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th cell for internal data validation
in computer vision

Xiangyu Liu, Namita Sharma, Aldrik H. Velders and Vittorio Saggiomo *

Computer vision has emerged as a fast and cost-effective method for reaction monitoring and

determination of analytes. However, one of the drawbacks of computer vision in analytical chemistry is

the reliability of color data, particularly in data acquired from real-time analyses, which may inhibit

quantitative interpretation. This highlights the necessity for an effective validation method for data

collected using computer vision. Here, we report a simple yet effective variable pathlength cell design

that can help data validation in computer vision by exploiting the linear pathlength–absorbance

relationship of the Beer–Lambert law. The performance of this novel variable pathlength cell is evaluated

using a wide range of analyte concentrations. This variable pathlength cell design is versatile and can be

fabricated using various methodologies and materials. This design, combined with computer vision, is

compatible with flow chemistry and holds great potential for integration into automatic, inline

quantitative analysis of reactions and analytical chemistry.
Introduction

Computer Vision in Analytical Chemistry (CVAC) is a developing
eld that employs cameras to record and analyze visual inputs
for colorimetric analyses. Visual inputs, usually digital images,
can be used to quantify and identify chemical analytes or
monitor chemical reactions.1–5 Computer vision is getting
increasingly important as the advent of Self Driving Laborato-
ries (SDL) also relies on (video)cameras to monitor chemical
reactions autonomously.6–10

A color change indicates a physical change, such as a change
in dissolution, or a chemical one due to a chemical reaction,
complexation, supramolecular interaction, or other processes.
Changes in color intensity represent changes in analyte
concentrations. By employing cameras to record the color value
and light intensity of the analytes, qualitative and quantitative
chemical analysis can be further investigated.4,11 CVAC appli-
cations in monitoring analyte concentrations also depend on
the Beer–Lambert law, A = 3cl, where 3 is the extinction coeffi-
cient, c is the analyte concentration, and l is the pathlength.12,13

Many Complementary Metal-Oxide-Semiconductor (CMOS) –

based cameras, such as Digital Single-Lens Reex (DSLR)
cameras, webcams, and smartphones can easily detect color
and light intensity changes.14 Those cameras record the color
using a light sensor with a Bayer lter placed between the
sensor and the lens. The popular RGB (red-green-blue) color
system describes color through the three intensity values (for
ent of Agrotechnology and Food Sciences,
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example in a 8 bit system those values range from 0 to 255) of
red, green, and blue.11 Such intensity information can then be
analyzed through image processing soware such as
ImageJ.15–19

Compared to traditional spectrophotometers, CVAC is
cheap, eld-useable, fast and scalable (taking a picture of
multiple vials compared to a single UV-Vis spectra), making this
technique useful in various analytical disciplines, including
food, environmental science, and biology.20–23

Recently, CVAC has been applied as a non-invasive tech-
nique for studying solution mixing, determining concentration,
and analyzing separation and reaction processes.2,3,24–29 More-
over, cameras can be easily added to robots to navigate labo-
ratories and investigate chemical reactions.30–32

However, the reliability of the colorimetric data collected by
CVAC can be affected by multiple parameters, e.g., light source,
sensitivity of camera sensors, or lack of selectivity in the wave-
length range due to the Bayer lters.11,13,33 Due to these factors,
a notable challenge in CVAC applications is ensuring the reli-
ability of colorimetric data. While taking a single picture of
a ask, cuvette, or ow cell is easy, determining whether the
absorbance falls within the linear response range versus
concentration is a challenging task. In this case, with only one
absorbance value, it is impossible to judge whether that value is
reliable, thus following the Beer–Lambert law or not.

It would be useful to have a colorimetric internal validation
to help dene and validate a ‘window of linearity’ in which color
can be linearly correlated to concentration. For this purpose, we
must consider the Beer–Lambert law's physical parameters.
Since the extinction coefficient (3) is an intrinsic physical
parameter, and the concentration (c) is difficult to change
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) Top view photography of the variable pathlength cell with
pathlength indicators (red dashed squares) and region of interest
(black dashed square); (b) illustration of pathlength increment per pixel
and the crop image. 5000 mM [Ru(bpy)3]Cl2 solution was in the variable
pathlength cell.
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during inline measurements, the only way to validate the
accuracy of data is to change the pathlength (l) and check the
linearity between the absorbance (A) and the pathlength (l).
These measurements can be done using commercially available
cuvettes, usually ranging from 1 cm to 0.1 mm.

However, swapping cuvettes during a chemical reaction is
tedious and time-consuming, and changing ow cell cuvettes
during reactions in ow is impossible. The absence of prior
knowledge about a specic analyte, reactant, or reagent further
complicates the challenges of using a cuvette with a suitable
pathlength.

We solved this challenge by devising a “variable pathlength”
cell that can be used for internal data validation directly while
recording the experiment, and its design can be easily adjusted
for different detection ranges (Fig. 1). We designed this variable
pathlength cell to be used both in static and ow modes. Using
a single picture of the variable pathlength cell with the analyte
of interest, it is possible to check the linearity of the absorbance
over pathlength for each measurement of the linear threshold
for analyte measurement using computer vision, allowing
qualitative and quantitative interpretation of the data with
respect to concentration measurements.

This new cell design not only helps identify the linearity
threshold, it also increases the detection range using a xed
light source without modifying the camera settings. Using this
triangular design, if the analyte concentration is too high to
yield reliable data at a 10 mm pathlength, data from a shorter
pathlength, such as 5 mm, can be used for quantication. On
the contrary, if the concentration is too low or the camera is less
sensitive, data from a longer pathlength can be used. This is
achieved using a single picture, without diluting or
Fig. 1 Glass-plastic 3D printed variable pathlength cell fabrication pro
consists of a 3D printed scaffold with two glass slides adhered to the top a
left: cross-sectional view of the variable pathlength cell with a red block i
pathlength cell. The gradient red color in the flow cell illustrates the ch
experimental setup illustration: the variable pathlength cell is positioned
a real picture of variable pathlength cell that was positioned on the LED

© 2025 The Author(s). Published by the Royal Society of Chemistry
concentrating the solution, or changing the cuvette during the
experiments.

This approach gives continuous pathlength data points,
compared to a single data point from a traditional cuvette or
ow cell, which can be used as a straightforward internal data
reliability verication method.

The absorbance linearly correlates with the pathlength
according to the Beer–Lambert law. This means that, in a single
picture, it is possible to detect whether the absorbance
increases linearly with the length of the cell or not. As a result of
this approach, a calibration curve could be established for
monitoring the concentration changes inline and in situ.

As the proof-of-concept, we used [Ru(bpy)3]Cl2 for testing the
variable pathlength cell. We rst present the data acquisition
and processing methodologies to illustrate how to use variable
cess. (a) Left: The fabrication process of the variable pathlength cell
nd bottom. Right: the rendered 3D design of variable pathlength cell; (b)
ndicating the flow area. Right: 3D rendering of the glass-plastic variable
ange in color intensity of [Ru(bpy)3]Cl2 with increasing path length; (c)
on an LED pad, and the RGB values are recorded using a camera; (d)
pad.

Digital Discovery, 2025, 4, 3238–3244 | 3239
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Fig. 3 Colorimetric determination of [Ru(bpy)3]Cl2 in the variable pathlength cell. (a) Experimental summary of raw regions of interest for
different concentrations of [Ru(bpy)3]Cl2. Pathlength increases on the abscissa, 5 mm to 15 mm, and concentration increases on the ordinate,
deionized water (blank), 1 mM (C1), 5 mM (C2), 10 mM (C3) to 5 × 103 mM (C15). An example is illustrated by the grey arrow, which indicates the
relationship between the 5 × 103 mM crop image and the line in the plot. (b) Absorbance vs. pathlength in greyscale. The color bar on the right
indicates the concentration of [Ru(bpy)3]Cl2 with corresponding colors. (c) Identified linear regions by segmented linear regression. Semi-
transparent dots represent excluded dataset. Concentration curves without linear region were not shown. Eqn (1) is the Beer–Lambert law and
eqn (2) is the non-intercept linear regression model, applied to identify the linear region in each curve. (d) The derived regression coefficients
from the linear regression analysis are plotted versus concentrations as calibration curve. 0.991 R2 was achieved.
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pathlength cell. Aerwards, we analysed the grayscale data and
established a calibration curve of [Ru(bpy)3]Cl2 to validate the
concept of variable pathlength cell. Eventually, we were able to
maximize the dynamic range of variable pathlength cell by
using split channels (red, green and blue) data.
Methods
Fabrication of variable pathlength cell

The rendered 3D model of the variable pathlength cell is shown
in Fig. 1(a), while its fabrication process is shown in Fig. S1(a).
This design contains three parts: one 3D-printed plastic scaffold
and two glass slides. Firstly, the plastic scaffold was fabricated
in polylactic acid (PLA) using a Fused Deposition Modelling
(FDM) 3D printer (Ultimaker S3). The detailed printing settings
are illustrated in the methods and materials of the SI. The main
body contains a 3 mm variable pathlength channel, a circular
inlet and outlet (innerB= 2.2 mm). Two glass slides were hand-
3240 | Digital Discovery, 2025, 4, 3238–3244
cut according to the size for the top and bottom of the plastic
scaffold, respectively. These glass slides were attached to the
plastic scaffold using UV resin and 395 nm UV torch (DARK-
BEAM V5-DB-395NM-DB01). The edges between the glass slides
and plastic scaffold were reinforced by quick-set epoxy. The
glass slides seal the channel and allow the light transmission.
Two silicone tubings (inner B = 1.6 mm) were subsequently
attached to the inlet and outlet and sealed with quick-set epoxy.
Colorimetric measuring

The setup for the CVAC consists of three parts: a light source,
a camera, and the variable pathlength cell. The LED light pad
provided a constant light source (Fig. S2), and a cardboard box
to block the light from the surroundings (Fig. S3). Camera
settings were xed at 320 ISO, 1/100s shutter speed, f/5.6 aper-
ture, and a xed white balance (red:1, blue:0, setup corre-
sponding to Fujilm XT30-i), which remained constant
throughout the experiment setup.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Channel-wise colorimetric determination of [Ru(bpy)3]Cl2 in the variable pathlength cell. (a) Absorbance vs. pathlength in blue, green and
red channel. The color bar on the right indicates the concentration of [Ru(bpy)3]Cl2 with corresponding colors, ranging from 1 to 5 × 103 mM. (b)
Identified linear regions by segmented linear regression. Semi-transparent dots represent excluded dataset. Concentration curves without linear
region were not shown. (c) The derived regression coefficients from the linear regression analysis in blue and green channel are plotted versus
concentrations as calibration curve. 0.998 and 0.946 R2 was achieved in blue and green channel by applying same non-intercept linear
regression, respectively.
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The lens (FUJINON XC 15–45 mm F3.5-5.6 OIS PZ) was
operated at its maximum focal length of 45 mm for minimal
lens aberration and perspective distortion. The color determi-
nation setup is shown in Fig. 1(c), where the cell was placed on
a LED light pad (model L4S, Huion, Shenzhen, China). The
variable pathlength cell was covered with a cardboard box,
which blocked the light from the surroundings. A mirrorless
camera (Fujilm XT30-i) has been used to take images of
© 2025 The Author(s). Published by the Royal Society of Chemistry
colored solutions, and all the images have been stored in 14 bit
RAF format (A RAW format belongs to Fujilm cameras). A 6mL
syringe was used to inject the solutions into the variable path-
length cell. 5 mL of deionized water is rst injected into the
variable pathlength cell (∼1 mL). A picture was taken as the
blank, and the RGBref values e.g., transmitted intensity values R
= 1885.6, G= 5524.3, B= 3837.6 (equal to R = 29, G= 86, and B
= 60 in 8 bit scale) at 5 mm pathlength were used for calculating
Digital Discovery, 2025, 4, 3238–3244 | 3241
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the absorbance value of the analyte ([Ru(bpy)3]Cl2). The details
are described in the section below Image Processing and
Quantitative Analysis. Directly aer, the deionized water was
removed from the variable pathlength cell. The measuring
protocol for analyte was as follows: starting from low concen-
tration, 5 mL of 1 mM of [Ru(bpy)3]Cl2 (colored solution) was
manually injected into the variable pathlength cell, and an
image was taken to obtain RGB values for further analysis
(described in Image Processing and Quantitative Analysis).
Subsequently, the rest of the colored solution was ushed out,
and 10 mL of deionized water was injected to clean the variable
pathlength cell. Aer ushing the ow cell with air, 5 mL of
a higher concentration solution was injected. The measurement
continued until the highest concentration (5000 mM) colored
solution was reached. Measurements of visible spectroscopy
(UV-Vis) were performed in a plastic 10 mm cuvette in a spec-
trophotometer (Shimadzu UV-1900, US) as a reference for
checking the spectrum of the analyte.
Image processing and quantitative analysis

ImageJ (v1.54g)15 was used to pre-process all the images. The
region of interest (indicated by the black dashed line in
Fig. 2(a)) was manually selected based on the position of path-
length indicators (indicated by the red dashed line in Fig. 2(a))
and the region was xed for cropping all images, ensuring
uniform image size. The coordinates of the region of interest
were recorded for each picture. Along the direction from the
inlet to outlet, three pathlength indicators represent the vari-
able pathlength cell at this pixel position, which is equivalent to
5 mm, 10 mm, and 15 mm pathlengths. The rst pixel of the
crop image corresponded to a pathlength of 5 mm, while the
last pixel represented 15 mm. In this way, each neighbouring
pixel on a horizontal line represents a gradual path length
increase of approximately 0.016 mm, reaching up to 10 mm in
total, equivalent to 620 different cuvettes (Fig. 2(b)). As a result,
the color intensity within the cropped images is expected to
increase with respect to the increase in pathlength. In the
orthogonal direction of pathlength increasing (or saying in the
direction of its height), the RGB values of one pathlength were
averaged with c.a. 30 pixels for minimizing random error.

Aer recording all the coordinates of the region of interest
for all the images, a Python script was used to crop the images
and extract the transmitted intensity value using the Python
rawpy package (v0.25.0), as shown in Fig. S4. The transmitted
intensity value of each pathlength in each channel can be ob-
tained through ImageJ and further converted into absorbance
value based on the Beer–Lambert law, using the formula

Abs ¼ log10

�
Iref
I

�
, where the Iref represents the reference RGB

values obtained from the picture of the variable pathlength cell
loaded with deionized water and I refers to RGB values obtained
from the picture with analyte (colored) solutions. For example,
for [Ru(bpy)3]Cl2 at 150 mM at 5 mm pathlength, we recorded
RGB values of 1832.4, 4531.3, 1156.8, respectively. For calcu-
lating the absorbance at specic channels, we used the
equation:
3242 | Digital Discovery, 2025, 4, 3238–3244
Abscolor ¼ log10

�
Colorref

Color

�

where the Colorrefs are the values recorded previously with water
in the channel (RGBref = 1885.6, 5524.3, 3837.6). This resulted
in Abs of 0.0124, 0.086, and 0.5208, for the red, green, and blue
channels respectively. Hypothetically, in the best-case scenario,
the range of absorbance that can be detected using the 14 bit
camera, with the RGBref at 16 383 (214), 16 383, 16 383 would be:

Abs ¼ log10

�
16383

1

�
¼ 4:21

It is worth mentioning that one single picture was taken for
each concentration. The data linearity of one picture was
checked through non-intercept linear regression (eqn (2) in SI)
using scikit-learn Python package (v1.5.1). If the absorbance
versus pathlength is linear, it proves that the data obtained from
the variable pathlength cell can be used to determine the ana-
lyte concentration. Furthermore, the linear regions within the
data were identied by segmented non-intercept linear regres-
sion. The detailed procedures are illustrated in Fig. S5.

We initially computed the greyscale value to represent the
intensity value by merging red, green and blue channels (eqn (3)
in SI) and conducted segmented non-intercept linear regression
to construct the calibration curve. Subsequently, we performed
an analysis for each channel (RGB) to improve performance of
variable pathlength cell.
Results and discussion

In the fabricated cell, the pathlength is the continuous variable.
This design is equivalent to assembling various pathlength
cuvettes in one integrated unit. For the analyte, we used
[Ru(bpy)3]Cl2. It exhibits absorption in visible light with
a maximum extinction coefficient at 453 nm,34 and this
absorption can be monitored using a camera.

We recorded pictures of [Ru(bpy)3]Cl2 solutions at different
concentrations in the variable pathlength cell and determined
the coordinates of the region of interest using ImageJ. A
summary of the experimental cropped images (regions of
interest) was shown in Fig. 3(a), and their corresponding
absorbance values versus pathlength was plotted in Fig. 3(b). A
version of this gure including error bars can be found in the SI
Fig. S6(a). Herein, instead of a single data point from a tradi-
tional xed pathlength cuvette, we can convert a single data
point into multiple data points, and these multiple data points
should increase with the increase in pathlength until nonline-
arity is observed according to the Beer–Lambert law. Thus, the
linear part of the data that follows Beer–Lambert law can be
considered correct and validated. By this means, we can
perform segmented linear regression to nd the linear part of
dataset, as shown in Fig. 3(c). And linear regions with coefficient
of determination R2 value larger than 0.8 were identied within
concentration curves from 25 to 150 mM. The linear regression
coefficients (the slopes) derived from linear regression analysis
in the linear region of each concentration curve represents the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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product of extinction coefficient and concentration of
[Ru(bpy)3]Cl2. It should be noted that the camera sensor does
not record a single wavelength like a spectrophotometer; it
records a range of wavelengths based on the Bayer lter.
Aerwards, a calibration curve was established by plotting
regression coefficients versus concentrations in Fig. 3(d). The
correlation between regression coefficients and concentrations
was evaluated using the R-squared value (R2), which was found
to be 0.99.

Therefore, the computer vision data can be validated by our
variable pathlength cell, as the triangular cell geometry gener-
ates multiple absorbance data points that allow verication of
compliance with the Beer–Lambert law. Aerwards, a channel-
wise analysis was performed to explore potential enhance-
ments in the variable pathlength cell dynamic detection range.

As cameras always record red, green, and blue values due to
the design of the Bayer lter (Fig. S7), we performed an analysis
for each channel, i.e., blue, green, and red. As shown in Fig. 4(a)
and the version of this gure with error bar in Fig. S6(c), it was
possible to detect the [Ru(bpy)3]Cl2 in the blue and the green
channel, while the signal in the red channel was noise (for
example a red value of 1907.6 compared to the reference red
value of 1885.6 at 5 mm pathlength for 25 mM, giving a negative
absorbance close to zero). According to the UV-vis spectrum of
[Ru(bpy)3]Cl2 (Fig. S8), the absorption mainly occurs in the blue
channel. Aerwards, the segmented linear regression results
were summarised in Fig. 4(b). Interestingly, linear regions with
R2 larger than 0.8 were identied within the concentration
curves from 5 to 100 mM in the blue channel, from 50 to 250 mM
in the green channel, respectively. And the R2 values for cali-
bration curves in blue and green channels are 0.99 and 0.94,
respectively (Fig. 4(c)). Following this approach, if nonlinearity
dominates one channel, the other channels continue to
demonstrate rigorously maintained linearity. Thereby, the
dynamic detection range of the variable pathlength cell can be
expanded.

However, the blank transmitted intensity values in blue,
green and red channel are around 3923, 5670 and 1919,
respectively (Fig. S6(d)). Those intensity values are far away from
the maximum 16 353 intensity value in a 14 bit image. A better
camera (sensor), a higher intensity light source, or proper
adjustment of camera settings to make the blank value close to
16 353 may help improve the dynamic detection range and
accuracy of the concentration determination. It is worth noting
that the data acquisition and validation can be simultaneously
performed within one picture by using a variable pathlength
cell. Once no linear region was found while performing
segmented linear regression, the camera settings can be
adjusted for better data quality. For example, lower ISO and
higher shutter speed for high concentration analyte solution, or
high ISO and lower shutter speed for low concentration analyte
solution. On the other hand, ne-tuning the R2 threshold in
segmented linear regression depends on the intended purpose
in CVAC monitoring application. If the focus is on the expan-
sion of dynamic detection range, a lower R2 threshold would be
acceptable. On the contrary, if data quality is prioritized,
a higher R2 threshold should be applied.
© 2025 The Author(s). Published by the Royal Society of Chemistry
In CVAC applications, it is straightforward to instruct the
computer to automatically perform segmented linear regression
and identify the linear region of the dataset. This approach
would be highly benecial in a self-driving lab environment,
enabling autonomous data-driven decisions for subsequent
steps. In the future, instead of the self-standing mirrorless
camera, which is being used in this work, a camera connected to
a computer like a Raspberry Pi or other IoT devices joined with
a variable pathlength ow cell could provide more possibilities
in real-time analysis of ow reactions. Imagine that the camera
settings could be automatically adjusted in real-time based on
the continuous data points collected through the variable
pathlength cell. This adaptive approach would ensure optimal
signal capturing throughout the experiment, potentially
improving data quality. As a result, the system could maintain
consistent measurement accuracy and avoid non-linear data,
leading tomore precise and reliable data over a broader range of
concentrations. Especially in CVAC coupled with self-driving
laboratories, a variable pathlength cell serves as a powerful
tool to help computer based understand of the chemical reac-
tions and analytes, while being an internal validating tool,
offering great potential for advancing automated experimental
workows.
Conclusion

In this study, we developed and evaluated a novel variable
pathlength cell design to facilitate the rapid identication of
linear and non-linear regions for the analysis of a given analyte
using computer vision. The fabrication methods are simple,
inexpensive, and easy to modify, allowing users to acquire and
check computer vision data simultaneously with a single
picture. The proof-of-concept of this design was veried by
establishing a calibration curve of [Ru(bpy)3]Cl2 in greyscale
value from 25 to 150 mM, and calibration curves in blue and
green channel, 5 to 100 mM and 50 to 250 mM, respectively. In
the future, the variable pathlength cell will enable computers to
ne-tune the CVAC system parameters automatically. This
capability ensures the most accurate data collection, as only
linear data was used for analysis, which improves the results'
overall quality and reliability. In conclusion, we developed
a cost-effective and easy-to-use device for internal data valida-
tion in computer vision, that can be applied in ow applica-
tions, and in self-driven lab applications.
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