{0,1},{2,3}}

(
π

2

)
=

=UR{0,1}

(
π

2

)
UR{2,3}

(
π

2

)
=

= e
π

4 (a
†
0↑a0↑+a†

1↓a1↓−h.c.) e
π

4 (a
†
2↑a2↑+a†

3↓a3↓−h.c.) (13)

Scenario II: Here we consider the quantum circuit design of Ref.
28 explicitly and illustrate co-designing the ansatz together with
the set of rotations for the measurements. This strategy enables
the measurement process to adapt to the specific state produced
by the quantum register. Moreover, it takes advantage of the cir-
cuit structure for the Hamiltonian evaluations. In this instance
we built a quantum circuit defined by a sequence of rotations URk

and double excitations UC{p,q}(θ) ≡ UC(ϕ) = e−i ϕ

2 (a
†
p↑a†

p↓aq↓aq↑+h.c.).
This Multi-Graph Circuit was defined in 28.

The circuit is made by a sequence of gates which aims at
catching all the correlation contributes among the atoms. In
order to do that it leverages the graph structure, i.e., the nodes
of the graph define the correlated orbitals and the edges define
the strength of the interaction. The produced state will be an
approximation of the true wavefunction, as is typical in VQE
algorithms, but we can interpret the rotation operations as
existing contributions inside the quantum state, reflecting its
underlying structure.

We tested the method on three molecular systems, H4, H6 and
H8, all arranged both on a line, with a bond length of 1.5Å, and
scattered in space. The line configuration is a common bench-
mark dataset for quantum algorithms and in previous work28

they proved to be valid stand-ins for real molecular systems, such
as conjugated pi-systems of carbon atoms. To broaden our anal-
ysis, we also considered free geometries which hold no structure.
The bond length between the bonding and the dissociation dis-
tance makes the ground-state wavefunction not trivially simula-
ble and not accurately representable as an HCB approximation.
The sets of orbital rotation operations used are tailored to the
graphs that can be defined by creating only paired connections
between atoms. We defined 3, 5 and 6 graphs for H4, H6 and
H8 systems respectively. For scattered H6 molecules we generated
50 additional unitary transformations randomly generated. The
corresponding quantum gates in Jordan-Wigner encoding are:

R =

 , ,

 (14)

R =


, , , ,


(15)
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Fig. 2 (Left) Number of measurement groups needed for different reduction methods. Free H6 refers to randomized molecular geometries, and the
values correspond to the mean and standard deviation of the distribution that achieves an error below 2 mEh. (Middle) Overhead in circuit depth
given by the application of rotation operation on wavefunction in step 4. Here we considered only linear system examples since results are compatible.
Values of Scenario I and II are expressed in the Reordered Jordan-Wigner encoding. (Right) Number of measurements required to compute all the
contributions given by the general procedure. This represents the cost for each shot of a VQE algorithm.

R =


, , , , ,


(16)

using 8, 12 and 16 qubits respectively.
The topology of the rotation operations is derived from Valence-
Bond Theory resonance structures. In particular, the number of
structures available scales as 1

n+1
(2n

n
)
. These are the non-crossing

perfect matching of n nodes in a ring. For H4, H6 and H8 there are
2, 5 and 14 structures respectively. In the presented sets we con-
sidered one additional structure for H4, operation number three,
because the two structures alone were not able to catch all the
relevant interactions in the molecule. We considered only 6 of
the structures for H8, for simplicity. The number of structures one
can use scales fast but the used sets have proven to be effective
for the target systems. This does not prevent the use of different
topologies such as crossing edges or graphs with multiple pairs as
long as the operations are well defined.

Figure 3 shows the error of the Hamiltonian approximation
for each iteration. Figure 2 show the number of measurement
groups and the depth overhead in the measuring circuits in
comparison with grouping heuristics. When computing the
depth of measuring circuits, the values for Scenario I and II are
considered in the Reordered Jordan-Wigner encoding, meaning
that the qubits order in the quantum register follows the pattern
|↑↑ ... ↑↓↓ ... ↓⟩. This choice leads us to a lower depth overhead
by decoupling spin-up and spin-down excitations gates.

4.2 Numerical Results: Individual Shots

Given H = ∑i Hi = ∑i wiPi, for each Pauli string Pi we estimate the
number of measurements as:

Mi =

(
|wi|
√

Var(Pi)

ε

)2

=

 |wi|
√

(1−⟨Pi⟩2
Ψ
)

ε

2

(17)

where ε = 10−3 represents the precision.14 Then, for each com-
muting group we only consider the largest value

Mgroup = max
Hi∈group

Mi, (18)

since we can measure the operators belonging to such group si-
multaneously, therefore giving an upper bound on the total mea-
surements for the given fragment. Finally, we sum together all
the contributions from each iteration to retrieve the total number
of measurements.

Mtot = ∑
{groups}

Mgroup (19)

Figure 2 shows the number of measurements needed for a com-
plete repetition of the procedure compared to grouping heuristics.
These values have been proven consistent from the finite sample
simulations in Figure 4. The number of samples was set to the es-
timated number of measurements, previously defined as the max-
imum value among all Pauli strings within the same group. We
then repeated this process 100 times and computed the average
over all sample simulations for each group. Our assumption is
that the final result remains below the previously fixed precision
ε = 10−3 with respect to the real expectation value. In Scenario
I and II the measurement groups are distributed and evaluated
over each rotation operation, whereas for SI they are computed
simultaneously. In all considered examples the error never ex-
ceeds the precision, thus confirming the consistency of the esti-
mated number of measurements.

4.3 Scientific Software

All the calculations have been carried within the TEQUILA 30

PYTHON package. Specifically, the simulations made
use of QULACS 31, the qubit operators elaboration utilized
OPENFERMION 32, while the integral computations employed the
PYSCF package33 and the exact diagonalization SCIPY 34. Finally,
free geometries have been generated with QUANTI-GIN 35 and
circuits depictions are made with QPIC 36.
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Scenario I Scenario II

Fig. 3 Error in approximating the molecular Hamiltonian for square H4, circular H6 as well as free H6 and linear H8 using the sets {RGk} from Eqs.(14),
(15) and (16) respectively. The blue area is the 1 mEh margin of error, which we consider as the desired accuracy, the green area is the error from the
chosen circuit ansatz.
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Table 1 Overview over the State-of-the-art methods used for the com-
parison with Scenario I and II in 2 with references.

Pauli-grouping

Large First (LF) 11
Recursive Largest First (RLF) 11

Sorted Insertion (SI) 12,25

Fermionic-grouping

Low-rank decomposition (LR) 14,15
Fluid Fermionic Fragments (FFF-LR) 16

5 Conclusion and Outlook
In all cases examined we consistently retrieved accurate approxi-
mations for the expectation value of the molecular Hamiltonian,
achieving this with a comparably small number of iterations.
Moreover, compared to existing approaches, our method does not
rely on extensive pre-computation. The number of measurement
groups is improved by 50% to 80% compared to benchmarks.19 In
Scenario II, 80% of the distribution falls under 10 measurement
groups. The co-design of circuit and rotation operations may lead
to more expressivity in the HCB Hamiltonian evaluation and thus
fewer algorithm iterations needed, though this is not fully con-
clusive yet. Orbital rotation operations have shown to statisti-
cally improve this approximation at a cheap cost in circuit depth
overhead, even when generated randomly. This work provides
the ground to conduct further research to single out the optimal
class of operations. Notably, the total number of measurements is
lower by about 30% to 80% for structured systems, while compa-
rable in magnitude to benchmarks for less-structured examples.
The target systems have been proved to be well described by the
graph-based approach introduced.23,28 This agreement validates
the efficacy of the proposed method, indicating the underlying
principles are fundamental to the structural properties of these
systems and supporting the hypothesis that the method can be
systematically generalized to a broader range of systems. In the
Appendix we show the example of the BeH2 molecule for which
we applied the same procedure as the linear H4 molecule. The
same reasoning can be applied by using circular H6 to measure
the benzene molecule. Future heuristics could leverage mod-
ern correlation measures37–39 to enhance Hamiltonian approxi-
mation, or make use of perturbative methods40,41 to narrow the
choice of rotation operations with respect to expressivity and ef-
ficiency.

This approach has a connection to Fermionic quantum compute
platforms. In Ref. 42 a randomized protocol has been developed
that leverages rotations into different Fermionic basis – these op-
erations are identical to the UR operations used in this work, for
this reason our heuristic protocol can be straightforwardly ap-
plied on such platforms with large improvements, e.g., the H4

system required a few thousand basis rotations while the heuris-
tic approach from this work requires only 3 rotations. The two
approaches are two goalposts, a structural approach and a ran-
domized zero-knowledge approach42, that can be combined. In
this work, we indicated it in Fig. 3 where we used a primitive

randomized protocol. One can see the randomized protocol as
an upper bound, a costly brute force attempt, and the structured
scheme as a lower bound, a cheap structured attempt that can
mitigate the high measurement costs as soon as structural infor-
mation about the system is available.
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Appendix

Close-up visualization
Figure 6 display close-up visualizations of the approximation fig-
ures, i.e., the errors in approximating the molecular Hamiltonian
operators of the selected examples.

Multiple atomic distances
Figure 9 shows the error measured for the linear H4 with respect
to interatomic distance. We can see that for short distances the
chosen rotation operations behave poorly. A possible explanation
for this result is that the operations defined through Valence-Bond
Theory transform the orbital basis in a localized basis. This pro-
cess makes it not accurate for situations where atoms are close
together, whereas a delocalized basis, e.g., canonical orbitals, can
prove more suitable. This behaviour can be observed in the sim-
ulation of randomized H6 geometries where we noticed that the
original set of operations alone is not enough to retrieve the full
Hamiltonian. The solution adopted in that context, i.e., adding
randomly generated unitary transformations, can be transferred
to this system as well, even if the resulting measurement process
becomes more expensive. Note however that this is significantly
beyond the number of orbital rotations form comparable methods
applied to the same system.42

Scenario II quantum circuit
The quantum circuit used in Scenario II is taken from28. It is
made of a sequence of rotation (UR) and correlation (UC) gates.
For example, the circuit used for linear H6 is

|Ψ⟩=Ũ†
RG4

(φ4)UCG4
(ϕ4)ŨRG4

(φ4)

Ũ†
RG3

(φ3)UCG3
(ϕ3)ŨRG3

(φ3)

Ũ†
RG2

(φ2)UCG2
(ϕ2)ŨRG2

(φ2)

Ũ†
RG1

(φ1)USPA(ϕ1) |0⟩

(20)

where USPA(ϕ1) is equivalent to UCG1
(ϕ1)ŨRG1

(φ1) since applying
a rotation operation at the beginning of the circuit has no effect
on the initial state. Figure 5 presents the circuit rendered with
QPIC. In this context ŨRk = URkURR is an extension of the orbital
rotation operation which preserves the topology and allows delo-
calization. The definition of URR is based on Eq.(28) of Ref. 28.
The parameters for the ŨRk gates are initialized through the GNM
method from Ref. 21 and then the whole is minimized. We show
an example code to create the circuit for linear H6 in 1.

BeH2 molecule and method scaling
In order to assess the scaling of the method we applied it on the
BeH2 molecule. The results are shown in Figure 10. The orbital

rotation operations are the same as the linear H4 molecule and
the accuracy comparably high. We didn’t consider the px and py

orbitals, but only the s and pz ones. This makes it suitable for the
linear H4 graph topology. The example shows how the heuristic
can be extended on larger molecules by applying the same orbital
rotation operations to molecules with the same topology. A simi-
lar example is the application of the operations of linear H6 over
the benzene molecule. In addition one can consider the discarded
orbitals using a mixed Fermionic-Bosonic encoding24 to obtain a
complete description of the system.

Excited state calculation
The measurement protocol can be extended to excited state cal-
culation. In order to prove this we considered the five lowest
Hamiltonian eigenvector states with

〈
S2〉 = 0 and energy higher

than the ground state. The procedure is unchanged, the rotation
operations are the same as used for the ground state computation.
The result is shown in Figure 11.

1 import tequila as tq

2

3 # Create the H6 molecule

4 geom = "h 0.0 0.0 0.0\nh 0.0 0.0 1.5\nh 0.0 0.0 3.0\nh

↪→ 0.0 0.0 4.5\nh 0.0 0.0 6.0\nh 0.0 0.0 7.5"

5 mol = tq.Molecule(geometry=geom , basis_set="sto -3g").

↪→ use_native_orbitals ()

6

7 # Convenience method for URR

8 def URR(layer):

9 return mol.UR(0,1,("01a",layer)) + mol.UR(2,3,("23a",

↪→ layer)) + mol.UR(4,5,("45a", layer)) \

10 + mol.UR(0,3,("03a",layer)) + mol.UR(1,2,("12a",

↪→ layer)) \

11 + mol.UR(0,1,("01b",layer)) + mol.UR(2,3,("23b",

↪→ layer)) + mol.UR(4,5,("45b", layer)) \

12 + mol.UR(0,3,("03b",layer)) + mol.UR(1,2,("12b",

↪→ layer)) \

13 + mol.UR(0,1,("01c",layer)) + mol.UR(2,3,("23c",

↪→ layer)) + mol.UR(4,5,("45c", layer))

14

15 # First layer

16 U = mol.make_ansatz("spa", edges =[(0 ,1) ,(2,3) ,(4,5)])

17 U+= (mol.UR(0,1,"01") + mol.UR(2,3,"23") + mol.UR(4,5,"45

↪→ ") + URR (0)).dagger ()

18

19 # Second layer

20 U+= mol.UR(0,5,"05") + mol.UR(1,2,"12") + mol.UR(3,4,"34"

↪→ ) + URR (1)

21 U+= mol.UC(0,5,"05") + mol.UC(1,2,"12") + mol.UC(3,4,"34"

↪→ )

22 U+= (mol.UR(0,5,"05") + mol.UR(1,2,"12") + mol.UR(3,4,"34

↪→ ") + URR (1)).dagger ()

Listing 1 How to prepare a quantum circuit in tequila
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Fig. 5 Quantum circuit used in Scenario II for linear H6 molecule.
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Square H4

Circular H6

Free H6

Linear H8

Fig. 6 Close-up visualization of Figure 3. The blue area is the 1 mEh margin of error, which we consider as the desired accuracy, the green area is the
error from the chosen circuit ansatz.12 | 1–15Journal Name, [year], [vol.],
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Fig. 7 Number of CNOT gates in the circuit used for the rotation operation in step 4, compared to CNOT counts for the basis transformation
for grouping approaches. The results are consistent with the circuit depths in the main paper and show an improvement of the new method over
state-of-art ones.

Fig. 8 Error in approximating the molecular Hamiltonian of linear H6 molecule for all possible orderings of the rotation operations in the set. The
worst result is obtained for sequence (5,2,3,4,1), while best corresponds to sequence (1,2,3,4,5), i.e., the one used in the work. (Left) Full plot. (Right)
Close-up visualization. The standard ordering shows up to return the best result in the least number of steps. An explanation is that the first graph
has the minimum sum of the lengths of the edges, the second has the second least sum of the lengths and so on, and thus they catch the correlation
between the atomic orbitals in less steps. Nevertheless, every ordering reaches the best accuracy (1 mEh) given enough steps. This is a first indication
that the defined set of rotation operations is overall sufficient to catch the correlations between the atomic orbitals.
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Fig. 9 Error in approximating the molecular Hamiltonian of linear H4 molecule. (Top) We considered multiple atomic distances and only the standard
set of rotation operations for the H4 molecule. (Bottom) We considered only 0.5Å atomic distance and on top of the standard set we added 50 randomly
generated unitaries as rotation operations, in the same manner as with H6 molecules in random geometries (Figure 3). For further explanation see
Appendix.

Fig. 10 Error in approximating the molecular Hamiltonian of BeH2 molecule with a bond distance of 1.5Å in Scenario I. This shows that the heuristic
can be extended on larger molecules with the same topology by applying the same orbital rotation operations.

14 | 1–15Journal Name, [year], [vol.],
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Fig. 11 Error in approximating the molecular Hamiltonian of linear H4 molecule for the first five excited states. (Left) Full plot. (Right) Close-up
visualization. This shows that the process is not limited to computation of ground state expectation value but can be extended to arbitrary many-body
states.
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All data have been computed using the open-source library Tequila (v.1.9.9, DOI:10.5281/zenodo.7673865.). 
A prototype implementation of the developed methods as well as data presented in the main text can be 
found under DOI:10.5281/zenodo.17607749
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