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Fullerenes, carbon-based nanomaterials with spz—hybridized carbon atoms arranged in polyhedral cages,
exhibit diverse isomeric structures with promising applications in optoelectronics, solar cells, and
medicine. However, the vast number of possible fullerene isomers complicates efficient property
prediction. In this study, we introduce FullereneNet, a graph neural network-based model that predicts
fundamental properties of fullerenes using topological features derived solely from unoptimized
structures, eliminating the need for computationally expensive quantum chemistry optimizations. The
model leverages topological representations based on the chemical environments of pentagonal and
hexagonal rings, enabling efficient capture of local structural details. We show that this approach yields
superior performance in predicting the C—C binding energy for a wide range of fullerene sizes, achieving
mean absolute errors of 3 meV per atom for Cgg, 4 meV per atom for C,q, and 6 meV per atom for C;,—

Ci00. surpassing the values of the state-of-the-art machine learning interatomic potential GAP-20.
Received 31st May 2025 Additionally, the FullereneNet model tely predicts 11 oth ties, including the HOMO-
Accepted 30th October 2025 itionally, the FullereneNet model accurately predicts other properties, including the

LUMO gap and solvation free energy, demonstrating robustness and transferability across fullerene types.

DOI: 10.1039/d5dd00241a This work provides a computationally efficient framework for high-throughput screening of fullerene
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1 Introduction

Fullerenes are carbon-based nanomaterials composed of sp”
hybridized carbons with the general formula Cyg:z, (2 = 0,1 #
1)."> These carbon atoms form pentagonal and hexagonal rings
on the spherical polyhedral cages. The different arrangements
of these rings lead to numerous isomeric structures for each
fullerene size, with the number of possible isomers increasing
at a rate of O(N’) for N = 20 + 2n carbon atoms, resulting in
a diverse family of fullerenes.® Thanks to their unique spherical
cage structure and remarkable physicochemical properties,
various fullerenes have been synthesized and applied in opto-
electronics, solar cells, gas storage and separation, biology, and
medicine.*™ For example, fullerenes—Cg, C5o, and Cg;—and
their derivatives, which conform to the isolated pentagon rule
(IPR) with 12 pentagons separated by hexagons to minimize
steric strain and ensure high stability, are used as electron
acceptors in organic solar cells.">*® Pristine non-IPR fullerenes,
such as C,, and Cz, which are unstable and highly reactive due
to their condensed pentagons and increased strain, have been
successfully synthesized and isolated.'** Additionally, non-IPR
fullerenes with endohedral functionalization (encapsulation of
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candidates and establishes a foundation for future data-driven studies in fullerene chemistry.

metal and/or nonmetal atoms, e.g., SC,@Cegs and ScsN@Css) OF
exohedral functionalization (anchoring functional groups on
the cage surface, e.g., chlorinated Cs50Clyo, CoCliz, and CeoClg)
exhibit unusual electronic, magnetic, and mechanical
properties.’*™ So far, only a small portion of fullerenes has
been investigated for real-world applications through a labo-
rious trial-and-error approach. To fully harness their capabil-
ities in customizing electronic properties and functionalization
for practical uses, it is crucial to accurately and efficiently
predict the fundamental properties, including stability, elec-
tronic properties, and solubility, for high-throughput screening
of potential fullerene candidates. However, the expansive
fullerene family—with its range of sizes and numerous isomers
for each size (e.g., Cgq has 51592 isomers)—not only poses
significant challenges to mathematical enumeration and topo-
logical analysis* but also surpasses the computational capacity
of current high-performance resources for quantum chemistry
calculations.

To circumvent this computational bottleneck, early studies
explored connections between the graph-theoretical properties
of fullerenes and their physical characteristics. Schwerdtfeger
et al.’s review”' provides an extensive account of such topolog-
ical indicators, demonstrating how graph-based indices derived
from adjacency matrices can qualitatively predict properties,
such as the HOMO-LUMO gap through approaches like Hiickel
theory, and even anticipate phenomena such as Jahn-Teller
distortions. However, these traditional approaches rely heavily
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on human-derived heuristics and predefined physical approxi-
mations, which constrain their predictive power to the limits of
established chemical intuition.

Data-driven machine learning (ML) techniques have become
powerful tools for predicting properties of fullerenes and their
functionalized derivatives. For example, Garcia-Risuefio et al.?>
trained various conventional ML models to predict the highest
occupied molecular orbital (HOMO), the lowest unoccupied
molecular orbital (LUMO), and gap renormalization energies
using a dataset of 163 fullerenes and their derivatives, ranging
from C,g to Cigo. They tested numerous variables as input
representations, including density functional theory (DFT)-
calculated electronic properties, geometric features, phonon
features, bond length features, and bond order features. Liu
et al.” trained a SchNet model-based neutral network potential
(NNP), which uses molecular coordinates as input representa-
tions and a dataset of 120 k non-isomorphic C,,Cl,, chloro-
fullerene isomers generated from 500 pristine cages of C,g, Cso,
Ceo, and C,. The NNP achieved a mean absolute error (MAE) of
0.37 eV for relative energy prediction with respect to DFT
benchmarks and demonstrated excellent transferability to other
exohedral functionalized fullerenes C,,X,, (X = H, F, I, Cl, Br,
OH, CF3, CHj3) across different functional groups, number of
addends, and cage sizes. However, previous studies have relied
on DFT-calculated features or those derived from DFT-
optimized geometry for ML training, which requires signifi-
cant computational cost, making it unsuitable for high-
throughput screening of fullerene candidates. Machine
Learning Interatomic Potentials (MLIPs) have also been
employed for fullerene systems. Aghajamali and Karton®
applied the Gaussian Approximation Potential (GAP-20)* force
field to investigate the isomerization energies and thermal
stabilities of C,, fullerenes, while Karasulu et al.>® used GAP-20
to predict large carbon clusters and search for novel isomers,
overcoming the computational limits of first-principles
approaches. However, GAP-20 is limited to energy-potential
surface prediction and cannot predict other fundamental
properties which are crucial for real-world applications, such as
molecular orbital levels, HOMO-LUMO gaps, and solubilities.
More importantly, employing MLIPs requires geometry opti-
mization to determine ground-state energies, resulting in
additional computational costs.

Graph neural networks (GNNs) have gained considerable
attention in chemistry due to their exceptional performance in
molecular and materials science.”** Their effectiveness stems
from the ability to represent molecules and materials as graphs,
where nodes correspond to atoms and edges to bonds. For
example, TensorNet,** which utilizes Cartesian tensor repre-
sentations, demonstrates state-of-the-art (SOTA) performance
on the small organic molecule dataset QM9.*> MatFormer,*
incorporating a transformer architecture for learning periodic
graph representations, is considered a leading GNN model for
predicting crystal properties such as formation energy and band
gap. However, these models require optimized structures as
inputs, since precise structural information is essential for
training, significantly increasing computational costs. More-
over, fullerenes, consisting solely of carbon, present unique
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challenges due to identical node features, complicating the
design of effective GNN models for this system. To the best of
our knowledge, no existing GNN model can accurately and
efficiently predict a wide range of fundamental properties for
fullerenes of any size without relying on quantum chemistry-
optimized structures as inputs.

In this work, we developed a GNN-based model to predict the
fundamental properties of fullerenes using two sets of topo-
logical features based on the arrangement of pentagons and
hexagons over the cage surface, as proposed in our previous
study.** These topological features rely solely on carbon atom
connectivity and can be efficiently extracted from unoptimized
geometries, eliminating the need for quantum chemistry-based
geometry optimization. Our results show that these features can
effectively capture the intricate local structural environments of
carbon atoms in fullerene, enabling excellent accuracy and
extrapolation capability for predicting the C-C binding energy
beyond Cgo. Notably, our GNN model trained with a C,,—Csg
dataset achieved MAEs of 3, 4, and 6 meV/atom for test sets Cg,
Cy0, and C,,-Cy¢0, respectively, surpassing the accuracy of the
SOTA MLIP GAP-20. More profoundly, with the same topolog-
ical features as structural representations, our retrained GNN
models demonstrated high prediction accuracy for 11 other
properties, including the HOMO, LUMO, gap, solvation free
energies, and log P. Our study highlights the superior capability
of topological features for predicting various fundamental
properties of fullerenes with excellent accuracy and trans-
ferability. Our study lays a fundamental basis for future data-
driven research in fullerene chemistry.

2 Methodology
2.1 Dataset construction

In this study, we constructed three datasets for model training
and testing. The C,,-Cqo dataset, consisting of 5770 structures,
was adopted from our previous work.** This dataset provides
a complete set of C,,-Cgo structures, with properties such as the
HOMO-LUMO gap, formation energy, and IP-EA computed using
DFT (with the same methods applied in this work). The C,,
dataset, comprising 8149 isomers, was generated using the
FULLERENE program (version 4.5) and subsequently optimized
with a harmonic oscillator approximation-based force field,*
which provides a good compromise between computational
efficiency and accuracy in reproducing fullerene geometries. The
C;,—-Cy00 dataset (except Cgg) with 1171 IPR-conforming isomers
was obtained from the Fullerene Library created by M. Yoshida.*
Tables S1 and S2 list the number of possible isomers, C-C bonds,
and hexagonal rings for each fullerene size in each set.

2.2 Computational details

We applied the Gaussian 16 package®” for all the DFT calcula-
tions. We used the B3LYP hybrid functional®**® with D3
dispersion correction®* and the 6-31G* basis set for geometry
optimization. The maximum force threshold was 0.02 eV A™".
Then, we conducted a single-point calculation in the singlet
state with the B3LYP functional and 6-311G* basis set to

© 2025 The Author(s). Published by the Royal Society of Chemistry
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compute energies and electronic properties of the isomers. The
solvation energies were calculated using the Solvation Model
based on Density (SMD).** The dielectric constants for water
and ODCB solvents were set at 78 and 10, respectively.

Geometry optimization with the GAP-20 potential was per-
formed using the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) package,* compiled with the
Quantum mechanics and Interatomic Potentials (QUIP)
library**** including GAP routines. Geometry relaxation and
energy minimization were conducted with the conjugate
gradient method. The convergence criteria were set to 10 eV
for the total energy and 10~ ° eV A™" for the atomic forces.

2.3 Feature space construction

We used atom and bond representations from our previous
work® as node and edge features for GNN model training. In
fullerene molecules, each carbon atom is fused to three adja-
cent polygonal rings, and each C-C bond is surrounded by four
polygonal rings, either pentagons or hexagons. Atom features
categorize carbon atoms into four types {v;|i = 0, 1, 2, 3}, based
on the number of adjacent pentagons (ranging from 0 to 3). The
node feature is one-hot encoded with four digits to represent
the local geometry of each carbon atom. Similarly, bond
features categorize C-C bonds into nine types {e]i = 0, ..., 8},
based on the number and arrangement of the surrounding
polygonal rings. The edge feature is one-hot encoded with nine
digits to indicate the local geometry of each C-C bond. The
detailed atom and bond features are shown in Fig. 1.

Beyond the canonical fullerenes studied in this work, our
methodology may also be applied to non-canonical fullerenes
that include other polygons such as heptagons and octagons.
While the present study focused exclusively on canonical
fullerenes, we propose an extension of the current methodology
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to address non-canonical cases (see Section S1), which will be
carefully investigated in future work.

2.4 GNN model architecture

Here, we present our model named FullereneNet, inspired by
the transformer-based architecture utilized in MatFormer®
(model details are in Section S2). This model is designed to
eliminate the need for quantum mechanical optimization of
fullerene structures, as illustrated in Fig. 2. We define the
molecular graph as G = (V, E), where V and E represent the set of
atoms and bonds in a molecule, respectively. Let v; € V denote
the node feature of atom 7, and ¢;; € E represent the edge feature
between atoms i and its neighbor atom j. The overall model
architecture consists of an embedding layer, multiple convolu-
tional layers, and a readout function. The embedding layer
projects the atomic feature v, to a higher-dimensional vector,
denoted as %;. The convolutional layers are the core of the GNN
model, where message passing occurs.***” This process is
essential for capturing interactions between atoms. The readout
function aggregates the updated atomic representations into
a molecular-level feature, which is then used for property
prediction via a pooling function.

Our proposed message passing scheme is composed of three
steps: attention score computation, attention coefficient
normalization, and message computation with node informa-
tion updating. In the first step, query Q;, key K}, and value V; are
calculated following the regular attention mechanism.*® These
vectors serve to evaluate how relevant each neighboring node is
to the node being updated. By comparing the query of a node
with the keys of its neighbors, the model calculates attention
scores that determine the influence each neighbor should have.
Specifically,

4 types of node feature

ap
&
&

9 types of edge feature

Fig.1 Feature construction. (a) Taking C60 as an example, each atom in the fullerene is assigned a unique sequence number. (b) An adjacency
matrix is generated, where entries 1 indicate a connection between atoms and entries O indicate no connection. (c) Topological node and edge

features are derived from the adjacency matrix.
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Fig. 2 The detailed architecture of FullereneNet.

1)

where LNg, LNg, LNy, and LNp denote the linear trans-
formations to compute query, key, value, and edge embedding.
Then, K; and V; are obtained by summing K; or V; with Ej,
respectively. Next, we compute the attention score using both
additive and multiplicative components. The additive attention
computes attention scores by processing the concatenation of
Qi K}f, and E; through two separate multi-layer perceptrons
(MLPs) with different activation functions:

Q! = MLPys 1 (QIIK1Ey ). @
Q4> = MLPyo> Q1K |15, ) (3)
O(g-dd — a;dd 1 + a';_dd 2’ (4)

where || denotes concatenation, MLP,qq4 consists of linear layers
with an activation function (e.g., tanh, softplus, etc.), and a?}dd is
the additive attention score. Another part is multiplicative
attention, which is computed by using the scaled Hadamard

product:

r_x_lult — Qi © I<]j
’ vd

where © represents the Hadamard product and d is the
dimensionality of the key vectors. The overall attention score a;;
is obtained by summing the ! and /" components fol-

lowed by an activation function.

(5)

Digital Discovery

After obtaining the attention score «;;, we then move to the
second part. A non-linear activation function, such as SiLU, is
first applied to the combined attention scores ;. To ensure that
the attention coefficients are properly normalized, a softmax
function is applied over the neighbors of atom i:

a;; = softmax (o) = o) (6)

D ke N () exp(a)
where N (i) denotes the set of neighbor nodes of atom 1.
Finally, in the third part, messages from neighbors are
aggregated and updated to the original atom representations.
The messages from neighbors are first computed by weighting
the value vectors VJ with the attention coefficients «;; using the
Hadamard product:

my = 0a; OV @)

The processed messages are then passed through a layer
normalization function. Subsequently, the messages from each
node and attention head are aggregated using a summation
method:

=" ®

jeNi h

The last step is the node update with a residual connection:
J; = LNy () + o(BN(m,)) (9)

where LN;;, denotes linear transformations, ¢ is an activation
function, and BN indicates batch normalization. The updated
node representation is obtained by adding the original node
features with the message m;.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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MatFormer introduces an effective transformer variant
tailored for crystal graph learning. However, our proposed
model, FullereneNet, diverges from MatFormer in terms of
feature construction and message passing schemes. While
MatFormer leverages elemental diversity to extract a broad
range of atomic features, it struggles with fullerenes, which
consist solely of carbon and exhibit uniform atomic properties.
To overcome this limitation, we design topological atomic
features that distinguish pentagon and hexagon arrangements
around carbon atoms, effectively capturing structural variations
and enhancing representation. Additionally, MatFormer takes
a DFT-optimized structure to derive bond distances and angles,
whereas FullereneNet, with its bespoke feature design, bypasses
the need for geometry optimization via ab initio methods as
input, significantly reducing computational costs. Regarding
message passing, MatFormer combines multiple information
streams through a complex triple concatenation process. In
comparison, FullereneNet employs a streamlined method that
separately processes atomic interactions through two comple-
mentary pathways—one capturing linear relationships and
another capturing non-linear relationships between connected
atoms. This dual-pathway design eliminates redundant
computational steps while better preserving the essential
topological information that determines fullerene stability.
Given the uniform node degree (ie., three) in fullerenes,
FullereneNet does not encounter the challenge to distinguish
nodes with different degrees as MatFormer.*® Instead, it bene-
fits from applying softmax normalization, which enhances
training stability and model focus. The hyperparameter search
range for FullereneNet is summarized in Table S3.

2.5 Model training strategy for extrapolation

In this study, we aim to develop a GNN model with strong
extrapolation capabilities for predicting the stability of larger
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fullerenes. To achieve this, we trained and validated our model
on a dataset of small fullerenes ranging from C,, to Csg,
including 3958 distinct isomers. Three larger fullerene groups
were utilized as test sets: the complete Cq, dataset containing
1812 isomers, a C,, dataset consisting of 100 randomly selected
non-IPR isomers from a total of 8149 entries, and a C;,-C;o
dataset comprising 1171 IPR-conforming isomers. The random
selection of C,, isomers ensures unbiased sampling across the
energy landscape while avoiding the prohibitive computational
cost of evaluating all 8149 isomers, while the curated C,,-Cjgo
dataset provides validation against established structural
benchmarks. Moreover, the inclusion of both IPR and non-IPR
fullerenes in the test sets allows us to demonstrate the model's
reliable extrapolation capability.

Previous studies*>* have shown that different data-splitting
strategies can enhance a model's extrapolation ability. To
explore their impact on improving the robustness and effec-
tiveness of extrapolation, we applied four distinct strategies to
partition the training and validation sets (Fig. 3).

2.5.1 Leave-One-Group-Out (LOGO). Following the
approach described by Zhao et al.,> the dataset was partitioned
based on the fullerene cage size (i.e., total number of carbon
atoms). For instance, Csg was used as the validation set, while
the fullerenes ranging from C,, to Cse constituted the training
set. By rotating the validation set across fullerene sizes from C,,
to Csg, five GNN models were generated. Notably, C,,—-Cso
fullerenes were grouped as a single validation set since their
isomer counts are relatively small, and their combined total is
comparable to the number of isomers found in each of the
larger cages (Cs,, Csa, Cs6, and Csg).

2.5.2 Leave-One-Cluster-Out (LOCO). In contrast to LOGO,
where the dataset is categorized by fullerene cage size, the
LOCO method proposed by Meredig et al* employs the k-
means clustering algorithm® to cluster the data into five
distinct groups. Each cluster was sequentially used as the

a. LOGO b. LOCO
Train Valid Train Valid
I [ =l E [cist 182 cis3 ciss [ cis5
I [IC52]l C54 C58 N C56 | mean| [T [ T 7] 1 | mean
: : : :
[I652][ c54 | C56 | C58 | | [BEI82] | cis3|| cls4| | I |
Extrapolation
C. 5-fold CV Cs0Cioo d. Random split
Valid Train Train Valid
L T T T T 1 I I Y |
LT T T T 7 [ mean I [1 ] | mean
[ ] [ ]
. .
C T T T T 7] 1T 1T [ |

Fig. 3 Four different training strategies for extrapolation, including Leave-One-Group-Out (LOGO), Leave-One-Cluster-Out (LOCO), Five-fold

Cross-Validation (5-fold CV), and random split, respectively.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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validation set, while the remaining clusters were used for
training, producing five GNN models.

2.5.3 Five-fold cross-validation (5-fold CV). The C,;—Css
dataset was divided into training and validation sets using 5-
fold cross-validation, resulting in the training of five GNN
models.

2.5.4 Random split. The C,,-Csg dataset was randomly
partitioned into training and validation sets with a 4: 1 ratio.
Five GNN models were trained, each using a different random
seed.

The extrapolation performance of each strategy was evalu-
ated by averaging the prediction outcomes of the corresponding
five GNN models across the three test sets: the Cgg, C5o, and C;,-
C100 datasets.

3 Results and discussion
3.1 Stability prediction

We evaluated the extrapolation performance of FullereneNet
trained using the four strategies discussed in Section 2.5. The
performance metrics for predicting the binding energies of
fullerene in three test sets—Cgy, C;9, and C,,—Cygo—are
summarized in Table 1. For each strategy, the final prediction
value was obtained by averaging the prediction values of the five
corresponding GNN models on the test set. As shown in Table 1,
all FullereneNet models trained on the C,,-Csg dataset, irre-
spective of the training strategies employed, consistently
demonstrate high accuracy in predicting binding energies of
the Cgp, Cs9, and C;,—Cy¢ datasets, as indicated by MAE and
root mean squared error (RMSE) values. Notably, these models
achieve small MAE values ranging from 3 meV per atom to 7
meV per atom.

The strong extrapolation capabilities of FullereneNet high-
light the effectiveness of atom and bond features as input
representations for predicting fullerene's stability. Based on our
results, the four different data split strategies did not exhibit
a statistically significant difference in their predictive perfor-
mance for large-sized fullerenes. Furthermore, the prediction
error for the C;,-Cy test set was consistently larger than that

Table 1 Performance metrics (R%, MAE, and RMSE) across fullerene
datasets using four different validation methods, including Leave-
One-Group-Out (LOGO), Leave-One-Cluster-Out (LOCO), Five-fold
Cross-Validation (5-fold CV), and random split, respectively

Dataset Method R? MAE RMSE
Ceo LOGO 0.988 0.003 0.004
LOCO 0.988 0.003 0.004
5-Fold CV 0.989 0.003 0.004
Random split 0.989 0.003 0.003
C5o (non-IPR) LOGO 0.969 0.004 0.005
LOCO 0.972 0.004 0.005
5-Fold CV 0.973 0.004 0.005
Random split 0.974 0.004 0.005
C75-Ci00 (IPR) LOGO 0.304 0.007 0.009
LOCO 0.431 0.006 0.008
5-Fold CV 0.391 0.006 0.008
Random split 0.563 0.005 0.007
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for the other two test sets, regardless of the training strategy
employed. For instance, using the random split method, the
FullereneNet model achieved a coefficient of determination (R?)
of 0.563 and an MAE of 5 meV per atom for C,,—C1o, compared
to 0.989 and 3 meV per atom for Ce, and 0.974 and 4 meV per
atom for C;,. This slightly lower accuracy for the C,,-Cy test
set can be attributed to the fact that the binding energy distri-
bution of the C;,-Cy set is markedly different from that of the
training set (C,0—Css), as illustrated in Fig. S1.

As detailed in Section 2, FullereneNet incorporates node and
edge features extracted from unoptimized fullerene structures
as input. In contrast, MatFormer, the predecessor of Fuller-
eneNet, relies on atomic attributes such as atomic volume,
valence electron count, and bond distances calculated from
optimized Cartesian coordinates. However, since fullerene
consists exclusively of carbon atoms, these conventional atomic
descriptors become uniform across the structure, limiting their
discriminative power for property prediction. Herein, we eval-
uated the performance of MatFormer, trained on the bond
distance obtained from atomic coordinates of unoptimized
fullerene structures, against FullereneNet in predicting the
binding energies of fullerenes ranging from Cgy to Cigo. AS
shown in Fig. S2, MatFormer performs poorly with unoptimized
structures, whereas optimizing fullerene structures significantly
improves the prediction accuracy. For example, in the Cy,
dataset, utilizing optimized structures to train MatFormer
increases the R* value from 0.542 to 0.977 and reduces the MAE
from 19 meV per atom to 4 meV per atom, as illustrated in
Fig. S3.

The state-of-the-art MLIP, GAP-20, has been developed to
accurately and efficiently predict isomerization energies, assess
thermal stability, and identify new carbon clusters and fullerene
isomers.”* We evaluated the performance of GAP-20 on DTF
optimized structures by predicting the relative binding energies
for the Cg, Co, and C;,-C;oo datasets, using the binding energy
of Cgp-isomer-1 as the reference (Fig. S4). We emphasize that
GAP-20 exhibits excellent accuracy in geometry optimization
when benchmarked against the DFT method. For the Cgq
dataset, we confirmed strong correlations between relative
binding energies calculated using GAP-20 with both DFT-
optimized and GAP-20-optimized structures, achieving an
impressive R* value of 0.97 and a low MAE of 5 meV per atom
(Fig. S5), consistent with previous studies.*

Fig. 4 presents a comprehensive comparison of binding
energy prediction performance among FullereneNet (using
unoptimized structures), MatFormer, and GAP-20 (both using
optimized structures). Our results demonstrate that Fullerene-
Net consistently outperforms the other two models across all
three datasets. MatFormer exhibits poor performance on the
C;,—Cigo test sets, achieving an MAE of 0.020 eV per atom.
Similarly, GAP-20 shows suboptimal performance on the Cg,
test set, with an MAE of 0.016 eV per atom. Detailed MAE and R*
values for all methods are summarized in Table S4.

Besides the accuracy, one significant benefit of our model is
that it can avoid the huge computational cost associated with
computing large-size fullerenes. Take one C,,, isomer*® as an
example, which represents a computationally challenging system

© 2025 The Author(s). Published by the Royal Society of Chemistry
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against DFT values, using Cgo-isomer-1 as the reference. (a) Performance of the three models on the Cgq test set. (b) Performance on the Cyq test

set. (c) Performance on the C;,—Cyqg test set.

due to its substantial size. To quantify the computational
advantages, we performed a detailed cost analysis comparing
FullereneNet with DFT and MLIP approaches. The DFT calcula-
tions (using Gaussian 16*” on 48 CPU cores), geometry optimi-
zation with B3LYP/6-31G* required 33 hours 56 minutes of wall
time, followed by an additional 6 hours 4 minutes for single-
point energy calculations with B3LYP/6-311G*, totaling approxi-
mately 40 hours of computation time. In contrast, GAP-20
calculation (using LAMMPS with convergence criteria of
10~* eV for total energy and 10°® eV A™' for atomic forces)
completed geometry optimization in approximately 1 minute on
a single CPU core. Remarkably, FullereneNet prediction required
less than 5 seconds with one NVIDIA L4 GPU, representing
a tremendous speedup compared to DFT calculations. This
dramatic computational acceleration arises from FullereneNet's
ability to directly predict binding energies based on the
arrangement of polygonal rings, eliminating the need to compute
energies from optimized geometry using DFT or MLIP.

In summary, our results demonstrate that FullereneNet
effectively leverages topological features from unoptimized
structures to accurately predict binding energies, showcasing
strong extrapolation capabilities for larger fullerenes. In
contrast, MatFormer and GAP-20 rely heavily on optimized
structures for accurate prediction. Given GAP-20's exceptional
ability to generate optimized geometries closely matching DFT
results, integrating it with FullereneNet could enhance predic-
tions of additional properties, such as ionization potential and
electron affinity. This combined approach will be explored
further in Section 3.3.

3.2 Feature analysis

Feature engineering remains a fundamental challenge in
materials and molecules discovery, where the choice of struc-
tural representations significantly impacts model performance.
For conventional GNN models designed for molecules,
researchers typically utilize atom features such as element type
and hybridization, along with bond features including bond
types and distances.*® However, these conventional features
become inadequate for fullerene modeling, as they consist
exclusively of sp*hybridized carbon atoms, resulting in
uniform node features across the structure. In this study, we

© 2025 The Author(s). Published by the Royal Society of Chemistry

developed topologically informed node and edge features based
on pentagon and hexagon arrangements and investigated
whether these features can capture the structural nuances of
fullerene systems composed of chemically identical atoms.

As detailed in Section 2.3, all node and edge features were
derived from the adjacency matrix, whose elements reflect the
connectivity between pairs of carbon atoms within a fullerene
molecule (see Fig. 1). Given that the connectivity among carbon
atoms varies across different fullerene structures, each yields
a distinctive adjacency matrix, thereby enabling a unique
representation of each structure. However, when using only the
adjacency matrix, along with Gaussian-random-sampled node
and edge features as inputs, the GNN model demonstrates
extremely low predictive capability (see Fig. S6). These findings
indicate that, while the node and edge features are derived from
the adjacency matrix, they offer distinct structural dimensions
crucial for interpreting structure-property relationships.
Specifically, the adjacency matrix records atom-pair connec-
tivity, capturing local connectivity within a fullerene molecule.
In contrast, node features specify the types of three rings each
atom shares, and edge features detail the types of four rings
shared by each bond, providing semi-local structural informa-
tion that cannot be effectively inferred by the GNN model but
must be incorporated through human domain expertise. This
strategic integration of chemical knowledge about ring types
and arrangements enables our model to differentiate between
carbon atoms that would otherwise appear indistinguishable,
establishing a hierarchical representation that captures both
local connectivity and higher-order topological patterns essen-
tial for stability prediction. Our findings highlight the crucial
role of human domain knowledge in feature extraction and
representation design, contributing to the development of more
robust, reliable, and accurate ML models.

The manually derived node and edge features enable the
GNN-based model, FullereneNet, to achieve superior perfor-
mance in binding energy predictions, as demonstrated above.
Since both node and edge features are derived from a single
adjacency matrix to capture the semi-local chemical environ-
ment of pentagons and hexagons, we further evaluated the
necessity of incorporating both feature types. To this end, we
retrained the FullereneNet model using only node features to
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predict C-C binding energies across three test sets. The corre-
sponding performance metrics are presented in Fig. 5 and Table
S5. Similar to the model trained with both node and edge
features, the model utilizing only node features demonstrates
excellent extrapolation performance across four training strat-
egies, yielding an average R” of 0.989 and an MAE of 3 meV per
atom for Cg(, 0.974 and 4 meV per atom for C,,, and 0.364 and 6
meV per atom for C;,-Cygo. The slightly reduced accuracy for
the C,,—Cyqo test set can be attributed to its binding energy
distribution, which falls outside the range of the training set
(see Fig. S1). These results suggest that since both node and
edge features originate from the adjacency matrix, the inclusion
of edge features offers minimal additional advantage in
enhancing the extrapolation performance of GNN models when
node features are already incorporated.

3.3 Further discussion

One of the key challenges in the computational design of
molecules and materials is the high computational cost asso-
ciated with structural optimization.*** In previous sections, we
demonstrated that the FullereneNet achieves superior perfor-
mance in predicting fullerene stability through -carefully
designed topological features rather than relying on optimized
3D Cartesian coordinates. This approach offers a substantial
advantage by eliminating the computational cost associated
with geometry optimization, which can be prohibitively expen-
sive for high-throughput screening. To reinforce this advantage,
we evaluated FullereneNet's predictive capability across
a broader range of properties beyond stability. We tested
FullereneNet on 11 other essential properties relevant for
practical applications,® including various electronic character-
istics and solubility metrics, as summarized in Table S6.
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First, we benchmarked the MatFormer model using both
unoptimized and optimized structural data as input. It is
important to note that GAP-20 is limited to predicting the
stability of fullerenes and cannot forecast other fundamental
properties. As shown in Fig. S7, the MatFormer model struggles
to accurately capture the structure-property relationships when
using unoptimized structures on 11 properties. In contrast,
structure optimization leads to significant improvements in
both R* and MAE values. For example, in predicting the HOMO-
LUMO gap, the R* value increased from —0.64 to 0.51, while the
MAE decreased from 0.23 eV to 0.12 eV (Fig. S7 and S8).

Subsequently, we retrained the FullereneNet model using
both node and edge features derived from unoptimized struc-
tures and applied the model to extrapolate predictions for the
Ceo dataset. As illustrated in Fig. 6 and S8, FullereneNet ach-
ieves comparable predictions to MatFormer with optimized
structures for electronic properties while outperforming Mat-
Former in solubility-related property predictions with higher
average R> and lower MAE values. Specifically, when predicting
free solvation energies in water (AGsol(water)) and 1,2-dichlo-
robenzene (AGg,(ODCB)), and the 1,2-dichlorobenzene-water
partition coefficient (log P), FullereneNet achieves MAE values
of 0.80 k] mol™', 0.69 k] mol™', and 0.06, respectively. In
contrast, the MatFormer model trained on optimized structures
yielded MAE values of 0.85 k] mol ", 1.74 k] mol*, and 0.26
(Fig. S8). These results highlight the effectiveness of our feature
design in capturing the chemical characteristics of fullerene
systems, thereby enhancing the transferability of the Fuller-
eneNet model in predicting a diverse range of fundamental
properties of fullerenes.

It is important to note that while FullereneNet achieves
exceptional accuracy in predicting binding energies (R* = 0.99),

[ Linear Model
0.030| = FullereneNet with node and edge features
[ FullereneNet with only node features
0.025
0.022
0.020
i1}
<
= 0.015
0.010 0.009
0.006
0.005
0.005 0.004  0.004
0.003 0.003
0.000 C60 C70 C72-C100
(non-IPR) (IPR)

Fig.5 Comparison of binding energy prediction performance across diverse fullerene datasets. Three models are evaluated: a linear regression
model (with notably high error values, shown in red), FullereneNet utilizing both node and edge features, and FullereneNet employing only node
features. Inset molecular structures depict three representative fullerenes from our dataset: Cgg isomer 1 (left), C;o isomer 11 (center), and C,,

isomer 1 (right).
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meanings for each subplot are summarized in Table S6.

its performance varies across other properties. For instance,
electronic properties such as the HOMO-LUMO gap and elec-
tron affinity exhibit moderate predictive accuracy (R* = 0.35 and
0.45, respectively), indicating that these quantum mechanical
properties are influenced by factors beyond the current topo-
logical descriptors. This observation is consistent with estab-
lished chemical principles, as electronic properties often
require more sophisticated quantum mechanical descriptors to
accurately capture electron density distributions and orbital
interactions.”” Nonetheless, FullereneNet provides reliable
predictions across multiple properties without costly geometric
optimization, marking a significant advancement in high-
throughput fullerene screening. By effectively balancing
computational efficiency and predictive accuracy, our model
enables the rapid identification of promising candidates for
further computational or experimental validation. These find-
ings also highlight the limitations of topological descriptors in
capturing complex electronic properties while underscore the
broader applicability of FullereneNet in efficient property
prediction.

4 Conclusion

In this work, we developed a graph neural network (GNN)-based
model, FullereneNet, to predict a wide range of fundamental
properties of fullerenes using topological features derived from
unoptimized structures. By leveraging the chemical environ-
ments of pentagons and hexagons within the fullerene cage, we
demonstrated that these topological features efficiently capture
the local structural details of fullerenes, enabling accurate

© 2025 The Author(s). Published by the Royal Society of Chemistry

property predictions without the need for computationally
expensive quantum chemistry optimizations. Our model
significantly outperforms existing machine learning inter-
atomic potentials GAP-20 and MatFormer, achieving superior
accuracy in predicting C-C binding energies across various
fullerene sizes. Additionally, FullereneNet exhibits robust
performance in predicting 11 other properties, including
HOMO-LUMO gaps, solvation free energies, and partition
coefficients, demonstrating its versatility and transferability.
This study provides a computationally efficient framework for
high-throughput screening of fullerene candidates, offering
a valuable tool for advancing the exploration and application of
fullerenes in various fields, from optoelectronics to materials
science.
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