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diction of reaction barrier heights
with on-the-fly prediction of transition states

Johannes Karwounopoulos, Jasper De Landsheere, Leonard Galustian,
Tobias Jechtl and Esther Heid *

The accurate prediction of reaction barrier heights is crucial for understanding chemical reactivity and

guiding reaction design. Recent advances in machine learning (ML) models, particularly graph neural

networks, have shown great promise in capturing complex chemical interactions. Here, directed

message-passing neural networks (D-MPNNs) on graph overlays of the reactant and product structures

were shown to provide promising accuracies for reaction property prediction. They rely solely on

molecular graph changes as input and thus require no additional information during inference. However,

the reaction barrier height intrinsically depends on the conformations of the reactants, transition state,

and products, which are not taken into account in standard D-MPNNs. In this work, we present a hybrid

approach where we combine the power of D-MPNNs predicting barrier heights with generative models

predicting transition state geometries on-the-fly for organic reactions. The resulting model thus only

requires two-dimensional graph information as input, while internally leveraging three-dimensional

information to increase accuracy. We furthermore evaluate the influence of additional physical features

on D-MPNN models of reaction barrier heights, where we find that additional features only marginally

enhance predictive accuracy and are especially helpful for small datasets. In contrast, our hybrid graph/

coordinate approach reduces the error of barrier height predictions for the two investigated datasets

RDB7 and RGD1.
1 Introduction

In computational chemistry, accurate knowledge of reaction
barrier heights (or activation energies) is crucial for under-
standing chemical reactions.1 However, obtaining these
barriers computationally requires high-level quantum
mechanical (QM) calculations, which are computationally
expensive and scale poorly with system size. Recent advances in
machine learning offer a promising alternative: graph neural
networks (GNNs) trained on QM-calculated data can rapidly
predict reaction barrier heights at a fraction of the computa-
tional cost while maintaining predictive accuracy comparable to
high-level quantummethods.2–6 To enable such predictions, the
choice of representation plays a central role in how well
a machine learning model can capture the underlying
chemistry.

For example, Grambow et al.7 adapted a directed message
passing neural network (D-MPNN) originally implemented for
molecular property prediction8,9 to encode separate graph
representations of reactants and products, and to predict reac-
tion barrier heights based on the differences in encodings for
each atom. However, its good performance was later shown to
A-1060 Vienna, Austria. E-mail: esther.

08–3216
arise from data leakage to the test set, whereas the actual
predictive performance on new datapoints was rather poor.10

Heid and Green10 signicantly improved on the accuracy of
barrier height predictions using D-MPNNs by representing
reactions as a single graph, the condensed graph of reaction
(CGR), which is constructed by superimposing reactant and
product graphs. This model was later rened using extensive
pretraining and reaction enthalpies as additional features, as
well as additional atom and bond features such as ring sizes.11

Subsequent studies focused on integrating further chemi-
cally meaningful descriptors, both expert-curated or computa-
tionally derived, to better capture reaction-specic
characteristics like electron distribution, transition state
geometry, or local reactivity environments.12–16 In line with this
trend, Stuyver and Coley17 used a hybrid QM-augmented model
architecture that rst predicts a set of atom and bond level
descriptors derived from density functional theory (DFT)
calculations and integrated them into a model to predict acti-
vation energies.17 Vargas et al.18 enhanced predictive accuracy by
incorporating electronic density-based descriptors derived from
the quantum theory of atoms in molecules (QTAIM), leading to
a substantial increase in accuracy.19 In a related approach,
Garćıa-Andrade et al.20 augmented their model with the full set
of molecular descriptors available from RDKit. However,
a feature importance analysis indicated that the majority of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Left: CGR as a graph overlay of reactants and products, showing
the condensed feature vector for each atom and bond in blue; and
additional features which can be attached to the initial CGR features by
a simple concatenation in orange. Right: descriptors are calculated for
the TS structures and concatenated with the original feature vector.
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these features contributed little to the model's performance.20

Other approach combined low-cost semi-empirical quantum
mechanical (SQM) methods with machine learning methods,
where the SQM calculations were used to generate geometries
and energies, which were then integrated into the model.4,21–23

While the above approaches mainly rely on 2D molecular
representations, it is important to recognise that reaction pathways
are inherently three-dimensional. Different spatial arrangements
can lead to varying barrier heights, meaning that 2D-basedmodels
are ultimately limited by aleatoric uncertainty introduced by
unaccounted 3D structural information. Recent work has explored
the integration of three-dimensional structural information
directly into graph neural network (GNN) architectures.24,25 For
reaction barrier height predictions, van Gerwen et al.26 developed
3DReact, a model that incorporates the spatial information of
reactants and products within a GNN framework.26

Yet the relevant information lies in the transition state (TS),
not the reactant and product information. The TS represents the
highest energy structure along the reaction pathway at the top of
the energy barrier between reactants and products. Thus, it is
crucial for determining the activation energy, which is calculated
from the energy difference between the reactant and the TS.
However, incorporating 3D information necessitates access to
accurate molecular and TS geometries, which poses a signicant
limitation as they need to be provided from QM calculations.
Once a TS geometry is obtained computationally, its energy is
also known, making a machine-learning-based prediction of the
barrier height obsolete. However, TS geometries themselves can
be predicted using neural networks,27,28 providing a basis for
calculating activation energies from the energy difference
between the TS structure and the reactant directly. Kim et al.29

recently introduced TSDiff, a generative diffusion model that
predicts TS geometries directly from SMILES strings. By
modeling the distribution of TS structures through a stochastic
diffusion process, TSDiff can generate geometries without the
need for precomputed 3D information of the reactant or product.
Galustian et al.30 further proposed GoFlow, which combines ow
matching with E(3)-equivariant neural networks to generate
coordinates. Similarly to TSDiff, GoFlow only needs 2Dmolecular
graphs as input, but is signicantly more efficient than a diffu-
sion-based model. These developments open the possibility of
generating high-quality 3D structural data on-the-y. In this
work, we use the positional information generated by TSDiff and
GoFlow and integrate it into a D-MPNN framework to predict
accurate activation barriers, relying only on 2D representations
while implicitly capturing critical 3D structural insights.
2 Methods

All our experiments are conducted using ChemTorch,31 which is
an open-source framework for developing and benchmarking
chemical reaction property prediction models.
2.1 Feature vectors in the condensed graph of reaction

In the framework of graph neural networks, molecules are
described as graphs, where nodes V correspond to atoms and
© 2025 The Author(s). Published by the Royal Society of Chemistry
edges E represent chemical bonds. For each atom (node) v, atom
feature vectors {xvrv ˛ V} are computed using basic RDKit
properties, namely the atomic number, the number of bonds
linked to each atom, the formal charge, the hybridization, the
number of hydrogens, the aromaticity of the atom, as well as the
atomic mass (divided by 100 for scaling). For each bond (edge)
between the atoms v and w a feature vector {evwr{v, w} ˛ E} is
constructed from the bond order (single, double, triple or
aromatic), whether the bond is conjugated and whether the
bond is part of a ring system and if so of which ring size. These
default features are used as suggested in the chemprop imple-
mentation.9 To create directed edges, atom features are then
concatenated with bond features via evw= cat(xv, evw). To encode
a reaction, the graphs of the reactants and products are then
superimposed into a single reaction graph, the CGR
(Fig. 1)10,32,33 and the atom and bond features are concatenated.
This approach ensures that modications to bond connectivity,
such as bond formation, are explicitly reected in the graph
structure and the bond features. For example, if a bond between
atoms A and B is present in the reactant but absent in the
product, the encoding retains this distinction. In this work, we
include additional features into the CGR framework as either
atom, bond, or molecular features by concatenating them with
the original CGR feature vectors, as shown in Fig. 1, top le.

2.2 Directed message-passing neural network

The atom and bond features, as introduced in the previous
section, are processed by a D-MPNN.8,9 Hidden directed edge
features hvw

0 with dimensionality h are created by passing the
directed edge features evw through a linear layer. These initial
directed edge features are then iteratively updated using
message passing over T steps:

hvw
tþ1 ¼ s

 
hvw

0 þWh

X
k˛fN ðvÞ\wg

htkv

!
(1)
Digital Discovery, 2025, 4, 3208–3216 | 3209
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Here, Wh ˛ Rh×h is a learnable weight matrix, and N ðvÞ\w
denotes the set of neighbours of node v excluding node w. The
summation aggregates messages from the local incoming
edges. Aer the nal message passing step, the directed edge
hidden states hTvw are aggregated to obtain atom-level embed-
dings hv using:

hv = s(W0q) (2)

where q is the concatenation of the initial atom features xv and
the sum of incoming directed edge hidden states. Once the
atomic embeddings hv are computed for all atoms, they are
aggregated into a single molecular representation hm using
a pooling function:

hm ¼
X
v˛V

hv (3)

Finally, activation energies are predicted from the molecular
embeddings hm using a feed-forward neural network (FFN).
2.3 Prediction of 2D features

Li et al.34 recently introduced a D-MPNN to predict atom, bond,
and molecular descriptors trained on quantum mechanical
information, which we refer to as machine-learned quantum
mechanical (ml-QM) descriptors. We integrate the ml-QM
descriptors into our reaction D-MPNN as additional features
(orange vectors in Fig. 1).

For constructing their model, Li et al.34 computed 37
quantum mechanical (QM) descriptors across atomic, bond,
and molecular levels for a large dataset. The 37 descriptors
include 13 atom-level properties (e.g., NPA charges, Parr func-
tions, NMR shielding constants, valence orbital occupancies), 4
bond-level features (e.g., bond order, bond length, bonding
electrons, natural ionicity), and 20 molecular-level descriptors
(e.g., energy gaps, ionization potential, electron affinity, dipole
and quadrupole moments), as detailed in Table S2.

To support on-the-y inference of ml-QM features, Li et al.34

provide three specialized models: one model focuses on atom
and bond properties, another on molecular dipole and quad-
rupole moment predictions, and the third on energy gaps,
ionisation potential, and electron affinity.34 We utilized the
pretrained models as provided in the literature.34 As these
models were specically designed to predict features for indi-
vidual molecules, we split the reaction SMILES into reactant
and product components and computed the corresponding ml-
QM properties for each part separately.
2.4 3D features

To incorporate 3D features into graph-based models, we need to
encode 3D local environments around each atom into vectors
(described in Section 2.4.1), embed them into the D-MPNN
(described in Section 2.4.2), and learn the actual 3D coordi-
nates using a generative model (described in Section 2.4.3).

2.4.1 Different descriptors for positional encoding. Coor-
dinate information was integrated into the model using local
3210 | Digital Discovery, 2025, 4, 3208–3216
descriptors commonly employed in machine-learned force
elds, where capturing 3D structural information is a key
aspect.35 For each compound in a reaction (reactant, transition
state, and product), we calculated the respective descriptor
vector and concatenated them. We evaluated four widely used
descriptors. First, we used two simpler approaches of xed
descriptors which are obtained from an analytic function: the
SOAP descriptor36 which encodes coordinates of molecules
through a smooth overlap of atomic positions (SOAP) vector and
the Atomic Environment Vector (AEV) as used in the ANI and
AIMNet models which uses modied Behler and Parrinello
symmetry functions.37 We then explored two learned descrip-
tors, extracted from the hidden atomic representations of
machine-learned foundation models. The multi-Atomic Cluster
Expansion descriptor was used as implemented in the MACE
architecture.38,39 As pretrained model we used the MACE-MP0
and the MACE-OFF medium model.40,41 Further, we computed
hidden atomic representations of the Equiformer V2 architec-
ture.42 Here we used the eqv2_31m_omat model as the pre-
trained model.43 The obtained descriptors were treated as
additional atomic features and concatenated with the default
features, as described in Section 2.1.

2.4.2 Embedding of positional feature vectors. Due to the
high dimensionality of the feature vectors obtained from the
coordinate information, we reduced the dimensionality of the
vectors by processing the initial features with an additional
layer to extract the most relevant information. Fig. 2 illustrates
two main approaches for incorporating atomic features derived
from 3D coordinates into the D-MPNN. In Route 1, the extra
atomic feature vector undergoes a processing step to learn
a meaningful representation of the positional feature vector.
This transformation is achieved through a linear layer with
a ReLU activation function (Option 1) or a linear layer followed
by a ReLU activation and an additional attention layer (Option
2). Subsequently, the processed atomic feature vector is
concatenated with the original atomic feature vector. In Route
2, the extra atomic feature vector is directly concatenated with
the original atomic features without any prior processing. Both
Route 1 and Route 2 can occur either before the message-
passing step (solid black and dashed green lines) or aer the
D-MPNN process (dashed black lines). In the former case, the
model has the opportunity to propagate the atomic features
through the graph network. In the latter case, the processed
atomic features are incorporated only in the nal prediction
step, which may help in reducing feature redundancy.

2.4.3 Generative models to predict geometries on-the-y
2.4.3.1 Diffusion model. We used TSDiff29 as the diffusion

model to generate the 3D coordinates of transition states of
each reaction. TSDiff was trained using 5000 sampling steps
during inference and all conguration parameters as recom-
mended in the original literature by Kim et al.29.

2.4.3.2 Flow matching model. GoFlow was used as provided
in the literature30 to generate 3D coordinates of the transition
states of each reaction. Following the recommended setup, we
used the default conguration with 25 ODE steps and 25
samples during inference. For consistency, we applied the same
train/validation split as used in the diffusion model.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Possible approaches for integrating additional atomic features into the D-MPNN. In Route 1, the extra atomic feature vector is first
processed through a linear layer with a ReLU activation function (Option 1) or through a linear layer with a ReLU activation followed by an
additional attention layer (Option 2). The transformed vector is then concatenated with the original atomic feature vector. In Route 2, the extra
atomic feature vector is directly concatenated with the original atomic features without prior transformation. In both cases, the concatenation
can occur either before the message-passing step (solid black and dashed green lines) or afterwards (dashed black lines).
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2.5 Datasets

To apply ml-QM features, we utilized the RDB7, RGD1, RDB19-
Rad, Cycloaddition, and E2Sn2 datasets as detailed below. We
ensured that all reactions were balanced and included explicit
hydrogens. We randomly split each dataset into train, valida-
tion and test set (90%/5%/5%). For the RDB7 and RGD1 data-
sets that contain forward and reverse reactions, we only used
the forward reaction. For the work with positional information,
we only used the RDB7 and RGD1 datasets.

2.5.1 RDB7. The RDB7 dataset44 builds upon the work of
Grambow et al.45. The geometries of 11 926 compounds were
optimized using the uB97X-D3/def2-TZVP level of theory, with
single-point energies rened at the CCSD(T)-F12a/cc-pVDZ-F12
level for the actual barrier heights. The data set encompasses
a wide variety of reaction types, involving up to seven heavy
atoms (C, H, N, and O).

2.5.2 RGD1. The Reaction Graph Depth 1 (RGD1) dataset46

comprises 176 992 organic reactions with up to 10 heavy (non-
hydrogen) atoms, including C, O, N and H atoms. Transition
states were identied using the growing string method at
a semi-empirical level of theory and subsequently validated with
higher-level DFT calculations (B3LYP-D3/TZVP). Reactant and
product geometries were also optimised at the B3LYP-D3/TZVP
level. The data set predominantly features b2f2 reactions, which
involve ”breaking two bonds and forming two bonds”.

2.5.3 RDB19-rad. The RDB19-rad dataset47 contains 5600
radical reactions in different solvents with the elements H, C, N,
O, and S, and contains up to 19 heavy atoms. Geometries were
optimised at the B3LYP-D3(BJ)/def2-TZVP level of theory. Single-
point energies for the barrier height calculations were calcu-
lated using the M06-2X functional with the def2-QZVP basis set.
We extracted the barrier heights from the gas-phase
calculations.
© 2025 The Author(s). Published by the Royal Society of Chemistry
2.5.4 Cycloaddition. The cycloaddition dataset48 focuses on
computational proles for [3 + 2] dipolar cycloaddition reac-
tions, involving molecules composed of C, H, O, and N atoms
for a total of 5269 reactions. Geometry optimizations and
frequency calculations were conducted using B3LYP-D3(BJ)/
def2-SVP, with single-point energy renements at B3LYP-
D3(BJ)/def2-TZVP, incorporating implicit solvation with the
SMD model for the calculation of the activation barrier heights.

2.5.5 E2Sn2. The E2Sn2 dataset49 provides barrier heights
for E2 (elimination) and Sn2 (substitution nucleophilic) reaction
pathways for 3626 reactions. It covers a diverse chemical
combination of substituents, nucleophiles (e.g., H, F, Cl, Br),
and leaving groups. Geometry optimizations were conducted at
the MP2/6-311G(d) level of theory. Barrier heights were obtained
from rened single-point energy calculations using DF-LCCSD/
cc-pVTZ. SMILES strings were used as provided in ref. 10.

2.5.6 Heterocycles. Radical C–H bond functionalization
reactions involving heterocyclic compounds, comprising data
for 6114 molecules.50

2.5.7 Nitroaddition. A dataset of 5269 nitro-Michael cyclo-
addition reactions, including transition state (TS) structures
and reaction barriers calculated using semi-empirical quantum
mechanical (SQM) methods and rened via machine learning
(ML) to approximate DFT-level accuracy.22
2.6 Hyperparameters

All experiments were conducted on an NVIDIA A40, which has
48 GB of GPU memory. The following hyperparameters were
kept constant across all model trainings. We employed the
AdamW optimizer51 with default parameters: b1 = 0.9, b2 =

0.999, and 3 = 10−8. As a scheduler, we used cosine annealing
with 10 steps for the warmup phase. We used a batch size of 50
and trained each network for 100 epochs.
Digital Discovery, 2025, 4, 3208–3216 | 3211
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Hyperparameter tuning was performed using Bayesian
optimization, aiming to minimise the validation MAE. We
varied the learning rate, the dropout rates, the number of
hidden channels in both the message-passing network and the
prediction head, the depth of themessage-passing network, and
the number of layers in the prediction head. The specic values
used for each parameter are listed in Table S1. Hyperparameter
optimization was run only on the RDB7 dataset, as it offers
a well-balanced mix of diverse reactions at a moderate dataset
size.
2.7 Different splitting strategies

For all studies on nding the best architecture for incorporating
additional features, we use a heuristic random split, randomly
assigning reactions to the training, validation, or test set. To
assess our models' generalizability, we also employ two
specialized splits: reaction core and barrier height. For the
reaction core split, we extract the reaction core of each reaction
and cluster them by their common core. All reactions belonging
to the same common core are randomly assigned to either the
training, validation, or reaction set. For the barrier height split,
we collect the upper and lower 5% with the highest and lowest
barrier height and create the test and validation set from that,
while the 90% in between serves as the training set.
3 Results and discussion
3.1 Evaluating the inuence of ml-QM features

The results presented in Table 1 compare the predictive
performance when using default features versus using default
plus additional ml-QM features for different datasets. Across all
datasets, the inclusion of additional features leads to a modest
improvement in predictive accuracy. For instance, in the E2

dataset, MAE decreases from 2.51 to 2.43, and RMSE improves
from 3.75 to 3.64. Similarly, the RDB7 dataset shows a slight
decrease in the RMSE (6.68 to 6.24). However, in the RGD1
dataset, the improvement is marginal, indicating that addi-
tional ml-QM features do not signicantly impact the perfor-
mance in this case.

To furthermore assess the importance of ml-QM features, we
conducted a permutation feature analysis, where each feature
was permuted individually during prediction.52 An increase in
MAE indicates that the permutated feature was essential for the
model, as its permutation disrupted the predictions.
Conversely, a decrease in MAE suggested that the feature
Table 1 Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) for different datasets using default features and additional ml-
QM features

Dataset

Default features Additional ml-QM features

MAE RMSE MAE RMSE

E2 2.51 � 0.08 3.75 � 0.09 2.43 � 0.10 3.64 � 0.05
RDB7 3.58 � 0.08 6.68 � 0.13 3.38 � 0.07 6.24 � 0.18
RGD1 4.02 � 0.02 6.91 � 0.02 3.99 � 0.05 7.08 � 0.05

3212 | Digital Discovery, 2025, 4, 3208–3216
negatively impacted the model's performance. As illustrated in
Fig. S1, permuting the molecular features had no noticeable
effect on the prediction accuracy. In contrast, several atomic
and bond features exhibited a stronger inuence, particularly
the NPA charges and the 2p valence orbital occupancy. Across
three datasets (E2, RDB7, and RGD1), the same features
consistently ranked among the top ten, albeit in varying orders.
We examined the model performance for the RDB7 dataset
using only the ten most important features. This resulted in an
MAE of 3.42 and an RMSE of 6.06, comparable to the MAE when
utilising the full feature set (see Table 1).

As observed in the literature on molecular property predic-
tion, where additional ml-QM features are particularly bene-
cial for smaller datasets,34 we investigated this effect by
articially reducing the size of our datasets, selecting only
a fraction of the available data. As illustrated in Fig. 3, this trend
holds true for most datasets analysed in this study. Incorpo-
rating ml-QM features alongside the default features signi-
cantly lowers the test MAE, with the effect being especially
pronounced in diverse datasets such as RDB7 and RGD1.
However, for simpler datasets that focus on a single reaction
type, such as cycloaddition or SN2, the inclusion of additional
ml-QM features does not appear to improve the model's
predictive accuracy.

As indicated by the feature importance analysis, the incor-
poration of molecular features is not benecial for the model
and does not improve the results, as shown in Fig. S2.
3.2 3D features

We used the RDB7 and RGD1 datasets to include 3D informa-
tion into our D-MPNN model. We refer to the coordinates
recorded in the datasets as the ground truth coordinates. First,
we used only the RDB7 dataset as a model case, as it provides
a good balance between computational efficiency and dataset
size as well as complexity (including multiple reaction types). In
the rst section, we test the different descriptors (Section 3.2.1).
We then continue using the best performing descriptor for
evaluating which positional information is most benecial,
testing different combinations of reactant, transition state and/
or product positions (Section 3.2.2). For the best-performing
combination of descriptor and positional information, we test
different ways of embedding this information (Section 3.2.3)
into the model. Finally, we combine all these ndings and use
the best-performing combination of all these parameters to
build models with on-the-y 3D coordinate prediction for both
RDB7 and RGD1.

3.2.1 Testing different descriptors for incorporating coor-
dinate information. First, we test the different proposed
descriptors by adding them as plain additional features before
the message-passing step (see also Fig. 2). The MAE and RMSE
values are shown in Table 2. The SOAP descriptor36 yields a MAE
of 4.74 and a RMSE of 6.99. The aniAEV descriptor37 improves
performance slightly, achieving an MAE of 3.93 and an RMSE of
6.09. The descriptor provided by the Equiformer V2 architec-
ture,42 tested in combination with the OMAT model, achieves
a MAE of 3.21 and a RMSE of 4.50. Among the models tested,
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00240k


Fig. 3 Test MAE of models trained on randomly split training sets of different sizes, sampled from the seven datasets outlined in the Methods
section. The dots represent the average values computed over three runs with different random seeds, while the shaded region indicates the
error bars. Results obtained using the default features are shown in grey, and those incorporating additional atom and bond features are rep-
resented in blue. The MAE is in kcal mol−1.
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the MACE descriptors38,39 demonstrated the best overall
performance. Combined with the mace-mp0 foundation model,
an MAE of 2.44 and an RMSE of 4.09 can be achieved, while the
mace-off variant provides slightly less accuracy with an MAE of
2.46 and an RMSE of 4.17.

Compared to the results without positional information,
only the descriptors as used in the MACE and Equiformer
architecture contribute positively to improving the predictive
accuracy of the D-MPNN for activation energies. In contrast, the
SOAP and aniAEV descriptors appear to introduce more noise as
the MAE increases while the RMSE reduces slightly, indicating
the removal of outliers. It appears that there is a difference in
performance between the xed (SOAP and aniAEV) and learned
(MACE and Equiformer) descriptors, making the gained
performance very sensitive to the details of the encoding of the
3D local environment. We hypothesize that learned descriptors
provide a more useful description of the atomic local environ-
ment since their large-scale pretraining on QM energies and
forces drives the descriptors toward a depiction of the
Table 2 MAE and RMSE for the five descriptors tested. For each
descriptor, a hyperparameter search using Bayesian optimization with
at least 200 individual runs was performed. All values are in kcal mol−1

Architecture Model MAE RMSE

no positional information 3.58 6.68
SOAP 4.74 6.99
aniAEV 3.93 6.09
EquiformerV2 omat 3.21 4.50
MACE mace-mp0 2.44 4.09

mace-off 2.46 4.17

© 2025 The Author(s). Published by the Royal Society of Chemistry
wavefunction. In contrast, xed descriptors merely encode the
local geometric information using radial and spherical terms.

3.2.2 Inuence of reactant, product, and transition state
positions on the prediction accuracy. As a next step, we inves-
tigated the incorporation of different combinations of coordi-
nate information from the reactant (r), transition state (ts) and/
or product (p). The inclusion of only the reactant or product
information reduced the MAE and RMSE metrics marginally
(MAE changed from 3.64 to 3.52 and 3.42, respectively). The
same applied to including both reactant and product informa-
tion (MAE of 3.46). A signicant reduction in error metrics was
achieved when transition state positions were incorporated. The
MAE then varied between 2.29 and 2.38, and the RMSE between
3.75 and 3.80. Hyperparameter optimised values are shown in
Table S3 in the SI.

3.2.3 Comparing embedding strategies for positional
information. Next, we tested different embedding strategies
using the MACE (with mace-mp0 potential) descriptor. We
tested different ways of embedding when employing all coor-
dinates (r, ts, p) as well as when only using transition state
coordinates (ts). In Table 3, the impact of the different
embeddings on the model's performance is summarised. When
coordinate features were incorporated aer the MPNN, perfor-
mance improved signicantly. The pure inclusion of positional
descriptors reduced the MAE to 2.65 and the RMSE to 4.18
(values labeled as ’plain’ in Table 3). Further enhancement with
a ReLU activation function led to the lowest MAE in this group
(2.52) and RMSE (3.87), indicating that nonlinearity improves
the model's ability to extract meaningful features from the
coordinate information. However, the addition of an attention
layer did not yield further improvement. Incorporating
Digital Discovery, 2025, 4, 3208–3216 | 3213
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Table 3 Comparison of different strategies for embedding structural
information. Various methods are evaluated: direct concatenation (no
additional), passing the additional features directly to the model (plain),
passing them through a linear layer followed by a ReLU activation
function (+ relu fkt) or passing them through a linear layer with a ReLU
activation function combined with an attention layer (+ att layer). The
impact of these strategies is assessed using MAE and RMSE values. The
best values for using all available coordinate information (r, ts,p) and
only the transition state (ts) are highlighted in bold. All values are
in kcal mol−1

Coordinates Embedding Layers MAE RMSE

no additional 3.58 6.68
r, ts, p Aer MPNN plain 2.65 4.18

+ relu t 2.52 3.87
+ att layer 2.56 4.13

Before MPNN plain 2.46 4.01
+ relu t 2.40 4.12
+ att layer 2.48 4.07

ts Aer MPNN plain 2.76 4.57
+ relu t 2.72 4.26
+ att layer 2.79 4.66

Before MPNN plain 2.43 4.12
+ relu t 2.40 4.04
+ att layer 2.50 4.10
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coordinate features before message passing resulted in slightly
better predictions compared to adding them aer the MPNN.
When only transition state coordinates were used, the trend
remained consistent, suggesting that adding additional
features before the MPNN using a linear layer plus a ReLU
activation function provides the best overall performance.
3.3 On-the-y prediction of 3D conformations

Despite the success of the above models, utilizing ground truth
coordinates in a barrier height prediction model is meaning-
less, since energies are easy to obtain by quantum mechanics
once the geometry is known. In the following, we therefore
explore the on-the-y prediction of coordinates on the RDB7
and RGD1 datasets. As outlined in the Methods section, TSDiff
and GoFlow were trained on the ground truth geometries using
the train and validation splits. We then train the D-MPNN
model on the same train and validation splits, incorporating
the ground truth geometries as atom features. For the nal
Table 4 Performance metrics (MAE and RMSE) without (no coord) an
GoFlow (flowmatching coord), or from TS-diffusion (diffusion coord). We
a linear layer to learn the MACE-mp0 descriptor, concatenating it with t

Dataset Split

No coord Ground truth coo

MAE � STD RMSE � STD MAE � STD RM

RDB7 random 3.58 � 0.08 6.68 � 0.13 2.44 � 0.08 4
reaction core 4.64 � 0.14 7.17 � 0.15 3.36 � 0.03 5
barrier height 21.41 � 0.06 26.60 � 0.03 16.84 � 0.22 21

RGD1 random 4.02 � 0.01 6.91 � 0.03 2.07 � 0.02 3
reaction core 4.83 � 0.03 7.79 � 0.02 2.58 � 0.02 3
barrier height 23.76 � 0.24 32.96 � 0.25 13.77 � 0.16 24

3214 | Digital Discovery, 2025, 4, 3208–3216
barrier height predictions (using the test set never seen in the
TSDiff/GoFlow training), we augment the D-MPNN model with
descriptors derived from transition state geometries generated
on-the-y by these models.

Table 4 summarizes the MAE and RMSE results without (no
coord) and with coordinates either provided from QM calcula-
tions (ground truth coord), from TSDiff (diffusion coord) or
from GoFlow (ow matching coord) following the procedure
described before. As expected, models trained with access to
ground truth coordinates achieve the lowest errors across all
datasets, with substantial improvements compared to models
without any coordinate information. The benet of incorpo-
rating 3D information is particularly pronounced for the more
challenging splits, such as the reaction core and barrier-height
splits. Nevertheless, when using the diffusion-predicted coor-
dinates from TSDiff, there is still a notable improvement
compared to the no-coordinates baseline for the RDB7 dataset.
The RMSE for RDB7 decreases from 6.68 to 5.97 while the MAE
decreases from 3.58 to 3.27.

For the RGD1 dataset, we obtained worse results when using
diffusion coordinate information compared to having no coor-
dinates at all. Analyzing the predicted geometries revealed
unphysical geometries where two molecules are pushed far
away from each other (an example is shown in Fig. S3). However,
even removing the 482 worst outliers and only predicting barrier
heights for the remaining 8365 reactions did not yield a better
model performance compared to using no coordinates, thus
suggesting that the diffusion model overall has problems pre-
dicting reasonable coordinates for this dataset.

Furthermore, we trained our recently introduced GoFlow
model30 on the RDB7 and RGD1 datasets, which led to
a substantial reduction in MAE for the investigated datasets.
With the random split, the MAE for RDB7 improved from 3.58
to 3.13 (RMSE: 6.68 to 5.74), whereas for RGD1, it decreased
from 4.02 to 3.86 (RMSE: 6.91 to 7.10). The harder reaction core
and barrier height split, including 3D information from the ow
matching model, led to reduced MAE and RMSE values as well.
For the two examined datasets, we demonstrate that 3D coor-
dinates predicted on-the-y using GoFlow can enhance reaction
barrier height predictions and outperform models with TSDiff
coordinates. Yet, the performance gap between models with
generated and ground truth coordinates indicates opportuni-
ties for further renement of generative approaches.
d with coordinates from QM calculations (ground truth coord), from
included coordinate information only for the transition states by using

he default feature vector before the MPNN. All values in kcal mol−1

rd Flow matching coord Diffusion coord

SE � STD MAE � STD RMSE � STD MAE � STD RMSE � STD

.07 � 0.07 3.13 � 0.04 5.74 � 0.04 3.27 � 0.04 5.97 � 0.06

.10 � 0.04 4.56 � 0.07 7.26 � 0.06

.50 � 0.26 19.35 � 0.17 23.96 � 0.11

.12 � 0.02 3.86 � 0.02 7.10 � 0.03 5.27 � 0.02 9.32 � 0.03

.82 � 0.02 4.31 � 0.02 7.80 � 0.03

.80 � 0.13 16.45 � 0.01 27.57 � 0.02

© 2025 The Author(s). Published by the Royal Society of Chemistry
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To explore how the quality of training data affects predic-
tions on the RDB7 dataset, we conducted a cross-validation
study. Previously, we always trained models using the original
QM coordinates, only varying the coordinates for the test set
according to the method used (ground truth, ow matching, or
diffusion-generated). This reects the intended real-world
scenario, as QM computations are typically required to obtain
training activation energies, thereby providing suitable coordi-
nates to train generative models. To gain deeper insights into
the ow matching model, we performed a cross-validation
analysis by splitting the entire RDB7 dataset into 20 folds,
ensuring each reaction appeared exactly once in the test set. We
then used the predicted coordinates to train our DMPNN for
barrier height prediction. This approach yielded a slightly worse
performance (MAE: 3.32, RMSE: 6.26) compared to the model
trained with ground truth coordinates.

4 Conclusion

In this work, we explored strategies to improve the accuracy of
predicting reaction barrier heights using D-MPNN models by
incorporating either additional 2D information through ml-QM
features or by including 3D structural information. We evalu-
ated the utility of ml-QM descriptors, nding that they offer
minor improvements, especially for small and chemically
diverse datasets, while introducing minimal computational
overhead.

Incorporating 3D structural information in the form of
ground truth coordinates consistently reduced both MAE and
RMSE across all evaluated datasets, demonstrating the strong
potential of using geometric data in barrier height prediction.
To eliminate the dependency on precomputed coordinates, we
retrained the TSDiff and GoFlow models to generate transition
state geometries directly from 2D inputs. Among these, GoFlow
proved especially effective, yielding notable improvements in
predictive accuracy. These results highlight the advantage of
incorporating predicted 3D structures to enhance model
performance, bridging the gap between 2D input and 3D
informed output. However, while GoFlow brings performance
closer to results achieved with ground truth geometries, a gap
remains, indicating opportunities for further renement of the
generative models.
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39 I. Batatia, D. P. Kovács, G. N. C. Simm, C. Ortner and
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