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Polymeric nanoparticles have critical roles in tackling healthcare and energy challenges with miniature

characteristics. However, tailoring synthesis processes to meet design targets has traditionally depended

on domain expertise and trial-and-error. Modeling strategies, particularly Bayesian optimization, facilitate

the discovery of materials with maximized/minimized properties. Based on practical demands, this study

integrates constrained composite Bayesian optimization (CCBO) to perform target-value optimization

under black-box feasibility constraints for by-design nanoparticle production. In a synthetic problem that

simulates electrospraying, a representative nanomanufacturing process, CCBO avoided infeasible

conditions and efficiently optimized towards predefined size targets, surpassing the baseline methods

and state-of-the-art optimization pipelines. CCBO was also observed to provide decisions comparable

to those of experienced experts in a human vs. BO campaign. Furthermore, laboratory experiments

validated the use of CCBO for the guided synthesis of poly(lactic-co-glycolic acid) particles with

diameters of 300 nm and 3.0 mm via electrospraying under minimal initial data. Overall, the CCBO

approach represents a versatile and holistic optimization paradigm for next-generation target-driven

particle synthesis empowered by artificial intelligence (AI).
Introduction

Polymeric micro- and nano-particles have received great atten-
tion in pharmaceutical, catalysis, and energy applications due
to their unique properties at a small scale.1,2 Diverse design
requirements for particles under the quality-by-design (QbD)
framework have been put forward for specic usages.3 For
example, drug delivery platform particles span a wide size range
from hundreds of nanometers for intravenous injection to
micrometers for pulmonary administration.4 However, the
optimization of syntheses to meet these design requirements
using various manufacturing technologies has mainly relied on
human expertise and extensive trial-and-error experimentation.
Modeling strategies could facilitate the optimization of
parameters towards design targets.5,6 Traditional design of
experiment (DoE) strategies can identify dominating factors in
the processing parameters and provide direction towards opti-
mization, but the methodology becomes less effective in high-
dimensional problems or complex relationships.7 For
example, orthogonal experiment designs such as the Plackett–
Burman and Taguchi methods can typically accommodate up to
three levels for each variable.8 Moreover, it is also difficult to
iversity College London, London, WC1E
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incorporate experiment feasibility into DoE optimization
frameworks unless analytical descriptions of constraints are
available. As a different approach, machine learning (ML) is
powerful for modeling complicated relationships.9,10 Using ML
models as surrogates, adaptive sampling methods design
sequential experiments for laboratory evaluation.11 Bayesian
optimization (BO) was developed for the efficient optimization
of black-box functions and works well under small data
regimes.12–14 It employs a Gaussian process (GP) as a surrogate
model, leveraging its ability to provide both mean and variance
estimations for candidate selection. A carefully designed
acquisition function is then used to score the candidates to
explore uncertain points as well as to exploit promising optimal
points.

More recently, BO has been investigated for materials and
drug discovery to assist in the identication of optimal
properties.15–17 However, the application of BO in the targeted
synthesis of materials presents two critical challenges. First,
conventional BO was developed to seek a global maximum or
minimum rather than to match a pre-dened target.18,19 The
latter is a common requirement in materials development
tasks, e.g., matching physiological mechanical properties for
hydrogels and tailoring release proles for drug delivery agents.
Despite its relevance, the target-matching problem remains
surprisingly underexplored in BO applications for materials
discovery. This may be attributed to the prevailing emphasis on
discoveringmaterials with extreme or superior properties rather
than materials that meet specic design criteria. Another issue
© 2025 The Author(s). Published by the Royal Society of Chemistry
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is associated with experimental feasibility constraints. The
majority of the current applications of BO within materials
discovery and development do not incorporate feasibility.17,20,21

Nevertheless, BO recommendations can present a myriad of
practical concerns in laboratory experiments, such as impos-
sible combinations of material compositions, incompatible
processing parameters, and apparatus limitations. Shrinking
the boundaries of variables to a practical region could be
a direct solution at the cost of reduced search space. In special
cases in which known constraints on the input variables are
available (e.g., as inequality equations), optimization can be
performed subject to these constraints.22,23 For example, Li et al.
nested an active learning loop for constraint modelling to
restrict the candidate space selectable by BO.24 Low et al. sug-
gested evolution-guided Bayesian optimization, which imposes
known constraints on multi-objective optimization problems,
for nanoparticle synthesis in microuidics.25 However, these
strategies become impossible when the constraints are
unknown a priori and must be evaluated through laboratory
experiments.

Several prior works on constrained or composite BO have
explored applications in hyperparameter tuning. In the area of
constrained BO, Gramacy and Lee proposed weighting the ex-
pected improvement (EI) acquisition function with a modelled
probability to enforce a preference for feasible candidates.26

Gardner et al. extended this approach to inequality constraints,
assuming that feasibility could be derived from a continuous-
value constraint function.27 More recently, Tian et al.
proposed a boundary exploration method that relaxes the
acquisition function weights to encourage exploration near the
constraint boundaries.28 In the area of composite BO, Uhrenholt
and Jensen investigated target value optimization, specically
minimizing a 2-norm, by warping the GP to a noncentral chi-
squared distribution.29 As an improvement, Astudillo and
Frazier approached a more general problem of composite BO
for any arbitrary composite function over the objective function.
They transformed the Gaussian posterior in the acquisition
function directly with the composited function.30 Although
these strategies have been rigorously tested on synthetic
benchmarks and hyperparameter optimization tasks, they have
yet to be integrated into a combinatorial framework to facilitate
guided laboratory experiments.

Here, we implement a constrained composite Bayesian
optimization (CCBO) pipeline showcasing efficient identica-
tion of suitable processing parameters in the rational synthesis
of polymeric particles. Through introducing a variational
inference GP component, the black-box experiment feasibility
was modeled and incorporated into the BO acquisition func-
tion. Composite BO handles the modeling of experimental
parameters and targeting of particle size through a composite
objective function. Amongst the various particle fabrication
techniques, electrospraying was selected as the model tech-
nique based on its simplicity, versatility, and precision as
a popular manufacturing method in drug delivery research.31

This technique utilizes electric elds to deform the meniscus of
a polymer solution to form ne jets, which eventually disinte-
grate into ne droplets. As these droplets travel towards
© 2025 The Author(s). Published by the Royal Society of Chemistry
a collector, they further shrink and solidify due to solvent
evaporation. Various parameters in the electrospraying process,
such as the ow rate, voltage, polymer concentration, and
solvent can be adjusted to tailor the product characteristics,
although the intertwined impact of these factors could lead to
prolonged, if not infeasible, trial-and-error experiments.32 We
demonstrate the superior performance of CCBO in target
parameter optimization compared to random baseline and
conventional BO strategies through both synthetic data and
wet-lab experiments for poly(lactic-co-glycolic acid) (PLGA)
particle synthesis at multiple size targets.

Methods
Materials

PLGA (PURASORB PDLG 5004A, 50 : 50 ratio) was purchased
from Corbion (Amsterdam, The Netherlands). Chloroform and
N,N-dimethylacetamide (DMAc) were purchased from Sigma-
Aldrich (Gillingham, UK).

Electrospray production of particles

PLGA solutions were prepared by mixing PLGA granules with
solvents at ambient temperature with magnetic stirring over-
night. The solutions were fed to a 22-gauge needle (outer
diameter 0.71 mm) through a capillary using a syringe pump
(Harvard PHD Ultra, Edenbridge, UK). The positive output of
a high-voltage power supply (Glassman High Voltage Inc., NJ,
United States) was connected to the needle via a crocodile
clamp, and the collection plate was connected to the ground.
Prior to electrospraying, the ow rate and voltage were adjusted
to the values recommended by BO. Experiments were con-
ducted at atmospheric pressure. The temperature and humidity
in the room were controlled to be 19–22 °C and 40–50%.

Characterization of particles

Particles were collected on a glass slide placed on a collection
plate for scanning electron microscopy (SEM) analysis. A Zeiss
Gemini 360 SEM (Germany) instrument was used at an accel-
eration voltage of 1.0 kV with an SE2 detector. For each sample,
three images were taken randomly at different locations. The
images were further analyzed using ImageJ (National Institute
of Health, USA). To obtain the mean particle size, diameters
were randomly measured for 100 particles. For infeasible
experiments, the diameters of the splashes from undried
droplets on the collecting glass slides were recorded as
a measurement of size.

Constrained composite Bayesian optimization

Two components were incorporated in the BO pipeline and
developed under the BoTorch33 and GPyTorch34 frameworks.
The objective component, which tracked the distance (or
particle size in the case of CCBO), followed the classical design
of BO (see SI Note 1 for details of handling categorical inputs).15

Notably, due to the difficulty in determining the noise level in
the experiments, we assumed the input data from laboratory
experiments, aer averaging over triplicates, to be noiseless. In
Digital Discovery, 2025, 4, 3066–3077 | 3067
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terms of the acquisition function, the thoroughly investigated
strategy of q-expected improvement (qEI, or batch EI) was
selected to allow consideration of multiple candidates jointly in
each iteration.18 In its simplistic form in which q equals 1, the EI
acquisition function at a single point x0 can be given by
aEIðx0Þ ¼ E½maxðyo � f *; 0Þ�, where yo � N ðmðx0Þ; s2ðx0ÞÞ and
m(x0) and s2(x0) are the posterior mean and variance from the
Gaussian process at x0, and f* is the current best observation. As
the calculation of expectation requires integrating over the
posterior, it becomes analytically intractable under a batched
scenario where q > 1. We followed the strategy in BoTorch in
which Monte–Carlo sampling was used to approximate the
expectation as:

aqEIðXÞz 1

N

XN
i¼1

max
j¼1; .;q

�
max

�
yo;ij � g*; 0

��
; yo;ij � ℙðGPðXÞjDÞ

(1)

where N is the total number of Monte–Carlo samples, q is the
number of candidates to be evaluated in parallel, yo,ij is sampled
through the reparameterization trick from the Gaussian process
conditioned on data D, and g* represents the current closest
distance (with respect to the target) achieved. Notably, the data
D consisted of {(xi,yo,i)}

n
i=1 where yo,i = g(si) = − (si − so)

2 with so
representing the target value (predened as a constant). Under
such congurations, this vanilla BO pipeline could help to
identify suitable experiment variables X that could maximize
the negative distance measure yo.

Furthermore, the feasibility component was introduced to
learn the black-box constraints in the experiments. Here,
a variational Gaussian process was implemented for the binary
classication of experimental success or failure.34 The details
for variational inference in Gaussian classication have been
described in previous publications.35 Briey, the latent
Gaussian process is further warped with a Probit regression to
limit the output to between 0 and 1 for the purpose of approx-
imating a Bernoulli posterior. For our latent Gaussian process,
it followed the same constant mean prior and kernel functions
to incorporate mixed inputs. To incorporate feasibility model-
ling in the Bayesian optimization process, we followed the
strategy proposed earlier26 to extract the posterior probability as
a scaling factor in the acquisition function:
aqEIconðXÞ ¼ ℙðyc ¼ 1jXÞ*aqEIðXÞ:Incorporating this factor in the
acquisition function allowed the suppression of the values of
experiments that are potentially infeasible, creating our con-
strained BO pipeline.
Table 1 Boundaries of experiment variables for BO and the starting dat

Label Polymer concentration (% w/v) Flow r

Bounds [0.05–5.00] [0.01–
S-1 0.50 15.00
S-2 0.50 0.10
S-3 3.00 20.00
S-4 1.00 20.00
S-5 0.20 0.02

3068 | Digital Discovery, 2025, 4, 3066–3077
In both the vanilla and constrained BO pipelines, the
Gaussian process modeled yo and attempted to maximize this
negative distance. As a different strategy, the composite BO
used a Gaussian process to directly model the particle size s.
The composite part, namely, the negative squared distance
function g, was separated from the input data. Instead, the
distance function was directly applied to the Gaussian posterior
in the acquisition function:36

aqEICFðXÞz 1

N

XN
i¼1

max
j¼1; .;q

�
max

�
g
�
sij
�� g*; 0

��
; sij

� ℙ
�
GPðXÞjD0

�
(2)

where sij was sampled through the reparameterization trick and
D

0 ¼ fðxi; siÞgni¼1. By coupling the composite acquisition function
aqEICF with the constraint probability, we obtain the acquisition
function for CCBO: aqEICFconðXÞ ¼ ℙðyc ¼ 1jXÞ*aqEICFðXÞ:

In the present work, the Monte–Carlo sampling number N
was 512 and q was xed to 2 throughout all BO pipelines. All
inputs X were normalized to unit cubes, and the ow rate
variable was transformed to a logarithm before normalization.
The outcomes of the objective component, including the
distance variable yo in vanilla BO and constrained BO, as well as
the particle size variable s in CCBO, were standardized to zero
mean and unit variance. The outcomes of the feasibility
component yc were rescaled to {−1,1}.

Synthetic electrospray data generation

The synthetic electrospray data was generated through the
following functions:

s ¼ 2�
ffiffiffiffiffiffiffiffi
QC

p
logðUÞ þ aþ 0:4 (3)

yc ¼
(
1; if logðQÞ � ða� 0:5Þ þ 1:4. 0

0; otherwise:
(4)

where s is the particle size (mm), Q is the ow rate (mL min−1), c
is the concentration of the polymer solution (% w/v), and U is
the applied voltage (kV). The parameter a is a constant that
depends on the solvent (CHCl3: 1, DMAc: 0).

Validating BO with synthetic data

The target particle size so was arbitrarily set to 0.6, 3.0, 6.0 or
18.0 mm to validate BO performance. In each run, three BO
a for synthetic experiments

ate (mL min−1) Voltage (kV) Solvent

60.00] [10.0–18.0] {CHCl3, DMAc}
10.0 DMAc
10.0 CHCl3
15.0 DMAc
10.0 CHCl3
10.0 CHCl3

© 2025 The Author(s). Published by the Royal Society of Chemistry
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pipelines and the random baseline were performed for 10 iter-
ations with the starting data listed in Table 1. The outcomes of
experiments were calculated using synthetic eqn (3) and (4)
from the corresponding experimental variables. Each run was
repeated 20 times to account for variations. The comparison
between human and BO followed settings similar to those used
previously. The starting data (Table 1) were rst shown to the
participants (N = 14), who had varying experience with
electrospraying, including advanced users with more than 3
years of experience (N = 4), intermediate users with 1 to 3 years
of experience (N = 4), and beginners with less than 1 year of
experience (N = 6). In each iteration, two experiments were
recommended by participants to optimize towards a 3.0 mm
target, and the experimental results calculated using the
synthetic equations were then revealed. In total, ve iterations
were performed for the human vs. BO campaign considering
that CCBO achieved signicant reduction within a few rounds.
During the campaign, the participants were not allowed to
access each other's results except for the ve initial data
provided. They were asked to work out the recommendations as
if they were dealing with a new electrospray setup. No strict time
constraints were imposed on the participants to provide
answers, but a typical time of 2 minutes was observed for
participants to suggest experiments for one iteration.

The regret, dened as the closest distance to the target
particle size, was plotted at each iteration. The experimental
variables proposed in a typical run were visualized on 3D plots
with symbols representing solvent and feasibility, and colors
encoding the iteration. The area under the curve (AUC) for each
strategy and human participant was calculated based on trap-
ezoid rules for quantitative comparison. One-tailed Mann–
Whitey U-tests were performed with the alternative hypothesis
being that CCBO had smaller AUC/regret compared to the BO
baseline or human groups, respectively.
Guiding laboratory experiments with CCBO

The boundaries of the experimental variables remained the
same as for the validation with synthetic data. The starting eight
experiments were generated through a Sobol sequence within
the boundaries for each variable. The targeted particle sizes
were 300 nm and 3.0 mm based on domain expertise in drug
delivery. The two experiments in each iteration were performed
in triplicate. The results were fed back into the BO pipeline to
obtain the next recommendations. The stopping criterion was
set as achieving ±10% the target size.
Results
Validating CCBO through synthetic data

The performance of CCBO was rst validated with synthetic
experimental data. Before introducing the benchmark results,
the three congurations of the BO pipelines tested in this study
are presented (Fig. 1a). More details of the implementation can
be found in the Methods section. Briey, the vanilla BO pipeline
followed a traditional BO design in which the target to be
maximized was the negative squared distance yo. The feasibility
© 2025 The Author(s). Published by the Royal Society of Chemistry
component, which leveraged a variational GP for classication,
was added to track experimental feasibility. Through factoring
a probability term into the acquisition function, the constrained
BO pipeline was able to pick candidates with a higher chance of
success. CCBO adopted the same feasibility modelling whilst
modifying the objective component. It utilized GP to model the
fundamental relationship between the processing variables x
with the size s in the experiments. The negative squared
distance function was incorporated in the acquisition function
to prioritize candidates for minimizing the distance to the pre-
set target. In terms of the synthetic problem, the data was
produced using equations that simulated electrospray pro-
cessing. Specically, the function for determining the size of the
electrosprayed particles (see eqn (3)) was inspired by scaling
laws proposed for electrospray and experimental observations,
in which the ow rate and polymer concentration (through
affecting the viscosity) are both positively correlated to the
diameter, with voltage having a negative impact.32,37 The loga-
rithm and power transformations in the function were intended
to add complexity to the modeling process to simulate the
nonlinear nature of the electrospraying process. The constant
alpha was added to account for the impact of the solvents
considered in the process. In addition, the feasibility zone, as
visualized in Fig. 1b, was set to be highly related to the ow rate
and the solvent. This rationale was based on practical consid-
erations, as chloroform, a highly volatile solvent, would result in
a clogged nozzle at lower ow rates, while higher ow rates
would lead to insufficient evaporation of the solvent DMAc and
produce splashes of droplets on the collector instead of solid
particles.

As a benchmark, CCBO, together with random baseline,
vanilla BO, and constrained BO only, was performed for 10
iterations. Five initial experiments were included, accounting
for successful and failed cases for both solvents. The optimi-
zation target was set to 18 mm. Results for other target sizes,
including 0.6, 3 and 6 mm, can be found in SI Fig. 1. In each
iteration, two sets of processing parameters were proposed and
subjected to simulation functions to retrieve the synthetic
experimental result as well as the feasibility. The regret, dened
as the difference between the target and the closest candidate,
was recorded aer each iteration as a measurement of perfor-
mance (Fig. 1c). Aer 10 iterations, the random baseline
reached 0.8 mm regret. Similarly, the vanilla BO and constrained
BO both achieved around 0.4 mm regret. In contrast, the CCBO
algorithm rapidly converged to the targeted diameter aer only
two iterations with minimal regret. Moreover, the AUC of each
strategy was calculated using a trapezoidal method to quantify
the optimization efficiency. CCBO achieved a minimal AUC of
2.47 ± 0.85, which was signicantly lower than that of the
random method (19.48 ± 8.12, p < 0.0001), vanilla BO (18.35 ±

3.86, p < 0.0001) and constrained BO (16.26 ± 3.73, p < 0.0001)
under the one-tailed Mann–Whitney U-test.

The benchmark for synthetic electrospray was extended to
compare CCBO with state-of-the-art optimization methods such
as Summit,38 Dragony,39 EDBO+,40 and Atlas.41 Notably, the
implementations in Summit and Dragony did not support
optimization under unknown constraints. Therefore, their
Digital Discovery, 2025, 4, 3066–3077 | 3069
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Fig. 1 Results for CCBO validation with synthetic data. (a) An illustration of the configurations for vanilla BO, constrained BO, and CCBO. (b)
Parameter space visualization for the synthetic data with the feasibility zone highlighted for each solvent. (c) Benchmark results of target value
optimization with random baseline, vanilla BO, constrained BO, Atlas (constrained BO), Summit (single objective BO), EDBO+ (pool-based BO),
Dragonfly (bandit BO), and CCBO. The regret is calculated as the closest distance with respect to the design target achieved at different iterations
of BO. Each benchmark experiment was performed for 10 iterations. Shaded areas indicate standard error from 20 repetitions. (d) Visualization of
the suggested experimental parameters. Each data point represents one synthetic experiment. The corresponding iterations are coded by color.
Symbols represent the solvent used and the feasibility of the experiment. (e) Comparison of total number of successful (filled bars) and failed
experiments (hatched bars) in a typical run of 10 iterations with the four strategies. (f) Particle sizes produced using the parameters chosen by
CCBO. The data points are color-coded by iteration and the symbols represent the solvent and feasibility. The target (18 mm) is highlighted as
a dashed line.
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performance was similar to that of the vanilla BO baseline.
EDBO+ was developed as a pool-based active learning optimi-
zation platform. The EDBO+ algorithm did not provide
improvement in regret, potentially due to its lack of support for
constrained optimization and the limitation of a pool-based
search space compared to other strategies. Finally, the most
3070 | Digital Discovery, 2025, 4, 3066–3077
recently developed approach, Atlas, which is a framework
library for self-driving libraries by Hickman et al., utilized
a variational GP to model unknown constraints for experi-
mental feasibility.42 The optimization by Altas with a priori
unknown constraints showed better performance than other
existing strategies in the benchmark. However, as none of the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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state-of-the-art libraries support target-value optimization
natively, none of these strategies outperformed the CCBO
algorithm proposed herep for electrospray optimization. More
detailed results can be found in SI Fig. 1. These results highlight
the importance of incorporating both a constrained and
composite optimization scheme for target-driven design prob-
lems in experiments.

To understand the recommendation process, the proposed
experiments were visualized in Fig. 1d. The random baseline
sampled uniformly across the experiment space with both
solvents, resulting in many failed DMAc experiments due to the
ow rate feasibility constraints. Vanilla BO started exploring the
boundary conditions in the rst few rounds. With an additional
model to account for feasibility, the constrained BO algorithm
managed to learn the feasible region for DMAc, as reected by
most DMAc experiments being recommended with lower ow
rates. This corresponded well to the initial feasible zone visu-
alized in Fig. 1b. In addition, the number of failed and
successful attempts of each algorithm from the results were
plotted in Fig. 1e, highlighting the reduction in infeasible
experimental conditions with the help of the additional
constraint model.

Furthermore, the CCBO strategy was observed to show highly
efficient searching in a localized experiment space (Fig. 1d). The
performance of CCBO could be explained by its design. The
routes taken by vanilla BO and constrained BO were directly
Fig. 2 Comparing human and BO performance with synthetic data. (a)
comparison with human users (dashed lines) on synthetic data. The expe
BO, constrained BO, and CCBO indicate standard error from 20 repetitio
intermediate (N = 4), and advanced (N = 4) groups, represent the standa
area-under-the-curve (AUC) as calculated using the trapezoid rule of t
alization of experiments selected by CCBO and human participants with
experiment. The iteration is coded by color. Symbols represent the solv

© 2025 The Author(s). Published by the Royal Society of Chemistry
minimizing the distance, whereas the surrogate GP was forced
to model more complicated results from both the experiment
and the superimposed distance function. On the contrary, GP
was solely used for modeling the black-box experiment results
for CCBO. Our observations with CCBO echoed the ndings in
the composite BO literature: extracting the analytically track-
able part from the black-box function can drastically benet the
optimization efficiency.30 In standard BO, the EI acquisition
function assumes a Gaussian posterior distribution. However,
the posterior of the composite function becomes non-Gaussian
aer transformation with a non-linear function. To address
this, Astudillo and Frazier suggested leaving the GP to model
the black-box function. The composite part was instead incor-
porated into the acquisition function to transform the Gaussian
posterior of the black-box function. This allows more efficient
optimization through a closer approximation of posterior
distribution in a composite scenario.36 In our implementation,
the composite acquisition function was optimized in the CCBO
pipeline with Monte Carlo sampling. Through the benchmark
validation, we have shown that vanilla BO or constrained BO
alone would not be able to efficiently optimize our design
problem, highlighting the importance of the integration of
CCBO.

Finally, we compared CCBO to human electrospray users
with varying levels of expertise in this synthetic campaign. More
experienced users were believed to approach the target more
Benchmark results with BO pipelines (solid lines) for 3.0 mm target in
riment was performed for 5 iterations. Shaded areas for random, vanilla
ns. Shaded areas for human performance, including beginner (N = 6),
rd error for the respective participants. (b) Box plot with scatters of the
he benchmark results from each strategy and human group. (c) Visu-
various experience levels. Each data point represents one ‘synthetic’

ent used and feasibility of the experiment.
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Table 2 Processing parameters generated through a Sobol sequence and the resulting particle sizes and feasibility (N = 3)

Label Polymer concentration (% w/v) Flow rate (mL min−1) Voltage (kV) Solvent Mean size (mm) Feasible?

0-1 2.40 1.73 14.0 DMAc 0.56 1
0-2 4.06 0.44 15.7 CHCl3 1.00 0
0-3 2.88 49.11 11.8 DMAc 15.00 0
0-4 0.76 0.01 17.6 CHCl3 1.20 0
0-5 0.11 10.43 14.5 CHCl3 6.26 1
0-6 3.55 0.06 12.8 DMAc 0.15 1
0-7 4.55 2.39 16.7 CHCl3 5.24 1
0-8 1.88 0.21 11.0 DMAc 1.12 1
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efficiently, as they were equipped with prior knowledge of the
inuence of the parameters and the selection of solvent. All
participants (N = 14) evaluated the same initial experimental
data and suggested experiments to achieve a target particle size
of 3 mm. The comparative results are plotted in Fig. 2a. More
detailed human performance results are available in SI Table 1
and Fig. 2. In the rst iteration, the CCBO strategy was behind
intermediate (1–3 years of experience, N = 4) and advanced
users ($3 years of experience, N = 4), and performed similarly
to beginners (<1 year of experience, N = 6). However, CCBO
soon overtook intermediate users from the second iteration
onwards and surpassed advanced users on later iterations.
Quantitatively, the AUC was calculated and plotted (Fig. 2b)
with respect to each strategy or human group, and CCBO (1.40
± 0.10) exhibited a signicantly smaller (p = 0.01) AUC than
beginners (2.62 ± 1.19) under the one-tailed Mann–Whitney U-
test. There were no signicant reductions in AUC for CCBO
compared to intermediate (1.60 ± 0.41, p = 0.34) or advanced
(1.03 ± 0.42, p = 0.95) users. When focusing on overall perfor-
mance (regret at nal iteration), the regret of the CCBO strategy
was signicantly lower than that of intermediate (p = 0.02) and
beginner (p < 0.0001) users. Further analysis of parameter
selection strategies revealed that advanced users predominantly
followed a one-factor-at-a-time (OFAT) approach, resulting in
linear adjustment patterns (Fig. 2c). Most beginner users and
intermediate users attempted to adjust multiple parameters
simultaneously. Unlike human participants, CCBO employed
more strategic exploration and exploitation, effectively reducing
experimental regret by targeting promising regions in the
parameter space. Taken together, these ndings demonstrated
that CCBO could achieve performance comparable to highly
experienced participants and navigate complex experimental
spaces more effectively than human users. In addition, the
performance differences among users with various levels of
expertise reected the successful development of the synthetic
problem simulating electrospraying, consolidating our con-
dence in proceeding to laboratory validation.
Guiding laboratory electrospraying with CCBO for targeted
particle production

Following the validation of CCBO with synthetic data, it was
applied to guide real-world experiments for the electrospraying
production of micro- and nanoparticles. The initial
3072 | Digital Discovery, 2025, 4, 3066–3077
experiments, which were generated through a Sobol sequence,
were performed to accumulate starting data for BO pipelines
(Table 2).

Two particle sizes, 300 nm and 3.0 mm, were set as the design
targets based on pharmaceutical interest as drug carriers for
intravenous injection and pulmonary delivery.4 Based on
previous reports, the production of PLGA particles with these
two particle sizes require distinct processing parameters
involving different solvents and ow rates.32,43 Thus, the setting
of these targets could simulate distinct experimental scenarios
to challenge BO pipelines. The workow of targeted particle
production under CCBO guidance is illustrated in Fig. 3a. With
the initial data gathered, a CCBO pipeline was implemented to
propose two experiments in parallel for laboratory investiga-
tion. The selection of two experiments was based on the
capacity for laboratory work and to avoid wasting materials and
preparation time. Aer collecting samples and characterization,
the results from triplicate experiments were evaluated and
compared with the target. The next iteration of BO was per-
formed based on the addition of the new data.

The parameters proposed by CCBO are visualized using
heatmaps in Fig. 3b. The heatmap of the initial experiments
reects the selection of diverse parameters in the Sobol
sequence. In total, three iterations of BO were performed for the
target of 300 nm and four iterations for the 3.0 mm target. The
selection of solvent was the most obvious difference for these
two targets. Indeed, in previous reports of PLGA particle
synthesis, DMAc is a popular solvent due to its high boiling
point.44 From a mechanistic viewpoint, droplets will experience
ssion due to the competition between coulombic repulsion
and liquid surface tension in an electrospraying process.45 At
the same time, the evaporation of solvents increases the
concentration and viscosity of the droplet. As a non-volatile
solvent, DMAc allows this ssion process to fully develop and
thus generates sub-micrometer particles.32 Chloroform, on the
contrary, is preferred in the literature to produce larger particles
within the tens of micrometers range.46 These practical
considerations, which are normally accumulated through
experience and trial-and-error, were also picked up by the BO
pipeline. The recommendations provided by CCBO clearly
showed a trend of adopting DMAc for the 300 nm target and
chloroform for the 3.0 mm target.

Linking the recommendations to the experimental results
(Fig. 3c) could provide a more holistic viewpoint of the selection
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Guiding electrospray experiments with CCBO. (a) Schematic diagram representing the experiment process with the integration of CCBO.
(b) Heatmaps visualizing the processing parameters used for the (top) initial experiments, (middle) 300 nm target, and (bottom) 3.0 mm target. The
initial experiments were generated with a Sobol sequence and the targeted experiment series were suggested by the CCBO pipeline. (c)
Experimental results of particles generated via electrospraying under the parameters proposed for the (top) 300 nm and (bottom) 3.0 mm target.
Each data point represents the mean of triplicate laboratory experiments. Symbols represent the solvent used and the feasibility of the exper-
iment. (d) SEM images of particles produced at different iterations for the (top) 300 nm and (bottom) 3.0 mm target.
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strategy of CCBO. For the 300 nm target, the best candidate in
the initial experiments (0-8 on Table 2) used DMAc with a low
polymer concentration, ow rate and voltage to obtain 0.15 mm
particles. The recommendations from the CCBO pipeline
showed exploration of higher concentrations and ne-tuning of
the ow rate parameter (SI Table 2). Interestingly, the 3-1 and 3-
2 experiments both achieved a 300 nm particle size with distinct
processing parameters, suggesting that the impact of the less-
concentrated polymer solution was compensated by the
higher ow rate used for 3-1. Furthermore, the balance of
exploration–exploitation from the EI acquisition function was
further demonstrated through the experiment series for the 3.0
mm target. In the rst iteration, CCBO attempted the use of both
DMAc and chloroform as the solvent (SI Table 3). The second
iteration tested the lowest polymer concentration (0.05% w/v),
which is shown as the lightest green in the heatmap (Fig. 3b).
© 2025 The Author(s). Published by the Royal Society of Chemistry
Finally, the recommendations settled at higher concentrations
with reduced ow rates to approach the target based on the ne-
tuning from exploitation. It was also observed from the SEM
images (Fig. 3d) that experiment 1-2 for the 3.0 mm target
managed to produce 2.69 mm particles with rough and poly-
disperse characteristics using a low polymer concentration
(0.36% w/v) sprayed at a high ow rate of 3.65 mL min−1. The
nal experiment 4-2 suggested a 4.02% w/v solution sprayed at
1.08 mL min−1 (SI Table 3) to obtain 3.29 mm diameter particles.
This result again highlighted the ability to achieve similar
particle size through balancing polymer concentration and ow
rate, together with adjusting other parameters. The SEM images
of the nal iteration experiments show satisfactory particle
production at the targeted sizes.

Overall, we have veried the performance of CCBO in the
automatic identication of the experiment feasibility region
Digital Discovery, 2025, 4, 3066–3077 | 3073
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and rapid convergence to design targets through synthetic data
validation. Comparison with human experts demonstrated the
competitive performance of CCBO. The rational exploration of
the experiment space outperformed the instinct-driven OFAT
trial-and-error approach of humans. As a further step, wet-lab
experiments consolidated the potential of CCBO in real-world
applications for guided particle synthesis within a few
iterations.
Discussion

The present work demonstrated the application of an efficient
CCBO pipeline for target value optimization under black-box
constraints. The two components in CCBO worked cohesively
to address the need for guiding particle synthesis. For target
optimization, the composite BO demonstrated strong capacity
in modeling under the composited distance function over the
underlying black-boxed electrospray relationship function. On
the other hand, the constraint compartment managed to learn
and regulate the suggested experiments using a variational
Gaussian process. To deal with unknown feasibility boundaries,
many current strategies choose to apply active learning for the
identication of unknown feasibility regions, followed by
running BO pipelines under the established boundaries.47,48 As
an improvement, CCBO was designed to integrate these two
individual processes and focus on identifying the feasibility
regions around the design target. This can be seen from the
initial experiments in which the infeasibility caused by the
mismatch of high ow rate with the less-volatile solvent DMAc
(experiment 0-3 on SI Table 2) was not further explored, because
the target only requires experiments in the lower-ow-rate
region. In comparison, with an active learning pipeline, extra
experiments would be needed to determine the possible range
for DMAc. Thus, the design of the CCBO pipeline allows an
efficient reduction in the number of experiments to save labo-
ratory resources.

In addition, the innate exploration–exploitation trade-off of
BO made possible the identication of multiple possible
experimental parameters that can achieve the same design
target. This is especially helpful when other design consider-
ations coexist. For example, in the validation with the synthetic
problem (Fig. 1f), CCBO attempted to use both DMAc and
chloroform and paired them with a wide range of other pro-
cessing parameters to hit the design target in iterations 6 to 10.
From the perspective of production rate, a higher ow rate and
polymer concentration might be preferred. Similarly, if the
sustainability of the solvent is considered, DMAc would be
selected over chloroform as a less harsh solvent. Besides the
synthetic data, laboratory experiments also managed to nd
multiple parameters to produce particles with 300 nm or 3.0 mm
diameter. These particles exhibited distinctive morphology and
polydispersity, demonstrating varying characteristics for their
applications. Although not explicitly coded as a multiple-
objective optimization problem, these sets of experimental
parameters could be presented to the user as alternative
choices. In practice, such exibility allows the researcher to
3074 | Digital Discovery, 2025, 4, 3066–3077
consider product properties, manufacturing metrics, or other
aspects in production without changing the main design target.

Since only two solvents have been investigated in the present
work, categorial representations of the solvent variable were
used instead of applying molecular featurization. Many modern
BO libraries designed for chemistry and materials research
support molecular featurization, such as Atlas and GAUCHE.41,49

Featurizing molecules with their physicochemical properties
could incorporate chemistry knowledge in the optimization
process and benet molecular structure optimization and
discovery tasks. For example, Griffiths et al. managed to
leverage BO to optimize molecular design in a latent space
generated from variational autoencoders.50 Although opti-
mizing the solvent molecule per se was not necessarily a focus in
particle synthesis applications, leveraging molecular nger-
prints to represent solvents would equip the optimization
process with chemically meaningful knowledge (via represent-
ing similar solvents with close descriptors).51 In addition,
extending the present single-objective optimization paradigm
to multiple objectives could benet more complicated particle
design tasks, including the control of both particle size and size
distributions, or morphological features. Our implementation
of constrained optimization was through feasibility-weighting
of the acquisition function. This should be extensible to
multi-objective optimization seamlessly, considering that the
feasibility modelling is irrelevant to the type of acquisition
functions. Notably, Li et al. recently proposed a new method to
balance (unknown) constraint modelling and multi-objective
optimization through unifying constraint violation with hyper-
volume regret.52 They demonstrated improved efficiency
compared to baseline scalarization-based methods such as
qParEGO.53 On the other hand, composite optimization is ex-
pected to be transferable to multi-objective optimization
scenarios, in which objectives are scalarized. However, the
implementation of these extensions is beyond the scope of the
current manuscript and thus le as a future direction.

Finally, we highlight that CCBO could potentially be
extended to other particle synthesis systems, such as batch
methods and microuidics, to facilitate the guided design and
production of particles. In the past, the resource-demanding
nature of experimentation and scarcity of data have posed
signicant challenges and prolonged the workow of particle
synthesis. We expect CCBO to empower nanotechnology with
a smarter and more efficient paradigm for target-driven design.

Conclusions

Achieving the rational synthesis of nanoparticles oen relies on
extensive domain expertise and trial-and-error experimentation
to navigate within the feasibility space with target product
specications. In the present work, we introduced CCBO as
a unied framework to address constraint-aware and target-
value optimization in nanoparticle production. It was evalu-
ated in a synthetic electrospray problem and presented superior
performance compared to baseline and state-of-the-art strate-
gies. Benchmarking against human electrospray users further
demonstrated that CCBO could match experts with at least
© 2025 The Author(s). Published by the Royal Society of Chemistry
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three years of experience. Laboratory experiments validated its
practical ability to guide the electrospray synthesis of PLGA
particles with biomedically meaningful target diameters of
300 nm and 3.0 mm. These ndings highlight CCBO as
a powerful and efficient strategy for materials development
tasks characterized by complex, black-box constraints and
precise design objectives, thus contributing to the next gener-
ation of AI-driven nanomanufacturing.
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and R. Arróyave, Bayesian optimization with active
© 2025 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.1093/acprof:oso/9780199694587.003.0008
https://doi.org/10.1093/acprof:oso/9780199694587.003.0008
https://doi.org/10.48550/arXiv.2402.07692
https://proceedings.mlr.press/v89/uhrenholt19a.html
https://ieeexplore.ieee.org/document/9715343/
https://ieeexplore.ieee.org/document/9715343/
https://proceedings.mlr.press/v38/hensman15.html
https://proceedings.mlr.press/v38/hensman15.html
https://proceedings.mlr.press/v97/astudillo19a.html
https://proceedings.mlr.press/v97/astudillo19a.html
https://doi.org/10.1039/D5DD00018A
https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00018a
https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00018a
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00243e


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
A

ug
us

t 2
02

5.
 D

ow
nl

oa
de

d 
on

 1
/2

1/
20

26
 1

0:
51

:4
5 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
learning of design constraints using an entropy-based
approach, npj Comput. Mater., 2023, 9(1), 1–14.

48 R. Arróyave, D. Khatamsaz, B. Vela, R. Couperthwaite,
A. Molkeri, P. Singh, et al., A perspective on Bayesian
methods applied to materials discovery and design, MRS
Commun., 2022, 12(6), 1037–1049.

49 R. R. Griffiths, L. Klarner, H. B. Moss, A. Ravuri, S. Truong,
S. Stanton, et al., GAUCHE: A Library for Gaussian
Processes in Chemistry, in Proceedings of the 37th
International Conference on Neural Information Processing
Systems (NIPS '23), Curran Associates Inc., Red Hook, NY,
USA, 2023, pp. 76923–76946, DOI: 10.48550/
arXiv.2212.04450.

50 R. R. Griffiths and J. M. Hernández-Lobato, Constrained
Bayesian optimization for automatic chemical design
© 2025 The Author(s). Published by the Royal Society of Chemistry
using variational autoencoders, Chem. Sci., 2020, 11(2),
577–586.

51 F. Wang, A. Harker, M. Edirisinghe and M. Parhizkar,
Tackling Data Scarcity Challenge through Active Learning
in Materials Processing with Electrospray, Adv Intell Syst.,
2024, 6(7), 2300798.

52 D. Li, F. Zhang, C. Liu and Y. Chen, Constrained Multi-
objective Bayesian Optimization through Optimistic
Constraints Estimation, arXiv, 2025, preprint,
arXiv:2411.03641, DOI: 10.48550/arXiv.2411.03641.

53 S. Daulton, M. Balandat and E. Bakshy, Expected
Hypervolume Improvement for Parallel Multi-Objective
Bayesian Optimization, in Proceedings of the 34th
International Conference on Neural Information Processing
Systems (NIPS '20), Curran Associates Inc., Red Hook, NY,
USA, 2020, pp. 9851–9864, DOI: 10.48550/arXiv.2006.05078.
Digital Discovery, 2025, 4, 3066–3077 | 3077

https://doi.org/10.48550/arXiv.2212.04450
https://doi.org/10.48550/arXiv.2212.04450
https://doi.org/10.48550/arXiv.2411.03641
https://doi.org/10.48550/arXiv.2006.05078
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00243e

	Constrained composite Bayesian optimization for rational synthesis of polymeric particles
	Constrained composite Bayesian optimization for rational synthesis of polymeric particles
	Constrained composite Bayesian optimization for rational synthesis of polymeric particles
	Constrained composite Bayesian optimization for rational synthesis of polymeric particles
	Constrained composite Bayesian optimization for rational synthesis of polymeric particles
	Constrained composite Bayesian optimization for rational synthesis of polymeric particles
	Constrained composite Bayesian optimization for rational synthesis of polymeric particles
	Constrained composite Bayesian optimization for rational synthesis of polymeric particles
	Constrained composite Bayesian optimization for rational synthesis of polymeric particles
	Constrained composite Bayesian optimization for rational synthesis of polymeric particles

	Constrained composite Bayesian optimization for rational synthesis of polymeric particles
	Constrained composite Bayesian optimization for rational synthesis of polymeric particles
	Constrained composite Bayesian optimization for rational synthesis of polymeric particles

	Constrained composite Bayesian optimization for rational synthesis of polymeric particles
	Constrained composite Bayesian optimization for rational synthesis of polymeric particles
	Constrained composite Bayesian optimization for rational synthesis of polymeric particles
	Constrained composite Bayesian optimization for rational synthesis of polymeric particles
	Constrained composite Bayesian optimization for rational synthesis of polymeric particles
	Constrained composite Bayesian optimization for rational synthesis of polymeric particles




