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Abstract

Fullerenes, carbon-based nanomaterials with sp2-hybridized carbon atoms arranged
in polyhedral cages, exhibit diverse isomeric structures with promising applications
in optoelectronics, solar cells, and medicine. However, the vast number of possible
fullerene isomers complicates efficient property prediction. In this study, we intro-
duce FullereneNet, a graph neural network-based model that predicts fundamental
properties of fullerenes using topological features derived solely from unoptimized
structures, eliminating the need for computationally expensive quantum chemistry op-
timizations. The model leverages topological representations based on the chemical
environments of pentagon and hexagon rings, enabling efficient capture of local struc-
tural details. We show that this approach yields superior performance in predicting the
C-C binding energy for a wide range of fullerene sizes, achieving mean absolute errors
of 3 meV/atom for Cgj, 4 meV/atom for C;, and 6 meV/atom for C5,—C,, surpass-
ing state-of-the-art machine learning interatomic potentials GAP-20. Additionally,
the FullereneNet model accurately predicts 11 other properties, including HOMO-
LUMO gap and solvation free energy, demonstrating robustness and transferability
across fullerene types. This work provides a computationally efficient framework for
high-throughput screening of fullerene candidates and establishes a foundation for fu-
ture data-driven studies in fullerene chemistry.
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1 Introduction

Fullerenes are carbon-based nanomaterials composed of sp? hybridized carbons with the
general formula Cyy, 9, (n > 0, n # 1). [1, 2] These carbon atoms form pentagon and
hexagon rings on the spherical polyhedral cages. The different arrangements of these rings
lead to numerous isomeric structures for each fullerene size, with the number of possi-
ble isomers increasing at a rate of O(N?) for N = 20 + 2n carbon atoms, resulting in
a diverse family of fullerenes. [3|] Thanks to their unique spherical cage structure and re-
markable physicochemical properties, various fullerenes have been synthesized and applied
in optoelectronics, solar cells, gas storage and separation, biology, and medicine. [4-11]
For example, fullerene Cg,, C;y, Cgy4 and their derivatives, which conform to the isolated
pentagon rule (IPR) with 12 pentagons separated by hexagons to minimize steric strain
and ensure high stability, are used as electron acceptors in organic solar cells. [12, |13]]
Pristine non-IPR fullerenes, such as C,, and Cs4, which are unstable and highly reactive
due to their condensed pentagons and increased strain, have been successfully synthesized
and isolated. [14, |15] Additionally, non-IPR fullerenes with endohedral functionalization
(encapsulation of metal and/or nonmetal atoms, e.g., Sc,@Cgs and Sc;N@Cgg), or exohe-
dral functionalization (anchoring functional groups on the cage surface, e.g., chlorinated
C50Clyg, CeoClyn, and Cg(Clg), exhibit unusual electronic, magnetic, and mechanical prop-
erties. [[16H19] So far, only a small portion of fullerenes have been investigated for real-
world applications through laborious trial-and-error approach. To fully harness their ca-
pabilities in customizing electronic properties and functionalization for practical uses, it is
crucial to accurately and efficiently predict the fundamental properties, including stability,
electronic properties, and solubility for high-throughput screening potential fullerene can-
didates. However, the expansive fullerene family—with its range of sizes and numerous
isomers for each size (e.g., Cg4 has 51,592 isomers)—not only poses significant challenges
to mathematical enumeration and topological analysis [20], but also surpasses the computa-
tional capacity of current high-performance resources for quantum chemistry calculations.

To circumvent this computational bottleneck, early studies explored connections be-
tween the graph-theoretical properties of fullerenes and their physical characteristics. Schw-
erdtfeger et al.’s review [21] provides an extensive account of such topological indicators,
demonstrating how graph-based indices derived from adjacency matrices can qualitatively
predict properties such as the HOMO-LUMO gap through approaches like Hiickel theory,
and even anticipate phenomena such as Jahn-Teller distortions. However, these traditional
approaches rely heavily on human-derived heuristics and predefined physical approxima-
tions, which constrain their predictive power to the limits of established chemical intuition

Data-driven machine learning (ML) techniques have become powerful tools for pre-
dicting properties of fullerenes and their functionalized derivatives. For example, Pablo et
al. [22] trained various conventional ML models to predict the highest occupied molecular
orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and gap renormaliza-
tion energies using a dataset of 163 fullerenes and their derivatives, ranging from Cyg to
Cis0- They tested numerous variables as input representations, including density functional
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theory (DFT)-calculated electronic properties, geometric features, phonon features, bond
length features, and bond order features. Liu et al. [23]] trained a SchNet model-based neu-
tral network potential (NNP), which uses molecule coordinates as input representations,
and a dataset of 120k non-isomorphic Cs,,Cl,, chlorofullerene isomers generated from 500
pristine cages of Cy, Csg, Cep, and C;y. The NNP achieved a mean absolute error (MAE) of
0.37 eV for relative energy prediction with respect to DFT benchmarks and demonstrated
excellent transferability to other exohedral functionalized fullerenes C5,X,, (X=H, F, 1,
Cl, Br, OH, CF;, CHj) across different functional groups, number of addends, and cage
sizes. However, previous studies have relied on DFT-calculated features or those derived
from DFT-optimized geometry for ML training, which requires significant computational
cost, making it unsuitable for high-throughput screening of fullerene candidates. Machine
Learning Interatomic Potentials (MLIPs) have also been employed for fullerene systems.
Aghajamali and Karton [24]] applied the Gaussian Approximation Potential (GAP-20) [25]]
force field to investigate the isomerization energies and thermal stabilities of C,, fullerenes,
while Karasulu et al. [26] used GAP-20 to predict large carbon clusters and search for
novel isomers, overcoming the computational limits of first-principles approaches. How-
ever, GAP-20 is limited to energy-potential surface prediction and cannot predict other
fundamental properties which are crucial for real-world applications, such as molecular
orbital levels, HOMO-LUMO gaps, and solubilities. More importantly, employing MLIPs
requires geometry optimization to determine ground-state energies, resulting in additional
computational costs.

Graph neural networks (GNNs) have gained considerable attention in chemistry due to
their exceptional performance in molecular and materials science. [27-30]] Their effective-
ness stems from the ability to represent molecules and materials as graphs, where nodes
correspond to atoms and edges to bonds. For example, TensorNet [31]], which utilizes
Cartesian tensor representations, demonstrates state-of-the-art (SOTA) performance on the
small organic molecule dataset QM9 [32]. Matfomer [33]], incorporating a transformer ar-
chitecture for learning periodic graph representations, is considered a leading GNN model
for predicting crystal properties such as formation energy and band gap. However, these
models require optimized structures as inputs, since precise structural information is essen-
tial for training, significantly increasing computational costs. Moreover, fullerenes, con-
sisting solely of carbon, present unique challenges due to identical node features, compli-
cating the design of effective GNN models for this system. To the best of our knowledge,
no existing GNN model can accurately and efficiently predict a wide range of fundamen-
tal properties for fullerenes of any size without relying on quantum chemistry-optimized
structures as inputs.

In this work, we developed a GNN-based model to predict the fundamental properties
of fullerenes using two sets of topological features based on the arrangement of pentagons
and hexagons over the cage surface, as proposed in our previous study. [34] These topo-
logical features rely solely on carbon atom connectivity and can be efficiently extracted
from unoptimized geometries, eliminating the need for quantum chemistry-based geome-
try optimization. Our results show that these features can effectively capture the intricate
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local structural environments of carbon atoms in fullerene, enabling excellent accuracy and
extrapolation capability for predicting the C-C binding energy beyond Cg,. Notably, our
GNN model trained with a C,;—Csg dataset achieved MAEs of 3, 4, and 6 meV/atom for
test sets Cgp, Cq9, and C7,—C, 0, respectively, surpassing the accuracy of the SOTA MLIP
GAP-20. More profoundly, with the same topological features as structural representations,
our retrained GNN models demonstrated high prediction accuracy for 11 other properties,
including HOMO, LUMO, gap, solvation free energies, and logP. Our study highlights the
superior capability of topological features for predicting various fundamental properties of
fullerenes with excellent accuracy and transferability. Our study lays a fundamental basis
for future data-driven research in fullerene chemistry.

2 Methodology

2.1 Dataset construction

In this study, we constructed three datasets for model training and testing. The C,o—
Cyo dataset, consisting of 5770 structures, was adopted from our previous work [34]].This
dataset provides a complete set of C,,—Cg structures, with properties such as the HOMO-
LUMO gap, formation energy, and IP-EA computed using DFT (with the same methods
applied in this work). The C,, dataset comprising 8149 isomers, were generated using the
FULLERENE program (version 4.5) and subsequently optimized with a harmonic oscil-
lator approximation-based force field [35]], which provides a good compromise between
computational efficiency and accuracy in reproducing fullerene geometries. The C7,—Cg
dataset (except Cgg) with 1171 IPR-conforming isomers were obtained from the Fullerene
Library created by M. Yoshida. [36] Table S1 and S2 lists numbers of possible isomers,
C-C bonds, hexagon rings for each fullerene size in each set.

2.2 Computational details

We applied Gaussian 16 package [37] for all the DFT calculations. We used B3LYP hy-
brid functional [38-40] with D3 dispersion correction [41] and the 6-31G* basis set for
geometry optimization. The maximum force threshold is 0.02 eV/A. Then, we conducted
a single-point calculation at singlet state with B3LYP functional and 6-311G* basis set to
compute energies and electronic properties of the isomers. The solvation energies were cal-
culated using the Solvation Model based on Density (SMD).[42] The dielectric constants
for water and ODCB solvents were set at 78 and 10, respectively.

Geometry optimization with GAP-20 potential were performed using the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) package [43]], compiled with
the Quantum mechanics and Interatomic Potentials (QUIP) library [44} 45]] including GAP
routines. Geometry relaxation and energy minimization were conducted with the conjugate
gradient method. The convergence criteria were set to 10~% eV for the total energy and 1075
eV/A for the atomic forces.
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Figure 1: Feature Construction. (a) Take Cg( as an example, each atom in the fullerene is
assigned a unique sequence number. (b) An adjacency matrix is generated, where entries
of 1 indicate a connection between atoms, and entries of O indicate no connection. (c)
Topological node and edge features are derived from the adjacency matrix.
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2.3 Feature space construction

Open Access Article. Published on 11 November 2025. Downloaded on 11/20/2025 5:26:17 PM.

We used atom and bond representations from our previous work [34] as node and edge
features for GNN model training. In fullerene molecules, each carbon atom is fused to three
adjacent polygonal rings, and each C-C bond is surrounded by four polygonal rings, either
pentagons or hexagons. Atom features categorize carbon atoms into four types {v;|i =
0,1,2,3}, based on the number of adjacent pentagons (ranging from O to 3). The node
feature is one-hot encoded with four digits to represent the local geometry of each carbon
atom. Similarly, bond features categorize C-C bonds into nine types {¢e;|i = 0, ..., 8}, based
on the number and arrangement of the surrounding polygonal rings. The edge feature is
one-hot encoded with nine digits to indicate the local geometry of each C-C bond. The
detailed atom and bond features are shown in Figure 1.

Beyond the canonical fullerenes studied in this work, our methodology may also be
applied to non-canonical fullerenes that include other polygons such as heptagons and oc-
tagons. While the present study focused exclusively on canonical fullerenes, we propose
an extension of the current methodology to address non-canonical cases (see Section S1),
which will be carefully investigated in future work.
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Figure 2: The detailed architecture of FullereneNet.

2.4 GNN Model architecture

Here, we present our model named FullereneNet, inspired by the transformer-based archi-
tecture utilized in Matformer (model details are in section S2). This model is designed
to eliminate the need for quantum mechanical optimization of fullerene structures, as il-
lustrated in Figure 2. We define the molecular graph as G = (V, E), where V and E
represent the set of atoms and bonds in a molecule, respectively. Let v; € V' denote the
node feature of atom ¢, and e;; € E represent the edge feature between atoms ¢ and its
neighbor atom j. The overall model architecture consists of an embedding layer, multiple
convolutional layers, and a readout function. The embedding layer projects the atomic fea-
ture v; to a higher-dimensional vector, denoted as h;. The convolutional layers are the core
of the GNN model, where message passing occurs [46, 47]. This process is essential for
capturing interactions between atoms. The readout function aggregates the updated atomic
representations into a molecular-level feature, which is then used for property prediction
via a pooling function.

Our proposed message passing scheme is composed of three steps: attention score com-
putation, attention coefficient normalization, and message computation with node informa-
tion updating. In the first step, query @);, key K, and value V; are calculated following
the regular attention mechanism [48]. These vectors serve to evaluate how relevant each
neighboring node is to the node being updated. By comparing the query of a node with
the keys of its neighbors, the model calculates attention scores that determine the influence
each neighbor should have. Specifically,

Q: =LNg(h;), K; =LNg(h;), V;=LNy(h;), E; =LNg(e;) €))


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00241a

Page 7 of 23 Digital Discovery
View Article Online
DOI: 10.1039/D5DD00241A

where LNg, LNk, LNy, and LN denote the linear transformations to compute query, key,
value, and edge embedding. Then K and V] are obtained by summing K; or V; with Ej,
respectively. Next, we compute the attention score using both additive and multiplicative
components. The additive attention computes attention scores by processing the concatena-
tion of );, K J’-, and E;; through two separate multi-layer perceptrons (MLPs) with different
activation functions:

it = MLPyar (Qil| K| Eij), ()
a9 = MLPa (Q:|| K| Ei5). 3)
o' = o + o}, @

where || denotes concatenation, MLP,44 consists of linear layers with an activation function
(e.g., Tanh, Softplus), and ai‘fd is the additive attention score. Another part is multiplicative
attention, which is computed by using the scaled Hadamard product:

mult __ QZ © KJ/
=TT

where © represents the Hadamard product, and d is the dimensionality of the key vectors.
The overall attention score «;; is obtained by summing the aﬁ‘;‘d and a?}““ components,
followed by an activation function.

After obtaining the attention score «;;, we then move to the second part. A non-linear
activation function, such as SiLU, is first applied to the combined attention scores «;;. To
ensure that the attention coefficients are properly normalized, a softmax function is applied
over the neighbors of atom i:

&)
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= 6
ZkeN(i) exp(a) ©

a;; = softmax(cy;;)

(cc)

where N (i) denotes the set of neighbor nodes of atom i.

Finally, in the third part, messages from neighbors are aggregated and updated to the
original atom representations. The messages from neighbors are first computed by weight-
ing the value vectors Vj’ with the attention coefficients «;; using the Hadamard product:

mij; = ai; © V] 7

The processed messages are then passed through a layer normalization function. Subse-
quently, the messages from each node and attention head are aggregated using a summation
method:

mi= > m ®)
JjEN; h

The last step is the node update with a residual connection:
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where LN, denotes linear transformations, ¢ is an activation function, and BN indicates
batch normalization. The updated node representation is obtained by adding the original
node features with the message m;;.

Matformer introduces an effective transformer variant tailored for crystal graph learn-
ing. However, our proposed model, FullereneNet, diverges from Matformer in terms of
feature construction and message passing schemes. While Matformer leverages elemental
diversity to extract a broad range of atomic features, it struggles with fullerenes, which con-
sist solely of carbon and exhibit uniform atomic properties. To overcome this limitation, we
designed topological atomic features that distinguish pentagon and hexagon arrangements
around carbon atoms, effectively capturing structural variations and enhancing representa-
tion. Additionally, Matformer takes a DFT-optimized structure to derive bond distances and
angles, whereas FullereneNet, with its bespoke feature design, bypasses the need for geom-
etry optimized via ab initio methods as input, significantly reducing computational costs.
Regarding message passing, Matformer combines multiple information streams through a
complex triple concatenation process. In comparison, FullereneNet employs a streamlined
method that separately processes atomic interactions through two complementary path-
ways—one capturing linear relationships and another capturing non-linear relationships
between connected atoms. This dual-pathway design eliminates redundant computational
steps while better preserving the essential topological information that determines fullerene
stability. Given the uniform node degree (i.e., three) in fullerenes, FullereneNet does not
encounter the challenge to distinguish nodes with different degrees as Matformer [33]. In-
stead, it benefits from applying softmax normalization, which enhances training stability
and model focus. The hyperparameters search range for FullereneNet is summarized in
Table S3.

2.5 Model training strategy for extrapolation

In this study, we aim to develop a GNN model with strong extrapolation capabilities for
predicting the stability of larger fullerenes. To achieve this, we trained and validated our
model on a dataset of small fullerenes ranging from C,, to Csg, including 3958 distinct
isomers. Three larger fullerene groups were utilized as test sets: the complete Cg, dataset
containing 1812 isomers, a C;, dataset consisting of 100 randomly selected non-IPR iso-
mers from a total of 8149 entries, and a C;,—C, dataset comprising 1171 IPR-conforming
isomers. The random selection of C,, isomers ensures unbiased sampling across the energy
landscape while avoiding the prohibitive computational cost of evaluating all 8149 isomers,
while the curated C;,—C,, dataset provides validation against established structural bench-
marks. Moreover, the inclusion of both IPR and non-IPR fullerenes in the test sets allows
us to demonstrate the model’s reliable extrapolation capability.

Previous studies [49, 50] have shown that different data-splitting strategies can enhance
a model’s extrapolation ability. To explore their impact on improving the robustness and
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effectiveness of extrapolation, we applied four distinct strategies to partition the training
and validation sets (Figure 3):

a. Leave-One-Group-Out (LOGO): Following the approach described by Zhao et al. [[50],
the dataset was partitioned based on fullerene cage size (i.e., total number of carbon
atoms). For instance, Csg was used as the validation set while the fullerenes rang-
ing from C,, to Cs¢ constituted the training set. By rotating the validation set across
fullerene sizes from C,, to Csg, five GNN models were generated. Notably, C,;—Cs
fullerenes were grouped as a single validation set since their isomer counts are rela-
tively small, and their combined total is comparable to the number of isomers found
in each of the larger cages (Cs,, Css, Csg, and Csg)

. Leave-One-Cluster-Out (LOCO): In contrast to LOGO, where the dataset is catego-
rized by fullerene cage size, the LOCO method, as proposed by Meredig et al. [49],
employs the k-means clustering algorithm [S1]] to cluster the data into five distinct
groups. Each cluster was sequentially used as the validation set while the remaining
clusters were used for training, producing five GNN models.

c. Five-Fold Cross-Validation (5-fold CV): The C,,—Csg dataset was divided into train-
ing and validation sets using 5-fold cross-validation, resulting in the training of five
GNN models.

d. Random Split: The C,;—Csg dataset was randomly partitioned into training and val-
idation sets with a 4:1 ratio. Five GNN models were trained, each using a different
random seed.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
o

The extrapolation performance of each strategy was evaluated by averaging the prediction
outcomes of the corresponding five GNN models across the three test sets: the Cg, Cyy,
and C,,—C,, datasets.

Open Access Article. Published on 11 November 2025. Downloaded on 11/20/2025 5:26:17 PM.

(cc)

3 Results and Discussion

3.1 Stability prediction

We evaluated the extrapolation performance of FullereneNet trained using the four strate-
gies discussed in Section 2.5. The performance metrics for predicting the binding energies
of fullerene in three test sets — Cg, C79, and C7,—C,oo — are summarized in Table 1. For
each strategy, the final prediction value was obtained by averaging the prediction values of
the five corresponding GNN models on the test set. As shown in Table 1, all FullereneNet
models trained on the C,;—Csg dataset, irrespective of the training strategies employed,
consistently demonstrate high accuracy in predicting binding energies of the Cg, C5, and
C7—C, datasets as indicated by MAE and root mean squared error (RMSE) values. No-
tably, these models achieve small MAE values ranging from 3 meV/atom to 7 meV/atom.


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00241a

Open Access Article. Published on 11 November 2025. Downloaded on 11/20/2025 5:26:17 PM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Digital Discovery

Page 10 of 23
View Article Online
DOI: 10.1039/D5DD00241A

a. LOGO b. LOCO
Train Valid Train Valid
| G521 c54 C56 | | | cls1 J€I§2 cls3. | l |
| JI652) c54 C58_ | mean| [ [ [ 7] [ | mean
[ ] [ ]
¢ : : :
i652) c54 C56 C58 | | C20-C50 | 6182 cis3 cls4 cls5 | [ cls1 |
Extrapolation
C. 5-fold CV C60C100 d. Random split
valid Train Train Valid
[ 1 [ | |
L1 [ T 1 mean 11 I 1 | mean
[ ) [ ]
. .
L [ T [ [ ] [ 1T 11 [

Figure 3: Four different training strategy for extrapolation, including Leave-One-Group-
Out (LOGO), Leave-One-Cluster-Out (LOCO), Five-fold Cross-Validation (5-fold CV),
and Random Split, respectively.

The strong extrapolation capabilities of FullereneNet highlight the effectiveness of atom
and bond features as input representations for predicting fullerene’s stability. Based on our
results, the four different data split strategies did not exhibit a statistically significant differ-
ence in their predictive performance for large-sized fullerenes. Furthermore, the prediction
error for the C1,—C,q test set was consistently larger than that for the other two test sets,
regardless of the training strategy employed. For instance, using the random split method,
the FullereneNet model achieved a coefficient of determination (R?) of 0.563 and an MAE
of 5 meV/atom for C;,—C;(y, compared to 0.989 and 3 meV/atom for Cgy, and 0.974 and 4
meV/atom for C. This slightly lower accuracy for the C;,—C test set can be attributed to
the fact that the binding energy distribution of the C;,—C set is markedly different from
that of the training set (C,,—Csg), as illustrated in Figure S1.
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Table 1: Performance metrics (R?, MAE, and RMSE) across fullerene datasets using
four different validation methods, including Leave-One-Group-Out (LOGO), Leave-One-
Cluster-Out (LOCO), Five-fold Cross-Validation (5-fold CV), and Random Split, respec-

tively.

Dataset | Method | R? MAE RMSE

LOGO 0.988 0.003 0.004

C LOCO 0.988 0.003 0.004

60 5-fold CV 0.989 0.003 0.004

Random Split | 0.989 0.003 0.003

LOGO 0.969 0.004 0.005

LOCO 0.972 0.004 0.005

Cro (mon-IPR) | s plaev 10973 0004  0.005

Random Split | 0.974 0.004 0.005

LOGO 0.304 0.007  0.009
LOCO 0.431 0.006 0.008
5-fold CV 0.391 0.006 0.008
Random Split | 0.563 0.005  0.007

C7-Cioo IPR)

As detailed in section [2, the FullereneNet incorporates node and edge features ex-
tracted from unoptimized fullerene structures as input. In contrast, Matformer, the pre-
decessor of FullereneNet, relies on atomic attributes such as atomic volume, valence elec-
tron count, and bond distances calculated from optimized Cartesian coordinates. However,
since fullerene consists exclusively of carbon atoms, these conventional atomic descrip-
tors become uniform across the structure, limiting their discriminative power for property
prediction. Here, we evaluated the performance of Matformer, trained on bond distance ob-
tained from atomic coordinates of unoptimized fullerene structures, against FullereneNet in
predicting the binding energies of fullerenes ranging from Cg, to C;¢. As shown in Figure
S2, Matformer performs poorly with unoptimized structures, whereas optimizing fullerene
structures significantly improves prediction accuracy. For example, in the C;, dataset, uti-
lizing optimized structures to train Matformer increases the R? value from 0.542 to 0.977
and reduces the MAE from 19 meV/atom to 4 meV/atom, as illustrated in Figure S3.

The state-of-the-art MLIP, GAP-20, has been developed to accurately and efficiently
predict isomerization energies, assess thermal stability, and identify new carbon clusters
and fullerene isomers [26]. We evaluated the performance of GAP-20 on DTF optimized
structures by predicting the relative binding energies for the Cg, C;9, and C;,—C, datasets,
using the binding energy of Cgy-isomer-1 as the reference (Figure S4). We emphasize
that GAP-20 exhibits excellent accuracy in geometry optimization when benchmarked
against the DFT method. For the Cg, dataset, we confirmed a strong correlations between
relative binding energies calculated using GAP-20 with both DFT-optimized and GAP-
20-optimized structures, achieving an impressive R? value of 0.97 and a low MAE of 5
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meV/atom (Figure S5), consistent with previous studies. [52]

Figure 4 presents a comprehensive comparison of binding energy prediction perfor-
mance among FullereneNet (using unoptimized structures), Matformer, and GAP-20 (both
using optimized structures). Our results demonstrate that FullereneNet consistently outper-
forms the other two models across all three datasets. Matformer exhibits poor performance
on the C;,—C test sets, achieving an MAE of 0.020 eV/atom. Similarly, GAP-20 shows
suboptimal performance on the Cg, test set, with an an MAE of 0.016 eV/atom. Detailed
MAE and R? values for all methods are summarized in Table S4.

C60 C70 C72-C100

0.4 (a) - (b) 0.02} (c)
£ 4 0.2
5 o
E @/%( o
% 2° —-0.04
=02 0.1
w
i
3 o GAP-20 —0.10
o © Matformer ,
=0.0 //?3 ©  FullereneNet 0.0 ,/ /’/

0.0 0.2 0.4 0.0 0.1 0.2 —-0.10 -0.04 0.02

"DFT E, (eV/atom) DFT E, (eV/atom) DFT E, (eV/atom)

Figure 4: Parity plots comparing the prediction results of FullereneNet (unoptimized struc-
tures), Matformer, and GAP-20 (optimized structures) against DFT values, using Cgg-
isomer-1 as the reference. (a) Performance of the three models on the Cg, test set. (b)
Performance on the C test set. (¢) Performance on the C;,—C test set.

Besides the accuracy, one significant benefit of our model is that it can avoid the huge
computational cost associated with computing large-size fullerenes. Take the one Ci,
isomer [36] as an example, which represents a computationally challenging system due to
its substantial size. To quantify the computational advantages, we performed a detailed cost
analysis comparing FullereneNet with DFT and MLIP approaches. The DFT calculations
(using Gaussian 16 [37] on 48 CPU cores), geometry optimization with B3LYP/6-31G*
required 33 hours 56 minutes of wall time, followed by an additional 6 hours 4 minutes for
single-point energy calculations with B3LYP/6-311G*, totaling approximately 40 hours of
computation time. In contrast, GAP-20 calculation (using LAMMPS with convergence
criteria of 10~* eV for total energy and 105 eV/A for atomic forces) completed geometry
optimization in approximately 1 minute on a single CPU core. Remarkably, FullereneNet
prediction required less than 5 seconds with one Nvidia L4 GPU, representing a tremendous
speedup compared to DFT calculations. This dramatic computational acceleration arises
from FullereneNet’s ability to directly predict binding energies based on the arrangement
of polygon rings, eliminating the need to compute energies from optimized geometry using
DFT or MLIP.

In summary, our results demonstrate that FullereneNet effectively leverages topologi-
cal features from unoptimized structures to accurately predict binding energies, showcasing

12
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strong extrapolation capabilities for larger fullerenes. In contrast, Matformer and GAP-20

% rely heavily on optimized structures for accurate prediction. Given GAP-20’s exceptional
3 ability to generate optimized geometries closely matching DFT results, integrating it with
g FullereneNet could enhance predictions of additional properties, such as ionization poten-
s tial and electron affinity. This combined approach will be explored further in Section 3.3.
3
=
o [ Linear Model
E 0.030 mmm FullereneNet with node and edge features
8 [ FullereneNet with only node features
s
_g 0.025
E 0.022
g
@ 0.020
o
£ ly
3 <
2 = 0.015
B
(@)
(]
3 0.010 0.009
=]
0.006
g 0.005
S 0.005 0.004  0.004
> 0.003 0.003
2
s
5 0.000
= C60 C70 C72-C100
- (non-IPR) (IPR)

Figure 5: Comparison of binding energy prediction performance across diverse fullerene
datasets. Three models are evaluated: a linear regression model (with notably high
error values, shown in red), FullereneNet utilizing both node and edge features, and
FullereneNet employing only node features.Inset molecular structures depict three repre-
sentative fullerenes from our dataset: Cg, isomer 1 (left), C,, isomer 11 (center), and C;,
isomer 1 (right).
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3.2 Feature analysis

Feature engineering remains a fundamental challenge in materials and molecules discovery,
where the choice of structural representations significantly impacts model performance.
For conventional GNN models designed for molecules, researchers typically utilize atom
features such as element type and hybridization, along with bond features including bond
types and distances [53]. However, these conventional features become inadequate for
fullerene modeling, as they consist exclusively of sp2-hybridized carbon atoms, resulting
in uniform node features across the structure. In this study, we developed topologically-
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informed node and edge features based on pentagon and hexagon arrangements and in-
vestigated whether these features can capture the structural nuances of fullerene systems
composed of chemically identical atoms.

As detailed in Section 2.3, all node and edge features were derived from the adjacency
matrix, whose elements reflect the connectivity between pairs of carbon atoms within a
fullerene molecule (see Figure 1). Given that the connectivity among carbon atoms varies
across different fullerene structures, each yields a distinctive adjacency matrix, thereby en-
abling a unique representation of each structure. However, when using only the adjacency
matrix, along with Gaussian-random-sampled node and edge features as inputs, the GNN
model demonstrates extremely low predictive capability (see Figure S6). These findings
indicate that, while the node and edge features are derived from the adjacency matrix, they
offer distinct structural dimensions crucial for interpreting structure—property relationships.
Specifically, the adjacency matrix records atom-pair connectivity, capturing local connec-
tivity within a fullerene molecule. In contrast, node features specify the types of three
rings each atom shares, and edge features detail the types of four rings shared by each
bond, providing semi-local structural information that cannot be effectively inferred by the
GNN model but must be incorporated through human domain expertise. This strategic in-
tegration of chemical knowledge about ring types and arrangements enables our model to
differentiate between carbon atoms that would otherwise appear indistinguishable, estab-
lishing a hierarchical representation that captures both local connectivity and higher-order
topological patterns essential for stability prediction. Our findings highlight the crucial role
of human domain knowledge in feature extraction and representation design, contributing
to the development of more robust, reliable, and accurate ML models.

The manually derived node and edge features enable the GNN-based model, FullereneNet,

to achieve superior performance in binding energy predictions, as demonstrated above.
Since both node and edge features are derived from a single adjacency matrix to capture
the semi-local chemical environment of pentagons and hexagons, we further evaluated the
necessity of incorporating both feature types. To this end, we retrained the FullereneNet
model using only node features to predict C—C binding energies across three test sets. The
corresponding performance metrics are presented in Figure 4 and Table S5. Similar to the
model trained with both node and edge features, the model utilizing only node features
demonstrates excellent extrapolation performance across four training strategies, yielding
an average R? of 0.989 and an MAE of 3 meV/atom for Cg, 0.974 and 4 meV/atom for C,
and 0.364 and 6 meV/atom for C;,—C,qo. The slightly reduced accuracy for the C;,—Cq
test set can be attributed to its binding energy distribution, which falls outside the range
of the training set (see Figure S1). These results suggest that since both node and edge
features originate from the adjacency matrix, the inclusion of edge features offers minimal
additional advantage in enhancing the extrapolation performance of GNN models when
node features are already incorporated.
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Figure 6: Extrapolation performance of FullereneNet on 12 properties in the Cgo dataset,
trained on data from Cy to Csg. X-axis represents the predicted values of various properties
obtained using FullereneNet, while the Y-axis shows the corresponding DFT-calculated
values. The labels’ meaning for each subplot are summarized in Table S6.
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One of the key challenges in the computational design of molecules and materials is the
high computational cost associated with structural optimization [54} |55]. In previous sec-
tions, we demonstrated that the FullereneNet achieves superior performance in predict-
ing fullerene stability through carefully designed topological features rather than relying
on optimized 3D Cartesian coordinates. This approach offers a substantial advantage by
eliminating the computational cost associated with geometry optimization, which can be
prohibitively expensive for high-throughput screening. To reinforce this advantage, we
evaluated FullereneNet’s predictive capability across a broader range of properties beyond
stability. We tested FullereneNet on 11 other essential properties relevant for practical ap-
plications [56], including various electronic characteristics and solubility metrics, as sum-
marized in Table S5.

First, we benchmarked the Matformer model using both unoptimized and optimized
structural data as input. It is important to note that GAP-20 is limited to predicting the
stability of fullerenes and cannot forecast other fundamental properties. As shown in Fig-
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ure S7, the Matformer model struggles to accurately capture the structure—property rela-
tionships when using unoptimized structures on 11 properties. In contrast, structure opti-
mization leads to significant improvements in both R? and MAE values. For example, in
predicting the HOMO-LUMO gap, the R? value increased from -0.64 to 0.51, while the
MAE decreased from 0.23 eV to 0.12 eV (Figures S7 and S8).

Subsequently, we retrained the FullereneNet model using both node and edge features
derived from unoptimized structures and applied the model to extrapolate predictions for
the Cqy dataset. As illustrated in Figure 5 and Figure S8, FullereneNet achieves compa-
rable predictions to Matformer with optimized structures for electronic properties while
outperforming Matformer in solubility-related properties predictions with higher average
R? values and lower MAE. Specifically, when predicting free solvation energies in water
(AG,,(water)) and 1,2-dichlorobenzene (AG,,;(ODCB)), and the 1,2-dichlorobenzene-
water partition coefficient (logP), FullereneNet achieves MAE values of 0.80 kJ/mol, 0.69
kJ/mol, and 0.06, respectively. In contrast, the Matformer model trained on optimized
structures yielded MAE values of 0.85 kJ/mol, 1.74 kJ/mol, and 0.26 (Figure S8). These
results highlight the effectiveness of our feature design in capturing the chemical character-
istics of fullerene systems, thereby enhancing the transferability of the FullereneNet model
in predicting a diverse range of fundamental properties of fullerenes.

It is important to note that while FullereneNet achieves exceptional accuracy in pre-
dicting binding energies (R? = 0.99), its performance varies across other properties. For
instance, electronic properties such as the HOMO-LUMO gap and electron affinity exhibit
moderate predictive accuracy (R? = 0.35 and 0.45, respectively), indicating that these quan-
tum mechanical properties are influenced by factors beyond the current topological descrip-
tors. This observation is consistent with established chemical principles, as electronic prop-
erties often require more sophisticated quantum mechanical descriptors to accurately cap-
ture electron density distributions and orbital interactions [S7|]. Nonetheless, FullereneNet
provides reliable predictions across multiple properties without costly geometric optimiza-
tion, marking a significant advancement in high-throughput fullerene screening. By effec-
tively balancing computational efficiency and predictive accuracy, our model enables the
rapid identification of promising candidates for further computational or experimental vali-
dation. These findings also highlight the limitations of topological descriptors in capturing
complex electronic properties while underscore the broader applicability of FullereneNet
in efficient property prediction.

Conclusion

In this work, we developed a graph neural network (GNN)-based model, FullereneNet,
to predict a wide range of fundamental properties of fullerenes using topological features
derived from unoptimized structures. By leveraging the chemical environments of pen-
tagons and hexagons within the fullerene cage, we demonstrated that these topological
features efficiently capture the local structural details of fullerenes, enabling accurate prop-
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erty predictions without the need for computationally expensive quantum chemistry op-
timizations. Our model significantly outperforms existing machine learning interatomic
potentials GAP-20 and Matformer, achieving superior accuracy in predicting C—C binding
energies across various fullerene sizes. Additionally, FullereneNet exhibits robust perfor-
mance in predicting 11 other properties, including HOMO-LUMO gaps, solvation free
energies, and partition coefficients, demonstrating its versatility and transferability. This
study provides a computationally efficient framework for high-throughput screening of
fullerene candidates, offering a valuable tool for advancing the exploration and applica-
tion of fullerenes in various fields, from optoelectronics to materials science.
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Data availability statement

The fullerene structures, including both unoptimized and optimized geometries, are
available in the Zenodo repository https://zenodo.org/records/17400608

Code availability: The Python implementation of FullereneNet is openly accessible on
GitHub for long-term availability and reproducibility. https://github.com/Liu-Group-
UF/FullereneNet and Zenodo: https://zenodo.org/records/17426461
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