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gradient-based approach for
designing superconductors with high critical
temperature: exploiting domain knowledge via
adaptive constraints

Akihiro Fujii, *a Anh Khoa Augustin Lu, ab Koji Shimizu c

and Satoshi Watanabe a

Materials design aims to discover novel compounds with desired properties. However, prevailing strategies

face critical trade-offs. Conventional element-substitution approaches readily and adaptively incorporate

various domain knowledge but remain confined to a narrow search space. In contrast, deep generative

models efficiently explore vast compositional landscapes, yet they struggle to flexibly integrate domain

knowledge. To address these trade-offs, we propose a gradient-based material design framework that

combines these strengths, offering both efficiency and adaptability. In our method, chemical

compositions are optimised to achieve target properties by using property prediction models and their

gradients. In order to seamlessly enforce diverse constraints—including those reflecting domain insights

such as oxidation states, discretised compositional ratios, types of elements, and their abundance, we

apply masks and employ a special loss function, namely the integer loss. Furthermore, we initialise the

optimisation using promising candidates from existing datasets, effectively guiding the search away from

unfavourable regions and thus helping to avoid poor solutions. Our approach demonstrates a more

efficient exploration of superconductor candidates, uncovering candidate materials with higher critical

temperature than conventional element-substitution and generative models. Importantly, it could

propose new compositions beyond those found in existing databases, including new hydride

superconductors absent from the training dataset but which share compositional similarities with

materials found in the literature. This synergy of domain knowledge and machine-learning-based

scalability provides a robust foundation for rapid, adaptive, and comprehensive materials design for

superconductors and beyond.
1 Introduction

Materials design is crucial for technological innovation such as
the discovery of new superconductor materials. High-
temperature superconductors (HTS) are especially promising
because they reduce cooling costs and enable higher magnetic
elds. They are also expected to be applied in fusion power
generation, electric power cables, and superconducting maglev
trains.1,2

Exploiting physical insights—such as selection of elements
based on their oxidation states and the fact that materials with
too many elements are impractical—can narrow this search,
erials Engineering, Faculty of Engineering,
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62–3673
making materials design more efficient. A traditional technique
in materials design is elemental substitution (i.e., doping).3–6 In
this approach, one starts with a promising host material and
partially substitutes certain elements to tune the properties.
Substituted elements are typically chosen based on physical
insights—such as oxidation states—to ensure charge neutrality
and other key constraints.

Machine learning (ML) has become a widely used approach
for materials discovery, offering faster property predictions than
conventional Density Functional Theory (DFT) calculations and
thus enabling high-throughput screening. In the context of HTS
development, some studies7–15 have focused on training super-
conducting transition temperature (Tc) prediction models using
the SuperCon dataset,16 which comprises a large set of known
superconductors. Some studies17–19 combine ML-based Tc
prediction with experimental tests and report the discovery of
novel superconducting materials.

Recently, deep generative models have gained prominence
in materials design,20–23 including the quest to discover novel
© 2025 The Author(s). Published by the Royal Society of Chemistry
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superconductors.24,25 These models propose new compounds by
learning the statistical distribution of existing data, thus
enabling the exploration of a vast chemical space. Several
studies26,27 employ diffusionmodels28—a deep generative model
widely used in the computer vision eld29—to generate super-
conductor candidates. SuperDiff,27 a diffusion model for
superconductors, generates candidate superconductors by
gradually removing noise from a noisy composition. Moreover,
SuperDiff can generate conditioned outputs based on reference
compounds using Iterative Latent Variable Renement (ILVR).30

While conventional generative methods only explore materials
within existing databases, SuperDiff can generate newmaterials
based on promising reference compounds.

Moreover, there are strategies that guide deep generative
models toward desired properties, such as label-based condi-
tional generation,31 Universal Guidance32 (UG), Classier
Guidance (CG)33 and Classier-Free Guidance (CFG).34 While CG
and UG use a separate property predictor to steer the generation
process, CFG does not require such a predictor. Although the
label-based conditional generation and CFG have both been
extensively validated in image generation, their reliance on
labels within the dataset limits their exibility in materials
design. By contrast, CG can be conditioned on labels not
present in the target dataset using models trained on other
datasets. Xie et al.20 employ a strategy similar to CG, combining
a diffusion model with a formation energy prediction model.
Applying CG to Tc prediction models and superconducting
Fig. 1 Overview of Knowledge-Integrated Adaptive Gradient-based Opt
the formation energy by optimising the input composition using tw
composition vectors, masks, and specialised loss functions, KIAGO enable
Specific elements can be fixed and excluded from the optimisation targ
which elements appear during the optimisation via masks. Here, we fix
using the mask; (2) restricting the maximum number of elements. We fi

a mask to keep only the most abundant ones up to a specified cutoff.
elements never exceeds the chosen limit. In this figure, we select the thre
composition to those three elements. (3) Normalising the compositional
normalised composition to a composition consisting of four atoms.

© 2025 The Author(s). Published by the Royal Society of Chemistry
material generation models such as SuperDiff has the potential
to enable HTS design.

A gradient-based method35–38 that uses prediction models
and their gradients to optimise inputs has recently attracted
attention. This method is similar to CG and UG but simpler, as
it does not require training a generative model. Moreover, this
method allows for more exible and adaptive conditional
optimisation.38 While there is no study of applying this tech-
nique to composition optimisation, it could be a promising
approach for materials design.

Despite these advances, signicant trade-offs remain.
Elemental substitution can incorporate physical knowledge but
may limit exploration to a relatively narrow search space. Deep
generative models can explore a broader chemical space effi-
ciently, yet they struggle to exibly integrate physical knowl-
edge—such as atomic valence constraints or converting
compositional ratios to integers—in an adaptive manner. On
the other hand, the gradient-based method has a risk of falling
into poor solutions, though this method has the potential to
introduce various physical knowledge in an adaptive manner.

In this paper, to address these issues, we adopt a gradient-
based method and propose a straightforward materials-design
method called Knowledge-Integrated Adaptive Gradient-based
Optimisation (KIAGO). This framework combines the adaptive
application of domain knowledge with computational efficiency
to directly optimise chemical compositions (Fig. 1). KIAGO does
not require training a deep generative model, making it more
straightforward to implement. Specically, we adopt two
imisation (KIAGO). KIAGO simultaneously maximises Tc and minimises
o pretrained models and their gradients. Through the use of fixed
s flexible control of the composition in three ways: (1) element control.
et to perform conditional optimisation. KIAGO is also able to control
the composition of barium and exclude helium from the optimisation
rst rank elements by their abundance in the composition and create
All other elements are set to zero, ensuring that the total number of
emost abundant elements to build a mask, which then restricts the final
ratios to small integers. Here, we use the loss function Lint

4 to guide the

Digital Discovery, 2025, 4, 3662–3673 | 3663
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property prediction models—one for Tc and another for
formation energy—to maximise Tc while enhancing stability,
thereby proposing realistic materials. Unlike CFG and label-
based conditional generation, KIAGO can optimise formation
energy (which is not included in the SuperCon dataset) by using
a separately trained formation energy prediction model. Addi-
tionally, by conducting an intensive search around promising
materials, KIAGO mitigates the risk of being trapped at poor
results. Moreover, by applying masks and a specialised loss
function to enforce integer values, we can effectively embed
physical insights (e.g., ensuring the retention of specic
elements, oxidation states, the number of elements, or integer
compositional ratios), thus providing a versatile framework that
accommodates diverse constraints in adaptive manners.

To validate the effectiveness of KIAGO, we performed
experiments to propose promising HTS. Our approach signi-
cantly outperformed both generative models (SuperDiff and
SuperDiff with CG) and conventional elemental substitution
techniques in proposing high-Tc candidates efficiently. In
particular, we found that SuperDiff with CG tended to generate
materials with lower Tc values because the Tc distribution in the
original data constrained them. In contrast, our method
proposed high-Tc candidates without being limited by the
original distribution. Additionally, KIAGO could keep some part
of the composition xed while optimising others, relevantly
replace elements according to their oxidation states, and
maintain charge neutrality perfectly. Additionally, KIAGO
proposed candidate compositions that shared the same
elements as hydride superconductors reported in other litera-
ture despite their absence from the SuperCon dataset. These
results highlight its potential for discovering novel materials.
2 KIAGO
2.1 Overview

Knowledge-Integrated Adaptive Gradient-Based Optimisation
(KIAGO) is a gradient-based method that uses pre-trained
models and their gradients to directly optimise the input
representation—in this case, the normalised compositional
vector of candidate materials. Rather than merely searching for
compositions that yield favourable properties, KIAGO intro-
duces three key strategies to enhance material quality and
provide ne-grained control: (1) initialisation from promising
materials to mitigate the risk of being trapped at poor results;
(2) masking to control elemental types; (3) special loss functions
for conversion to integers and atomic-count constraints.
2.2 Gradient-based method

A gradient-based method can adopt any predictive model,
provided the chain rule of differentiation is valid from input to
output. To propose superconducting materials with high-Tc, we
employ a Tc predictor fTc

. We also use a formation-energy
predictor fEf

to propose compounds that are both high-Tc and
thermodynamically feasible. We introduce a hyperparameter
a and dene the loss L as
3664 | Digital Discovery, 2025, 4, 3662–3673
L = −fTc
(x̂) + afEf

(x̂) (1)

x̂* ¼ argmin
x̂

L: (2)

Here, x̂ ˛ [0, 1]Nelem is a compositional vector spanning Nelem

elements. Minimising L aims to increase Tc while lowering the
formation energy. However, simple minimisation poses several
issues: (1) it may converge to poor solutions, (2) it lacks control
over the number and type of elements, and (3) it does not ensure
integer ratios in the nal composition.
2.3 Initialisation based on promising materials

To avoid converging to poor solutions, we adopt a strategy of
starting the optimisation from various initial states including
those corresponding to known promising materials. We can
reduce this risk by focusing on the areas of existing high-
performance compounds. Such a strategy goes beyond
doping-like approaches that only alter part of an existing
material, enabling a broader range of materials to be explored.
Specically, we perturb known superconductors by substituting
elements randomly and adding new elements to the composi-
tion. This technique effectively explores the local neighbour-
hood of promising materials.
2.4 Controlling the types of elements present

We next control which elements appear in the composition by
combining a xed composition vector and a mask (Fig. 1(1)).
First, we split x̂ into a xed portion xconst and an optimisable
portion x̂opt:

x̂opt˛ℝNelem ; xconst˛½0; 1�Nelem ;
X
i

xconst
i\1 (3)

x̂ ¼ xconst þ s
�
x̂opt

� 
1�

X
i

xconst
i

!
: (4)

Here, s is a normalisation function that ensures each element is
non-negative and the total sum is 1. A possible approach was to
use the somax function. However, to emphasize elements that
remain unused, we instead chose to use normalisation aer
applying Rectied Linear Unit (ReLU).

sðxÞ ¼ ReLUðxÞP
ReLUðxÞ (5)

Because xconst remains unchanged, its specied composition
remains xed during optimisation. We further introduce
a mask Melem(Melem ˛ {0, 1}Nelem) to select the allowable
elements. Concretely, we set

x̂opt = x̂base*Melem, (6)

where x̂baseðx̂base˛ℝNelemÞ is a trainable parameter, and the
asterisk (*) denotes element-wise multiplication. This mask
enforces strict control over which elements can be used, thus
guiding the optimisation toward compositions that meet spec-
ied domain constraints.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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2.5 Controlling the number of element types in the
composition

To achieve realistic composition, we use a mask to limit how
many elements can appear in the composition (Fig. 1(2)). To do
this, we sort the compositional values in ascending order and
create a mask Mmax

elem(M
max
elem ˛ {0, 1}Nelem), which sets to zero any

element index beyond the allowed maximum elements nmax
elem.

P
Mmax

elem = nmax
elem (7)

x̂
0
opt ¼ x̂opt*M

max
elem; (8)

2.6 Integer loss

We construct a loss function that guides the composition into
integer-compatible values during optimisation (Fig. 1(3)). Such
values {cn

Nunit} are those for which the product of the normalised
composition and the unit cell size Nunit becomes an integer
ratio. For instance, if Nunit = 4, then the feasible set {cn

4} is
{0.00, 0.25, 0.50, 0.75, 1.00}.

The integer loss measures how far each compositional ratio
of element i(x̂i) is from its nearest value in {cn

Nunit}.

{cn
Nunit} = {n/Nunit}n=0,1,.,Nunit

x̂i ˛ {x̂H, x̂He, x̂Li, ., x̂Nelem} (9)

Lint
Nunitðx̂Þ ¼

XNelem

i¼1

min
n

��x̂i � cn
N
�� (10)

As an example, Fig. 2 shows the result of applying Lint
4 to

Ca0.23Sr0.27O0.50. We assume Nunit = 4 and guide the composi-
tions toward the nearest values in {0.00, 0.25, 0.5, 0.75, 1.00}.
Fig. 2 An overview of the integer loss Lint
4 under the assumption that

each unit cell contains four atoms. The numbers shown inside the
dashed box represent all possible different combinations between the
integer-compatible set {cn

4} and the composition values. The total loss
is obtained by selecting the minimum among these combinations for
each element (indicated by the black underline) and summing them.

© 2025 The Author(s). Published by the Royal Society of Chemistry
Because it is difficult to x Nunit in advance, we evaluate
multiple candidates for Nunit and choose the one that yields the
smallest loss. Concretely, we dene Linteger as follows:

Linteger;fNunitgðx̂Þ ¼ min
N˛fNunitg

Lint
Nðx̂Þ: (11)

This exible approach selects a suitable integer grid even
when the optimal cell size is unknown.
2.7 Optimisation procedure

KIAGO divides its optimisation into two stages. First, as in
Sections 2.3 and 2.4, we construct an initial x̂base and control
which elements appear while iteratively minimising the
following loss L1st. This process yields x̂

1st
* .

x̂ ¼ xconst þ sðx̂base*MelemÞ
 
1�

X
i

xconst
i

!
(12)

L1st = −fTc
(x̂) + afEf

(x̂) (13)

x̂1st
* ¼ argmin

x̂base

L1st (14)

Next, we introduce the conversion to integers and
a maximum-atom constraint. We use x̂1st* to build the mask
Mmax

elem, then iteratively minimise the loss L2nd.

x̂
0 ðx̂baseÞ ¼ xconst þ s

�
x̂base*M

max
elem*Melem

� 
1�

X
i

xconst
i

!
(15)

L2nd = −fTc
(x̂0) + afEf

(x̂0) + bLinteger,{Nunit}
(x̂0) (16)

x̂2nd
* ¼ argmin

x̂base

L2nd (17)

Here, b is a hyperparameter. We take x̂0(x̂2nd* ) as the nal
solution.
3 Results
3.1 Implementation details

We used PyTorch39 to implement KIAGO. KIAGO optimises
a total of 4096 candidate compositions across 1000 steps using
Adam optimiser.40 We rst perform 500 steps of optimisation
using eqn (12)–(14), followed by another 500 steps using eqn
(15)–(17) with a = 4 (selected based on tuning) and b = 1.

To predict the superconducting transition temperature (Tc),
we employ a ResNet18 model41 trained on normalised compo-
sitions of SuperCon and Crystallography Open Database
(COD).42–51 Each composition is represented by a periodic table-
based feature map, which has four channels corresponding to
the s, p, d, and f orbitals.12 SuperCon comprises more than 26
000 composition–Tc pairs and is widely used for Tc prediction.
Although SuperCon lacks explicit structural information, it is
used to propose novel superconductor candidates, some of
which are later veried experimentally.17–19 We also use COD as
Digital Discovery, 2025, 4, 3662–3673 | 3665
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Fig. 3 Comparison of optimisation results under different initialisation
methods. Both approaches employ Adam optimiser40 with a learning
rate of 0.001. (Left) Initialisation by adding noise to an existing
superconductor (LaNiAsO). (Right) Random initialisation, in which
seven elements are chosen arbitrarily and assigned random compo-
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a source of non-superconductors to regularize training and
reduce false positives.

For each element, we set ags at the positions of its row and
column on the periodic table, as well as at its relevant orbital
channels. We then multiply these element-level feature maps by
the respective compositional ratios to create the nal input
representation. Further details are available in Section S.1. For
formation energy, we used ElemNet,52 which is originally
implemented in TensorFlow 1.x53 and we re-implemented it
in PyTorch. Since ElemNet only covers elements up to
atomic number 86, we apply a mask to exclude elements
beyond that range. Additional technical specics are given in
Section S.2.

We compared KIAGO against two baselines: a conventional
elemental-substitution (C-ES) approach and SuperDiff, a diffu-
sion-based generative model. The C-ES method randomly
replaces some elements with others of identical oxidation
states. For SuperDiff, we used the official implementation and
trained on the same data for our Tc prediction model, but
without normalising compositions. Following the official code,
we conducted 1000 diffusion steps. According to the original
SuperDiff, we conditioned generations of compositions on
existing superconductors using Iterative Latent Variable
Renement (ILVR). We applied scale factors of 1, 2, 4, and 6 to
yield a total of 4096 samples. We also incorporated Classier
Guidance (CG) using Tc prediction model and ElemNet into
SuperDiff to compare it directly with KIAGO. Normally, the
classier used for CGmust be trained on data with noise, which
would make Universal Guidance (UG) the better choice for off-
the-shelf models. However, we found that UG did not work
well and CG still improved Tc using models without noise-
augmented training. Therefore, we decided to use CG.
Although neither model is strictly a classier, we refer to this
approach as CG for convenience. Note that this is not proposed
in the original paper.27 At each inference step, we used eqn (13)
with a = 4 for gradient guidance, and we tuned the guidance
weight from 1 × 10−7 to 1.0, ultimately selecting 1 × 10−3.
Additional details of SuperDiff are provided in Section S.3.

Aer generating candidate compositions, we applied amulti-
step screening procedure to ensure realistic materials. First, we
used SMACT54 to lter compositions with charge neutrality and
electronegativity balance, following Yuan et al.27 Next, we
selected only those with formation energies (predicted by Ele-
mNet) less than zero. We also removed compositions contain-
ing ten or more elements since the preprocessed SuperCon data
have at most nine. Finally, we evaluated Tc values using the
same ResNet18 predictor used in KIAGO and SuperDiff with CG.

To assess thermodynamic stability of the proposed mate-
rials, we use the energy above the convex hull per atom (DEhull).
Our method proposes compositions rather than crystal struc-
tures, so validatingDEhull with DFT total energies is not feasible.
Instead, we estimate DEhull from formation energies predicted
by ElemNet. Concretely, we predict formation energies for
compositions from the Materials Project55 and the Alexandria
Materials Database,56–59 and compute DEhull by building phase
diagrams with pymatgen.60
3666 | Digital Discovery, 2025, 4, 3662–3673
3.2 Mitigating the risk of convergence to non-promising
solutions

In this section, we investigated whether our initialisation
scheme could mitigate the risk of converging to non-promising
local minima in the rst stage (eqn (12)–(14)). Specically, we
aimed to determine whether our method can produce more
promising local optima than a purely random initialisation. In
our method, we began with the superconductor LaNiAsO from
the SuperCon dataset. With a probability of 0.22, we replaced
elements of its composition with different elements chosen
according to their occurrence frequencies in SuperCon. We then
selected random elements with random compositional ratios
(from 0.0 to 0.3) for those elements, normalised the resulting
composition, and used it as the initialisation. By contrast, the
random initialisation selects four elements, to match the
number of atoms in LaNiAsO, uniformly at random and assigns
them random compositional values.

Fig. 3 shows the optimisation results. Our initialisation
scheme yields higher Tc values than random initialisation.
Although our method can still become trapped in local optima,
it proposes more promising solutions than the random
approach. Hence, our approach partially mitigates the inherent
challenge of local minima in gradient-based methods. See
Section S.4 for details on the variability across different random
seeds.
3.3 Converting compositional ratios to integers via loss-
based approach

In this section, we compared the integer conversion method
based on a loss function Linteger,{Nunit} with a rule-based integer
conversion method. We aimed to determine which approach
reduced the drop in Tc in the second stage (eqn (15)–(17)). In the
loss-based method, we follow eqn (16) to maximise Tc while
minimising Ef. Specically, we guided the composition toward
an integer representation by selecting an optimal total number
of atoms from a set of integers smaller than the specied
sitional values.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Differences in Tc (K) between the average Tc of the highest
top-30 proposed superconductors and the base superconductors in
the experiments of proposing superconductors based on existing
ones. SD, SD w/ CG, and C-ES denote SuperDiff, SuperDiff with
classifier guidance, and conventional elemental substitution, respec-
tively. After screening 4096 samples, the Tc predictionmodel was used
to calculate Tc. ‘N/A’ indicates that none of the samples passed the
screening

Base materials from SuperCon

KIAGO SD SD w/ CG C-ES
Top-30 Top-30 Top-30 Top-30
DTc (K) DTc (K) DTc (K) DTc (K)

LaNiAsO 104.39 −1.42 −0.47 13.54
SrFe1.88Ni0.12As2 97.91 26.76 4.53 21.88
Sr4V2Fe2As2O6 97.49 −13.77 −13.66 −5.45
LaPt2B2C 86.73 −5.01 −4.66 6.90
HgBa2Ca2Cu3O8 17.07 −29.43 −1.18 −12.11
CeBiS2O 92.12 N/A −0.31 2.04
Bi2Sr2CuO6 129.63 18.34 26.76 43.78
TlSr2CaCu2O7 76.32 5.21 12.42 18.60

Table 1 Comparison between the rule-based approach and
Linteger,{Nunit} for converting compositional ratios to integers. The table
shows the average change in Tc before and after conversion to inte-
gers under certain maximum numbers of atoms, based on a total of 61
440 samples derived from 15 different superconducting materials

Max. num. atoms Linteger,{Nunit} (K) Rule-based (K)

15 −3.59 −7.65
20 −0.81 −4.30
25 −0.93 −2.23
50 −0.43 −1.38
100 −0.13 −0.31
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maximum atom count. We optimised them for 500 steps for
integer conversion. By contrast, the rule-based approach
multiplies the normalised composition by the specied number
of atoms and then rounds each value to the nearest integer.

Table 1 shows the results comparing the rule-based
approach and Linteger,{Nunit}. Because it remains closer to the
pre-conversion to integers composition, rounding with a larger
total number of atoms is generally advantageous. Although the
rule-based method fully exploits this by always rounding at the
maximum atom count, Linteger,{Nunit} does not always do so, yet it
still performs better.
Table 3 Samples of proposed superconductors

Method Samples

KIAGO Ca4Co3Sr3W3F2As8 (115.65 K)
Ca5Cu4Sr5O11 (127.16 K)
MgCa4Cu4Ba3TlO10 (142.90 K)
Cu6Sr3Pt3B5O7 (87.52 K)

SD Ni0.99LaO1.01As0.99 (3.65 K)
Ni0.82Ge0.25La0.97C1.59As0.44Se0.14 (1.23 K)
Ca0.28Cu1.39Sr2.04Pb0.91Bi1.15O7.03 (76.03 K)
Ca1.84Sc0.17Cu2.91Ba2.05HgO8.05 (127.46 K)

SD w/ CG CaCu2.02Sr1.69Y0.41Tl1.04O6.95 (87.78 K)
Co0.3Ni0.69La0.83Ce0.16O0.94As0.97 (4.85 K)
La0.6Ce0.43Nd0.15Bi1.03O0.98S2.01 (2.54 K)
Ni0.9Ge0.11La0.96C0.29O0.87As0.8 (5.96 K)

C-ES La4Bi4O4S8 (4.61 K)
CaCu2BaTlCO7 (86.78 K)
V2Sr4YHfO6As2 (36.65 K)
La2Hf2Ir2B4C2 (18.46 K)
3.4 Generating superconductors with higher Tc based on
existing ones

In this section, we investigated whether our method could
propose superconductors with higher Tc values based on known
superconductors as initial candidates. For KIAGO, we start with
existing superconductors and introduce noise to the composi-
tions described in Section 3.2. We used Adam optimiser with
learning rate of 0.03 for KIAGO. We set {Nunit} = {1, 2, ., 25}
and nmax

elem = 10. SuperDiff conditions on existing superconduc-
tors via Iterative Latent Variable Renement (ILVR). The
conventional elemental-substitution (C-ES) approach randomly
replaces a subset of elements with others sharing the same
oxidation state. For each base material of superconductor, we
select copper-based, iron-based, and other superconductors
that pass charge-neutrality and electronegativity screening by
SMACT, then randomly choose from these sets as base
materials.

Table 2 presents the differences in predicted Tc between the
generated superconductors and their base materials. KIAGO
achieves the most efficient exploration of higher Tc values
compared to other methods. By contrast, there are experiments
where SuperDiff does not yield any valid materials passing all
screenings. This limitation may stem from the fact that many
entries in SuperCon do not pass charge-neutrality and electro-
negativity checks; hence, the model struggles to generate valid
compositions. The C-ES method also fails to propose suffi-
ciently high Tc compounds, likely because its rule-based
approach cannot fully explore the vast compositional space.
In contrast, KIAGO proposes many materials showing
substantial Tc increases. For completeness, Section S.6 includes
all screening-pass rates.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Table 3 describes example compositions. Both KIAGO and C-
ES yield integer-total compositions, allowing straightforward
induction of possible crystal structures. However, SuperDiff and
SuperDiff with CG frequently produce non-integer totals,
making immediate structural analysis more challenging. For
several candidates proposed by KIAGO, we computed the
convex-hull distance DEhull using ElemNet. Ca5Cu4Sr5O11

(127.16 K) and MgCa4Cu4Ba3TlO10 (142.90 K) showed DEhull <
0.06 (eV per atom), suggesting possible thermodynamic
stability.

Interestingly, SuperDiff with CG does not necessarily
generate higher-Tc compounds than SuperDiff alone. Table 4
shows how Tc changes in guidance and denoising under
Digital Discovery, 2025, 4, 3662–3673 | 3667
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Table 4 Total changes in Tc resulting from guidance, ILVR, and denoising during the 1000 steps in SuperDiffw/ CG. “Guide weight” denotes the
weight for guidance. “Denoise DTc”, “ILVR DTc” and “Guide DTc” represent the cumulative change in Tc per step due to denoising, ILVR, or the
guidance. “Sum” is the total of these values. “Screening ratio” denotes the ratio of the number of screened samples to the total number of samples

Guide weight w Denoise DTc (K) ILVR DTc (K) Guide DTc (K) Sum (K) Screening ratio

— 84.8 37.4 — 122.2 0.13
1.0 × 10−5 80.2 43.0 0.0 123.2 0.09
1.0 × 10−4 75.9 46.9 0.4 123.1 0.10
1.0 × 10−3 79.2 39.8 3.2 122.3 0.08
1.0 × 10−2 77.1 13.2 33.8 124.1 0.11
1.0 × 10−1 42.5 −197.1 279.3 124.7 0.12
1.0 −63.5 −1409.6 1611.0 137.9 0.00
1.0 × 101 −101.7 −3945.1 4190.5 143.7 0.00
1.0 × 102 −42.2 −3746.6 3925.2 136.4 0.00
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different weights for guidance. During generation, high guid-
ance weights raise Tc in the guidance step but then revert it in
the ILVR and denoising step. We attribute this to the Tc distri-
bution in SuperCon, where low- or moderate-Tc compounds
dominate (median: 12.5 K). As a result, extremely high Tc values
are treated as noise, prompting the model to restore them to
more typical levels. Furthermore, larger weight for guidance
cause a stronger mismatch with the training distribution,
reducing the fraction of generated compositions that contain
fewer than ten elements. This interplay of denoising and
guidance likely hampers SuperDiff with CG's ability to reach
stable, high-Tc solutions. For the results without ILVR, please
refer to Section S.3.

3.5 Elemental substitution

In this section, we implemented elemental substitution to
improve Tc. Here we replaced one metal element based on its
oxidation state while retaining the rest of the composition.
Specically, we chose a single metal element from an existing
superconductor and kept the remaining composition xed.

We implemented this approach in KIAGO by treating the
preserved composition as a xed vector xconst. We then
randomly initialise the substituting element and apply a mask
based on its oxidation state. For example, when substituting
Table 5 Success rate of elemental substitution in proposed materials. W
following criteria: (1) the preserved composition remains within 1% of it
element (or elements) stays within 1% of the original substituted metal's

Base materials from SuperCon Substitute target

CeFeAsF0.2O0.8 Ce3+

LaFeAsO La3+

SrFe2As2 Sr2+

Bi2CaSr2Cu2O8 Bi3+

CeNiC2 Ce4+

LaNiC2 La3+

MgCoNi3 Co2+

RuSr2GdCu2O8 Sr2+

RuSr2YCu2O8 Y3+

Y2Fe3Si5 Y3+

YIrSi Y3+

3668 | Digital Discovery, 2025, 4, 3662–3673
Y3+, we only allow elements having a +3 oxidation state, such as
gallium or aluminum. To achieve this, we used a mask that has
one value on elements having a +3 oxidation state and set all
others to zero. To simplify evaluation, we excluded the
preserved elements from the mask. We use Adam optimiser
with learning rate of 0.03 for KIAGO. Note that we did not
perform conversion to integers on the substituting element, so
we set b = 0. By contrast, SuperDiff does not explicitly support
elemental substitution, so we approximated it by conditioning
the generation process with ILVR.

In addition to the screening described in Section 3.1, we
assessed whether the intended elemental substitution was
correctly carried out. First, we checked whether the preserved
composition remains within 1% of its original ratio. Second, we
checked that the total composition of the newly substituted
element (or elements) stays within 1% of the original
substituted metal's ratio. To simplify evaluation, we excluded
the preserved elements from the substituted element candi-
dates. We then evaluated the Tc of compositions that pass both
this substitution check and the previous screening.

Tables 5–7 summarize the probability of correct element
evaluation, the charge-neutrality evaluation, and the resulting
Tc values, respectively. Notably, KIAGO and C-ES achieve 100%
correct substitutions (Table 5), indicating that these methods
e defined a successful elemental substitution as satisfying both of the
s original ratio, and (2) the total composition of the newly substituted
ratio

KIAGO SD SD w/ CG C-ES

1.00 0.00 0.00 1.00
1.00 0.01 0.00 1.00
1.00 0.01 0.00 1.00
1.00 0.23 0.20 1.00
1.00 0.00 0.00 1.00
1.00 0.01 0.01 1.00
1.00 0.00 0.00 1.00
1.00 0.03 0.03 1.00
1.00 0.03 0.03 1.00
1.00 0.00 0.00 1.00
1.00 0.00 0.00 1.00

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 6 Success rate with respect to charge neutrality in proposed materials resulting from elemental substitution

Base materials from SuperCon Substitute target KIAGO SD SD w/ CG C-ES

CeFeAsF0.2O0.8 Ce3+ 1.00 0.03 0.02 1.00
LaFeAsO La3+ 1.00 0.02 0.02 1.00
SrFe2As2 Sr2+ 1.00 0.03 0.05 1.00
Bi2CaSr2Cu2O8 Bi3+ 1.00 0.01 0.01 1.00
CeNiC2 Ce4+ 1.00 0.07 0.06 1.00
LaNiC2 La3+ 1.00 0.03 0.04 1.00
MgCoNi3 Co2+ 1.00 0.71 0.63 1.00
RuSr2GdCu2O8 Sr2+ 1.00 0.05 0.06 1.00
RuSr2YCu2O8 Y3+ 1.00 0.08 0.07 1.00
Y2Fe3Si5 Y3+ 1.00 0.18 0.26 1.00
YIrSi Y3+ 1.00 0.28 0.48 1.00

Table 7 Differences in Tc (K) between the average Tc of the highest top-30 proposed superconductors and the base superconductors in
experiments of elemental substitution. After screening 4096 samples, the Tc prediction model was used to calculate Tc. ‘N/A’ indicates that none
of samples passed the screening

Base materials from SuperCon Substitute target

KIAGO SD SD w/ CG C-ES
Top-30 Top-30 Top-30 Top-30
DTc (K) DTc (K) DTc (K) DTc (K)

CeFeAsF0.2O0.8 Ce3+ 14.17 N/A N/A 9.96
LaFeAsO La3+ 33.88 1.24 N/A 31.10
SrFe2As2 Sr2+ 31.54 N/A N/A 19.25
Bi2CaSr2Cu2O8 Bi3+ 18.72 0.15 −1.11 6.10
CeNiC2 Ce4+ 13.10 N/A −0.02 4.33
LaNiC2 La3+ 10.53 N/A N/A 4.90
MgCoNi3 Co2+ 31.66 N/A 0.13 7.23
RuSr2GdCu2O8 Sr2+ −3.38 −0.23 −0.16 5.64
RuSr2YCu2O8 Y3+ 45.96 −0.89 1.53 37.74
Y2Fe3Si5 Y3+ 5.57 N/A N/A 1.50
YIrSi Y3+ 6.09 3.42 N/A 3.86

Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/1
2/

20
26

 9
:2

7:
52

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
incorporate domain knowledge effectively. Consequently, as
shown in Table 6, their proposedmaterials always satisfy charge
neutrality. Moreover, KIAGO demonstrates high search effi-
ciency, yielding the best results in most experiments (Table 7).
SuperDiff, however, cannot reliably perform elemental substi-
tution, indicating that generative models like SuperDiff are not
well suited when strict domain knowledge must be enforced.

Next, we compare the highest-Tc compounds in the Super-
Con dataset that have undergone the same elemental substi-
tution with the compounds proposed by KIAGO. Table 8 shows
that, in most element-substitution experiments, KIAGO
proposes materials with higher Tc than any element-substituted
materials in the SuperCon dataset. This result highlights the
potential of our approach to surpass known substitution strat-
egies and discover more promising superconductors.

For several candidates proposed by KIAGO, we computed the
convex-hull distance DEhull using ElemNet. Element-substituted
derivatives of Y2Fe3Si5 and CeFeAsF0.2O0.8—namely Pr0.3995-
Gd0.3859Dy0.3634Ho0.361Hf0.2428Sm0.2474Fe3Si5 (Tc = 5.3 K) and
Ag0.1752Sm0.6868Tb0.138FeAsF0.2O0.8 (Tc = 51.66 K)—exhibit
convex-hull distances of DEhull = 0.02 and 0.00 eV per atom,
respectively, indicating potential thermodynamic stability.
© 2025 The Author(s). Published by the Royal Society of Chemistry
In this section, we limit our discussion to single-element
substitution. However, our method can also support multi-
element substitution. For example, in Ti2O4, two Ti4+ atoms
and one O2− atom contribute a total charge of +6. This can be
replaced by two X3+ atoms, resulting in a composition like X2O3.
Here, X denotes any element with a +3 oxidation state. Such
substitutions are feasible as long as the total charge is
preserved, and our oxidation-state-based masking mechanism
can accommodate them.
3.6 Proposing novel hydride superconductors

In this section, we focused on proposing novel hydride super-
conductors (HSC). Many known HSC are binary or ternary
systems containing hydrogen and just one or two other
elements, with hydrogen comprising a large fraction of the
composition. Thus, we constrained KIAGO to compositions that
have at least 40% hydrogen to expand the space around existing
materials, form binary or ternary compounds, and possess
a total atom count of 15 or fewer. HSC are oen tested under
high pressure, where Pauling's electronegativity rules may not
hold. For instance, LaH10 has been experimentally conrmed
but fails SMACT-based screening for electronegativity and
Digital Discovery, 2025, 4, 3662–3673 | 3669

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00250h


Table 8 Comparison between materials proposed by KIAGO and the highest-Tc compounds from the SuperCon dataset under the same
element-substitution conditions. All Tc values are prediction values by our Tc prediction model. Blue elements indicate the substituted elements

Base materials from SuperCon Substitute target Proposed samples Best in SuperCon

CeFeAsF0.2O0.8 (39.8 K) Ce3+

LaFeAsO (13.4 K) La3+

SrFe2As2 (17.3 K) Sr2+

Bi2CaSr2Cu2O8 (81.0 K) Bi3+

CeNiC2 (3.0 K) Ce4+

LaNiC2 (2.4 K) La3+

MgCoNi3 (7.4 K) Co2+

RuSr2GdCu2O8 (33.7 K) Sr2+

RuSr2YCu2O8 (34.4 K) Y3+

Y2Fe3Si5 (2.3 K) Y3+

YIrSi (2.8 K) Y3+

Table 9 Average Tc for the top-5 proposed superconductors

Base materials
from SuperCon

KIAGO SD SD w/ CG C-ES
Top-5 Top-5 Top-5 Top-5
Tc (K) Tc (K) Tc (K) Tc (K)

PdH 4.06 0.00 0.46 2.82
PtH 2.73 0.00 0.44 2.82
LaH10 3.84 0.00 0.00 0.00
H2S 2.97 0.14 0.58 0.00
H4Si 3.11 0.00 0.00 0.00

Table 10 Ratio of proposed materials satisfying the following three
conditions: (1) hydrogen (H) content is 40% or more, (2) composed of
three or fewer elements, and (3) 15 atoms or less

Base materials
from SuperCon KIAGO SD SD w/ CG C-ES

PdH 1.00 0.03 0.04 1.00
PtH 1.00 0.03 0.05 1.00
LaH10 1.00 0.02 0.02 1.00
H2S 1.00 0.04 0.05 1.00
H4Si 1.00 0.03 0.02 1.00
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charge neutrality, because SMACT assumes each element has
a single xed valence. Then, we assumed each atom of the same
element could adopt different valences. For example, hydrogen
can be both +1 and −1, making LaH10 = {La2+, H1− × 6, H1+ ×

4}, which is thus electrically neutral. However, allowing
multiple valences can lead to a combinatorial explosion, so we
imposed a maximum total of 15 atoms per composition. We
used these criteria (charge neutrality under variable valences,
ternary or binary composition, and a total of 15 or fewer atoms)
as a replacement for SMACT-based screening.
3670 | Digital Discovery, 2025, 4, 3662–3673
For initialisation for KIAGO, we began with HSC from the
SuperCon dataset. With a probability of 0.29, we replaced
elements of its composition with different elements chosen
according to their occurrence frequencies in SuperCon. We then
selected random elements with random compositional ratios
(from 0.0 to 0.03) for those elements, normalised the resulting
composition, and used it as the initialisation. We also set {Nunit}
= {1, 2, ., 15}.

In Table 9, we present the average Tc of the top ve proposed
hydride superconductors. Compared with other methods,
KIAGO efficiently generates hydride superconductors. Table 10
shows the probability of proposing materials that meet specic
criteria—namely, having at least 40% hydrogen content, three
or fewer elements, and a total atom count of 15 or below. These
results indicate that KIAGO not only explores the search space
efficiently but also strictly adheres to the specied constraints.

Table 11 lists HSC proposed by KIAGO. Notably, KIAGO also
proposed materials made of the same elements as those in
known compounds from the SuperCon dataset. In addition, it
suggested materials that are not in the SuperCon dataset but
have been reported in other literature.

4 Limitation

Our method relies heavily on the accuracy of the prediction
models. Although our current Tc predictor achieves competitive
performance compared with other methods (see Section S.1.3),
the predicted Tc values for the proposed materials inevitably
contain some error. We provide composition-level estimates (e.g.,
ElemNet-based DEhull); however, DFT-validated, structure-
dependent metrics remain unavailable. ElemNet was trained on
compositions with up to seven constituent elements, and its
ability to generalise to systems with more elements is inherently
limited, making such predictions partially extrapolative. Never-
theless, as demonstrated in high-entropy alloy systems, moderate
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 11 Candidates of hydride superconductor proposed by KIAGO. The ‘Similar formula in Refs’ and ‘Tc in Refs’ columns show the composition
and Tc of superconductors experimentally confirmed or calculated by DFT in other studies, respectively, which are composed of the same
elements as the proposed materials

Proposed formula
Predicted
Tc (K)

Similar formula
in dataset

Tc (K)
in SuperCon

Similar formula
in refs Tc (K) in refs

SiH 0.7 SiH4 17.0 — —
ZrH 0.5 — — ZrH3 6.7EXP61

V3H2 1.8 — — VH 6.5 ∼ 10.7DFT62

ScH 2.8 — — ScH2 38DFT63
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extrapolation can still yield reasonably accurate results.64 More-
over, since the SuperCon dataset lacks pressure information—
crucial for hydride superconductors—our model cannot address
pressure effects, which could pose another limitation.

Improving the prediction model's accuracy must involve
ensemble methods,14 better model architectures, or enhanced
datasets. Importantly, ourmethod does not depend on any specic
model architecture. Given the rapid pace of machine-learning
advances, more accurate models will likely become available
soon, and substituting them into our framework should alleviate
current limitations. Additionally, datasets are also improving at
a fast rate, offering further opportunities for renement. Incor-
porating crystal structure prediction (CSP)65,66 from composition
may mitigate the limitation of missing structural information,
while multi-modal learning7,67 at the ne-tuning stage may enable
models to consider essential factors such as pressure.

5 Conclusion

In this paper, we introduced KIAGO, a gradient-basedmethod for
proposing high-Tc superconductors that unify domain knowl-
edge with efficient computational strategies. Unlike classier
guidance-based generative models, KIAGO does not require to
train additional generative models, making it a more straight-
forward solution. By initialising the optimisation from promising
superconductors, we mitigate the risk of converging to poor local
minima—an issue oen encountered in gradient-based
methods—and achieve higher optimisation efficiency. A key
strength of KIAGO lies in its ability to incorporate diverse domain
knowledge via masking. We demonstrated this by precisely
controlling elemental substitutions and restricting our search to
hydride superconductors. These results underscore the adapt-
ability of KIAGO: it not only capitalises on existing knowledge,
like traditional doping strategies but also explores a broader
chemical space more effectively than previous approaches.
Overall, KIAGO paves the way for discovering new materials by
exploiting domain knowledge andmachine learning's scalability.
This synergy has the potential to accelerate advancements in
high-Tc superconductivity and beyond, offering a robust frame-
work for rapid and adaptive materials design.
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Appl. Crystallogr., 2015, 48, 85–91.
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