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Machine learning (ML) has the potential to accelerate the discovery of high-performance materials by

learning complex structure–property relationships and prioritizing candidates for costly experiments or

simulations. However, ML efficiency is often offset by the need for large, high-quality training datasets,

motivating strategies that intelligently select the most informative samples. Here, we formulate the

search for top-performing functionalized nanoporous materials (metal–organic and covalent–organic

frameworks) as a global optimization problem and apply Bayesian Optimization (BO) to identify regions

of interest and rank candidates with minimal evaluations. We highlight the importance of a proper and

efficient initialization scheme of the BO process, and we demonstrate how BO-acquired samples can

also be used to train an XGBoost regression predictive model that can further enrich the efficient

mapping of the region of high performing instances of the design space. Across multiple literature-

derived adsorption and diffusion datasets containing thousands of structures, our BO framework

identifies 2×- to 3×-more materials within a top-100 or top-10 ranking list, than random-sampling-

based ML pipelines, and it achieves significantly higher ranking quality. Moreover, the surrogate

enrichment strategy further boosts top-N recovery while maintaining high ranking fidelity. By shifting the

evaluation focus from average predictive metrics (e.g., R2, MSE) to task-specific criteria (e.g., recall@N

and nDCG), our approach offers a practical, data-efficient, and computationally accessible route to guide

experimental and computational campaigns toward the most promising materials.
1 Introduction

The advent of Machine Learning (ML) has introduced powerful
capabilities in the discovery and development of novel mate-
rials,1 particularly through its ability to uncover complex
structure–property relationships. In this context, ML models
can learn to map structural and chemical information to
macroscopic material properties, enabling fast and efficient
predictions. As a result, experimental or computationally
expensive methods can be reserved for only the most promising
candidates. In the eld of functionalized nanoporous materials,
recent studies have showcased the potential of articial intel-
ligence—from conventional ML models capable of high-
accuracy property prediction,2,3 to emerging approaches based
ications, National Centre for Scientic
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the Royal Society of Chemistry
on Large Language Models (LLMs),4,5 and generative models
capable of proposing entirely new material structures.6

Despite these advances, ML-driven discovery remains con-
strained by several challenges. Chief among them is the paradox
between the promise of ML to reduce experimental costs and
the substantial data requirements it imposes. Generating
sufficiently large, high-quality datasets—whether through
experiments or simulations—can be prohibitively expensive,
undermining the very efficiency ML aims to deliver.7–9 To
address this, signicant effort has been invested in smart
sampling strategies, broadly referred to as Active Learning
(AL),10,11 which aim to minimize the number of required
samples while maximizing predictive accuracy.

However, despite their conceptual appeal, many AL strate-
gies oen struggle to consistently outperform passive learning
approaches,12 in which ML models are trained on randomly
selected samples. In fact, random sampling remains a surpris-
ingly strong benchmark.11 Moreover, maximizing predictive
performance (e.g., via R2, mean squared error) may not always
align with the practical goals of materials scientists. In many
cases, the primary objective is not to model the entire design
space, but rather to identify regions containing top-performing
Digital Discovery, 2025, 4, 3753–3763 | 3753
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materials. As we demonstrate in this work, standard MLmetrics
oen fail to reect performance in this specic task.

Identifying high-performing sub-regions can be formulated
as an optimization problem in which a sampling algorithm
iteratively selects new points, not to reduce uncertainty as in
active learning, but to maximize an acquisition function. An
acquisition function is a heuristic that quanties the utility of
evaluating a candidate point, balancing exploration of uncer-
tain regions with exploitation of high-predicted-value regions.
Bayesian Optimization (BO) provides a principled solution in
this context, serving as a global optimizer over complex design
spaces.13–16 In this work, we adapt BO not only to identify the
single best-performing instance, but also to recover an
ensemble of the top-N performers (e.g., top-10 or top-100),
reecting the practical needs of materials scientists who oen
require multiple candidates rather than a solitary optimum. We
address the following core research questions:

(1) How many samples are needed to identify regions within
large design spaces (containing thousands to hundreds of
thousands of materials) that contain top-performing candi-
dates?We note that this number depends strongly on the task at
hand, the complexity of the underlying structure–property
relationships, and the choice of feature representation.

(2) How many samples are required to identify the single
best-performing material in such spaces?

(3) How does our approach compare to an ML model trained
on an equal number of randomly selected samples, particularly
in terms of ranking the top-performing materials and identi-
fying the global optimum?

While BO is a powerful framework, it can incur substantial
computational expense.17 To mitigate this, we introduce
frugality-oriented elements. Here, frugality refers primarily to
minimizing the number of costly experimental or simulation
evaluations required to identify high-performing materials,
which is the main bottleneck, but we also consider simple
strategies to reduce computational overhead. First, we quantify
how the choice of initial samples inuences BO's convergence
and overall performance. Unlike our baseline method (Random
Sampling ML), BO is always initialized with a simple yet
Fig. 1 Pipeline of the Bayesian optimization method in this work.

3754 | Digital Discovery, 2025, 4, 3753–3763
effective, informed strategy that combines one central point and
two diverse points, ensuring both representativeness and
diversity in the initial sampling. This primarily supports
experimental efficiency by ensuring informative early evalua-
tions. Next, we evaluate batch sampling strategies—selecting
multiple candidates per iteration—to strike an optimal balance
between predictive accuracy and runtime efficiency. Batching
reduces computational cost by limiting the number of surrogate
retrainings, while also enabling parallel experiments in prin-
ciple. Finally, we show that, by training a machine-learning
surrogate (e.g., XGBoost) on the BO-acquired samples aer the
campaign, we can predict and rank the remainder of the design
space. This enrichment step mainly reduces experimental effort
by identifying additional top-N candidates without further
evaluations, while also providing a lightweight ranking at low
computational cost. Fig. 1 summarizes our approach.

We evaluate our method across a diverse collection of
literature-based datasets involving gas adsorption and diffusion
in functionalized nanoporous materials, including metal–
organic frameworks (MOFs) and covalent–organic frameworks
(COFs). In all cases, our BO framework outperforms random-
sampling-based ML pipelines in both identifying and ranking
top-performing candidates. Notably, we not only measure
success in terms of top-performer recovery but also assess the
quality of the ranking (nDCG; see Section 2.4).
2 Methodology
2.1 The premise

As outlined in the introduction, the premise of this work is that
researchers in a laboratory oen operate within a specic
experimental budget while seeking the best or top-performing
materials from a vast design space of nanoporous materials.
Typically, this budget, represented by N (the number of new
materials evaluated), is signicantly smaller than the total
number of materials available in the design space (N � N0,
where N0 denotes the total number of available materials).
Consequently, identifying the best or top-performing materials
by randomly selecting and testing N samples relies purely on
© 2025 The Author(s). Published by the Royal Society of Chemistry
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chance. ML offers an alternative: it can use these N randomly
selected samples to train a model, predict performance across
the entire design space, and rank all available materials based
on predicted performance.

Inspired by recent advancements in Bayesian Optimization
(BO) applied to MOFs and related materials, we investigate the
potential of BO to guide researchers in allocating their N
experiments. The goal is to iteratively direct experiments toward
regions of the design space with higher performance, progres-
sively converging on areas of interest and improving efficiency
in identifying exceptional materials.
2.2 Problem formulation

Suppose a set M containing all nanoporous materials m ˛ M.
Each material m can be uniquely identied by a set of n feature
properties f (hereby called features). Each point in this multi-
dimensional ℝn space corresponds to the design of one mate-
rial and each material may differ slightly or greatly from the
others in terms of a target property value. So:

mi˛M3ℝn; mi ¼ ff1; f2; :::; fng (1)

We dene a machine learning model as the process p that
learns the mapping from the general material space ℝn to this
target property y, so:

p : ℝn/ℝ (2)

Let the dataset used to train this machine learning model be
denoted as Dtrain which consists of N data points, same as the
budget for experiments. This can be dened as:

Dtrain ¼
��

xj ; yj
���xj˛ℝn; yj in ℝ; j ¼ 1; 2;.n

�
(3)

Similarly we can dene the test dataset Dtest and the evalu-
ation dataset Deval. Now lets consider a method for evaluating
this model. Let us denote this method as Eðp;DevalÞ which takes
the ML model p and evaluation dataset and provides a measure
of the performance of the model. The logic and metrics used for
the evaluation are described in detail in the Evaluation metrics
section.

Our goal is to use the least amount of data, less than or equal
to the available budget, in order to achieve the best performance
score. In practical terms, this problem is inherently multi-
objective: we aim to minimize the number of samples
required for training while simultaneously maximizing the
predictive performance of the model. The trade-off between
these two goals is the central question addressed in this work.
2.3 AI methodologies

2.3.1 The conventional ML way: random sampling, train
and predict. The popular approach of employing data-guided
methodologies in cases of unsolved complex correlations in
novel materials design is, given the existence of a design space
of input structural and chemical parameters, choose a sub-set
of them, label them (e.g. measure the desired target property
© 2025 The Author(s). Published by the Royal Society of Chemistry
value for each of them) through expensive experiments or
simulations, and use the results as a dataset to train an ML
regression model to predict the property values for the rest of
the design space. We refer to this as the random way. In our
work, for the sake of sufficient statistical evaluation we repeat
the procedure 20 times, varying the data sampled. As our main
model we have selected XGBoost18 due to its efficiency on
regression tasks. More details on the specics of the XGBoost in
our work can be found in the SI.

2.3.2 Bayesian optimization. The basic block of this project
is the Bayesian Optimization (BO) process, which, as the name
suggests, is a method to optimize (nd maxima or minima) of
an unknown function. As mentioned in the Problem formula-
tion section, an ML model can be described as a function
mapping inputs (features) to outputs (target property values).
The underlying structure–property relationship that we seek to
approximate is usually referred to as a “black box”, since in
most cases it cannot be expressed with a closed formula. The
ML model provides an explicit approximation to this black-box
mapping. In this way, BO becomes an efficient method for
guiding the search toward maxima or minima of the property of
interest.

BO is an iterative process where at each iteration we train an
ML model (called a surrogate model) with the currently
acquired data, we use this model to make predictions about
a specic data property on the whole dataset. Finally an
acquisition function is being utilized to select the most infor-
mative data point and add it to the dataset. The surrogate's
uncertainty quantication is central to this process, since the
acquisition function balances exploration (sampling uncertain
regions) with exploitation (sampling high-predicted-value
regions). Practically, the surrogate model represents our
current beliefs about the target property that we are trying to
maximize (or minimize) and the acquisition function seeks to
select data points from areas of the data space that we lack
knowledge of. By transferring this scheme to our problem, we
state that BO determines which experiments should be per-
formed by designating the most promising candidate materials
in terms of target property value maximization.

We adopt the open-source implementation of Gantzler
et al.,19 which is built on the BoTorch library20 for Gaussian
process–based Bayesian optimization, as the foundation for our
framework; in Section 2.5, we detail the extensions we introduce
on top of this BO implementation.

In the following paragraph we make clarications concern-
ing the details of our method.

As our surrogate model we have selected a Gaussian Process
(GP) model due to its efficiency in representing the uncertainty
of knowledge. The model consists of two parts, a mean function
and a kernel (covariance function)

Y(x) ∼ GP(m(x), K(x, x0)) (4)

In our case as a mean we have used a constant mean function

m(x) = C (5)
Digital Discovery, 2025, 4, 3753–3763 | 3755
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and squared exponential (or Radial Basis Function RBF) as our
kernel which is dened as

K
�
x; x

0
�
¼ exp

	
� 1

2

�
x� x

0�T
Q�2

�
x� x

0
�


(6)

Both C and Q are parameters that are calculated automatically
by the SingleTaskGP model contained in the BoTorch library.

The acquisition function that we have selected is Expected
Improvement (EI):

argmax
x˛X

E½max½0;Y ðxÞ � y*�� (7)

where Y(x) represents our current prediction of target property
at point x in the design space, and y* is the maximum observed
target property value so far. EI balances exploration and
exploitation by favoring either points with high predicted values
or those with high model uncertainty. It is worth noting that EI
and related acquisition functions have also been extended to
multiobjective problems, oen under the name of Efficient
Global Optimization (EGO). These methods adapt EI to identify
Pareto-optimal fronts or high-performing regions in multi-
objective spaces, and have seen signicant use in chem-
informatics and materials discovery.19,21 While in this work we
restrict our focus to single-objective optimization, these
connections are relevant for readers interested inmultiobjective
extensions.

At the conclusion of the BO process, users gain access to
a curated set of high-performing materials from the design
space. As we will demonstrate later, these selected points form
an information-rich dataset containing instances of optimal
performance. This dataset can then be used to train the same
predictive model employed in the random sampling approach
(XGBoost), enabling it to make predictions across the entire
design space and further expand the list of high-performing
materials with additional suggested candidates. Consequently,
the nal selection of top-performing materials is derived from
a combined dataset consisting of BO-acquired samples and
XGBoost predictions trained exclusively on these samples. As we
will show in later sections, this strategy proves highly effective,
as the trained model excels at distinguishing and identifying
high-performing instances, further enhancing the optimization
process. A graphical representation of our pipeline is depicted
on Fig. 1.

Recent works have applied BO directly to nanoporous
materials design. Deshwal et al.22 demonstrated that BO can
efficiently navigate a database of 70 000 COFs to identify those
with highest methane deliverable capacity, outperforming
random search, evolutionary algorithms, and one-shot ML
baselines, while also acquiring a signicant fraction of the top-
performing structures aer relatively few evaluations. Gantzler
et al.19 extended this idea by employing multi-delity BO for
COFs in Xe/Kr separations, showing that combining low-cost
approximate evaluations with high-delity simulations accel-
erates the search. Together, these studies established BO as
a powerful framework for adsorption and diffusion problems in
porous materials. In this work, we demonstrate how three
complementary elements—diversity-preserving initialization,
3756 | Digital Discovery, 2025, 4, 3753–3763
batch-mode acquisitions, and surrogate enrichment with
XGBoost—can be combined into a coherent framework, whose
integration provides a practical and effective workow for
materials discovery.

2.4 Evaluation metrics

We trained and evaluated our regressor across the various
training dataset sizes that will be presented in a following
section, aiming to determine the minimum number of training
samples required to effectively capture the most promising
region of the design space in terms of target property maximi-
zation. In this section, we dene what constitutes a promising
area and outline the evaluation metrics used to assess our
machine learning model's ability to identify it.

In our experiments, where the design space is nite and the
target property values for all candidate materials are known, we
can easily rank the materials in descending order and extract
the top-N (where N is either 100 or 10, in this work). Ideally, our
model's predictions should rank the same materials within the
top-N while closely approximating their actual target property
values. To evaluate our model's performance in these tasks, we
employed the following metrics.

2.4.1 Recall@N. Recall@N is the proportion of relevant
items found within the top-N predicted, where N in this work is
either 100 or 10, depending on the case under study:

Recall@N ¼ predicted on top-N

actuall top-N
(8)

This measure is the simplest way to acknowledge whether our
trained model can correctly identify promising materials,
without giving any importance on the predicted target property
value or the actual ranking of the correctly predicted materials.
A model with high Recall@N score would be useful for experi-
mental scientists working on largely unknown datasets where it
is more important to nd several promising candidates rather
than only the single best one.

2.4.2 Mean percentage error.Mean Percentage Error (MPE)
is dened as:

N

n

Xn

i¼1

jpredi � actualij
actuali

(9)

In our case we measure MPE on the predicted top-N so n is the
number of materials correctly predicted to belong to the actual
top-N on the dataset, predn is the predicted target property value
of nth material and actualn is the actual value. This metric gives
as a notion of how close (in percentage terms) is our model at
predicting the values of top-N materials, and it is useful in
scenarios where knowing the exact target property value is
crucial.

2.4.3 Normalized discounted cumulative gain. Normalized
Discounted Cumulative Gain (nDCG)23 is a measure which
compares the quality of a proposed ranking in accordance to an
ideal ranking by giving emphasis on the correct identication of
higher valued items. The mathematical formula is:

nDCGp ¼ DCGp

iDCGp

(10)
© 2025 The Author(s). Published by the Royal Society of Chemistry
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where DCGp is the discounted cumulative gain and iDCGp is the
same measure for the ideal ranking which can be expressed as:

iDCGp ¼
XjRELpj

i¼1

2reli � 1

log2ði þ 1Þ (11)

p is the number of items involved in the ranking. So, in a case
where N= 100, wemeasure the top-100 ranking so jRELpj= 100,
and reli is a relevance score given to each item in the ranking
based on how important it is considered to be higher. So in our
case where we have n > 100 candidate materials and we want to
nd the top-100 the relevance of each material would be in
descending order from 100 to 1 and 0 for each one that should
not be in the top-100. Thus the material relevance pairs are in
the form (xi, reli)

ðx1; 100Þ; ðx2; 99Þ; ðx3; 98Þ;.; ðx99; 2Þ;
ðx100; 1Þ; ðx101; 0Þ; ðx102; 0Þ;.; ðxn; 0Þ (12)
2.5 Beyond baseline BO: practical additions

In this section, we summarize a set of additions to standard
Bayesian optimization. Some of these strategies (e.g., diverse
initialization, batch acquisitions) have appeared in the litera-
ture, while others (e.g., enrichment of BO ndings with
predictions) are introduced here. Taken together, they provide
a clear improvement in efficiency and make our BO framework
more practical for materials discovery. We present them as
recommended extensions that practitioners may nd useful
when applying BO to large design spaces.

2.5.1 Enriching BO ndings with predictions. As previously
discussed, the outcomes of the BO procedure are further
expanded by training an XGBoost model on the BO-acquired
samples. This model is then used to predict the target prop-
erty across the remaining, unlabeled design space. By ranking
the top-N predicted materials, we obtain an enriched and more
complete list of high-performing candidates, extending the
reach of the original BO search.

2.5.2 Efficient initilization. To initialize the Bayesian
Optimization (BO) process, an initial set of data points must be
selected. In many studies, this is achieved by randomly
sampling a subset of the design space, which then serves as the
starting dataset for the surrogate model. For example, Deshwal
et al.22 adopted this approach by randomly selecting three
covalent organic frameworks (COFs) from their dataset to
initialize the BO loop.

However, purely random initialization can introduce statis-
tical variability, potentially leading to inconsistencies in
performance when applying BO to real-case scenarios. To
mitigate this, in our work we employ an informed initialization
strategy rather than random selection, following the approach
of Gantzler et al.19 Specically, we rst determine a central
sample by computing the mean of all feature values and
selecting the candidate whose features are closest to this mean,
which serves as a representative point of the design space. Next,
to ensure diversity in the initial training set, we apply a diverse-
set selection procedure that, starting with the central sample,
© 2025 The Author(s). Published by the Royal Society of Chemistry
iteratively identies additional samples that maximize the
minimum Euclidean distance from the already selected points.

This procedure guarantees that the initial three samples are
simultaneously representative and diverse, providing the
Gaussian process surrogate model with a robust starting dataset
for BO. In our case, three such samples were selected. As shown
in the SI (Table S1), this approach yields performance compa-
rable to the average of 20 BO runs with different random
initializations (three points each, 100 steps), in identifying the
top-100 instances for all datasets considered in this work. We
emphasize that this comparison was performed deliberately to
conrm that our initialization scheme does not bias perfor-
mance upward relative to random initialization, but rather
offers a practical and robust one-shot alternative in settings
where repeated BO restarts are not feasible.

We note that the notion of ‘diversity’ depends on the chosen
feature representation; different ngerprints (e.g., chemical vs.
geometric) can yield different diverse sets.24 The present work
adopts the feature sets provided in the literature datasets
considered here, but in general, the effectiveness of a diversity-
based initialization strategy depends on the availability of
a feature representation that meaningfully captures structural
and chemical differences.

2.5.3 Batch sampling for faster BO calculations. Bayesian
Optimization (BO) is computationally expensive, particularly
when applied to large design spaces or at high sampling rates.
This is primarily due to the need to invert the covariance matrix
of the Gaussian Process (GP) regressor, an operation that scales
with O(n3) complexity,17 where n is the sample size. In standard
BO, each newly selected sample requires retraining the GP
model to determine the next sampling point. To alleviate this
burden, we employed batch sampling: instead of retraining the
surrogate model aer each sample, we updated it only once per
batch, following the evaluation of all batch points. This signif-
icantly reduced the number of surrogate model updates and the
associated computational cost—most notably by limiting the
number of expensive covariance matrix inversions. Sequential
BO is optimal in terms of information gain per sample. Batch
BO, however, trades off some of this efficiency for practical
gains: fewer retrainings of the surrogate and the ability to
parallelize evaluations. As such, modest batch sizes (e.g. 5)
achieve nearly the same recall@N as sequential BO, but in
signicantly less wall-clock time, representing a practical
compromise.

Fig. S1 in the SI compares single-sample BO with batch sizes
of 5 and 10 samples per iteration, evaluating their performance
in terms of recall@100 and best-sample identication as func-
tions of sample size and computational time. The test case
involves the dataset by Mercado et al.,25 comprising 70 000 COFs
evaluated for methane deliverable capacity. Based on this
analysis, we adopt a batch size of 5 samples per BO iteration
throughout this work, as it provides an effective balance
between computational efficiency and performance. Notably,
this conguration achieves the same recall@100 and identies
the best-performing COF using 700 samples at just one-tenth of
the computational time compared to single sampling. We note
that batch BO itself is well established in the literature,
Digital Discovery, 2025, 4, 3753–3763 | 3757
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particularly through methods such as q-EI.26,27 Here, we adopt
a simpler strategy: selecting the top-k EI points per iteration.
This makes batching straightforward to implement in similar
workows while retaining the benets of parallelism and
reduced runtime.

Fig. 1 summarizes our approach, as was described in Section
2.5.1–2.5.3.
Fig. 2 Pipeline of identifying top-performing COFs (in terms of
methane deliverable capacity) in a design space of 70 000 COFs with
a ML model trained on 100 random samples, and our BO method-
ology: the randomly trained ML identifies correct only 2 COFs
belonging to the top-100 performing ones, while our BO approach
identifies 40.
2.6 Datasets

In this section we summarize all the datasets used in this work.
Mercado et al.25 reported a database of approx. 70 000 COF,
where they report the uptake and deliverable capacity of CH4 in
them, through Monte Carlo simulations. The same COFs
database was used by Deshwal et al.,22 for methane uptake
values, for the development of a BO routine that identies the
best candidate material. The same structure database was
employed in the 2023 work by Aksu and Keskin2 for where they
report a high-throughput and ML scheme for the identication
of COFs with CH4/H2 separation performance. Here, we use CH4

uptake and deliverable capacity as target values. Orhan et al.28

reported a 5600 MOFs databases in their high throughput
screening work for O2/N2 materials. The target properties we
considered were the diffusivity and uptake of O2, and the
diffusion selectivity of O2/N2. Another database we considered
was the one developed by Majumdar et al.29 which includes
more than 20 000 hypothetical MOFs, along with various gas
properties, of which we kept H2 uptake capacity, CO2 uptake, N2

uptake, CO2 working capacity, and CO2/N2 selectivity. This
database was employed, also, by Daoo et al.30 in their work on
Active Learning methods for high-performing MOFs for the
separation of C2H2/C2H4 and C3H6/C3H8. We kept as target
properties the C2H2 and C2H4 uptakes. Villajos et al. in their
2023 work31 reported an extended dataset for H2 adsorption at
cryogenic temperatures, where they provide 3600 MOFs with
crystallographic and porous properties, along with volumetric
and gravimetric capacities. In our work we consider as target
property the gravimetric capacity. Aksu and Keskin2 reported
a high-throughput computational screening combined with ML
for the identication of high-performing COFs as adsorbents
for CH4/H2 separations in pressure-swing and vacuum-swing
adsorption (PSA and VSA, respectively). In our work we
considered as target properties the CH4 and H2 uptakes at 1 bar
pressure.
Fig. 3 Comparison of Bayesian Optimization (BO) and Random
Sampling ML at identifying the (a) top-100 COFs and (b) overall best
COF for methane uptake, as a function of sample size; (c) distribution
of methane uptake values in the whole dataset (yellow area denotes
the top-100 COFs and dash red line the sole best COF).
3 Results and discussion
3.1 A rst demonstration case for a xed number of 100
samples: “COFs with high deliverable capacity as target
property” as a testbed of comparison”

In this section, we evaluate our BO approach using the methane
deliverable capacity dataset fromMercado et al.25 as a testbed.We
compare our method against a conventional ML approach in the
context of a lab operating on a limited budget of 100 samples.

3.1.1 Traditional approach – Random Sampling ML. We
randomly select 100 COFs and their corresponding methane
deliverable capacity values as a training set for an XGBoost
3758 | Digital Discovery, 2025, 4, 3753–3763
regressor. This predictive model is then used to estimate the
methane deliverable capacity for all remaining COFs in the
dataset.

3.1.2 BO approach. We perform 100 BO iterations to focus
on regions of the design space with high deliverable capacity.
The 100 COFs acquired through BO, along with their methane
deliverable capacity values, are used to train an XGBoost
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Comparison of Bayesian Optimization (BO) and Random
Sampling ML at identifying the (a) top-100 COFs and (b) overall best
COF for methane deliverable capacity, as a function of sample size; (c)
distribution of deliverable capacity values in the whole dataset (yellow
area denotes the top-100 COFs and dash red line the sole best COF).

Fig. 5 Comparison of Bayesian Optimization (BO) and Random Samplin
and hydrogen uptake ((g)–(i)). (top row) Number of top-100 performingm
samples required to identify the top-1 performing material. (bottom row
context on the difficulty of each search task. Each plot compares th
effectiveness of each approach in different regimes.
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regressor. This model is subsequently used to predict the
deliverable capacity for the rest of the COFs.

A ranking of the top-100 predicted values compared with the
actual top-100 reveals that the conventional ML (Random
Sampling ML) approach identies only 2 of the true top-100 per-
forming COFs. In contrast, the BO approach successfully selects 20
COFs within the top-100 tier. Moreover, when the XGBoost model
is trained on the BO-acquired samples, it identies an additional
20 top-performing COFs, boosting the overall count to 40.

This result highlights the value of using Bayesian Optimi-
zation (BO) to acquire high-interest samples, as it complements
and enhances subsequent ML-based ranking. Although the
XGBoost model trained on BO-acquired samples exhibits lower
overall predictive performance—achieving an R2 of 0.70
compared to 0.85 for the model trained on randomly selected
samples, along with a higher MSE (see Fig. S2 in the SI)—its
focused training on a promising subregion of the design space
makes it particularly effective at accurately identifying and
ranking the top-performing COFs.
g ML across three target properties: ethylene ((a)–(c)), ethane ((d)–(f)),
aterials identified as a function of sample size. (middle row) Number of
) Distribution of target property values across each dataset, providing
e performance of BO and random sampling, illustrating the relative
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This becomes evident when evaluating the models speci-
cally on the top-100 region: the XGBoost model trained on BO-
selected samples achieves better R2 and lower MSE than the one
trained on random samples Fig. S2, despite its lower global
metrics. This illustrates that common evaluation metrics such
as R2 and MSE, when applied over the entire dataset or random
subsets, can be misleading in assessing a model's true utility. In
scenarios where the goal is to discover rare but high-value
regions in the design space, average performance across the
whole dataset does not reect the model's effectiveness in those
critical areas.

Thus, our approach uses BO for targeted sample acquisition
in a large design space and then employs ML to enrich the top-
100 ndings, through predictions (Fig. 2).
3.2 All dataset results

In this section, we apply our BO approach and benchmark it
against the Random Sampling ML baseline across all literature
datasets introduced in the Methodology section. The comparison
Fig. 6 Comparison of BayesianOptimization (BO) and Random Sampling
N2 ((d)–(f)), and CO2 uptake ((g)–(i)). (top row) Number of top-100 perf
Number of samples required to identify the top-1 performing material. (b
providing context on the difficulty of each search task. Each plot compare
effectiveness of each approach in different regimes.

3760 | Digital Discovery, 2025, 4, 3753–3763
is carried out as a function of the evaluation budget, ranging from
1000 to 2000 sample evaluations. Performance is assessed in terms
of the top-100 or top-10 candidates identied (depending on the
design space size), as well as the single best material discovered,
each reported as a function of the available evaluation budget.

First, we evaluate the methane uptake dataset for COFs from
Mercado et al.25 As shown in Fig. 3(a), although the XGBoost
model trained on randomly selected samples (Random
Sampling ML) gradually improves its recall@100 with
increasing sample size, even 1000 samples yield only marginal
gains (recall@100 z 50). In stark contrast, our BO framework
achieves a recall@100 of 93 from the very rst iterations.
Remarkably, BO pinpoints the single best-performing COF with
just 50 samples, whereas the random sampling strategy fails to
identify the top candidate even aer 1000 evaluations.

Moreover, it is worth mentioning that the nDCG values are
considerably higher for BO, highlighting the ability of our
approach to not only nd more of the top-100 instances, but
ensure a more accurate positioning of them, closer to the actual
ML across three target properties: CO2 working capacity ((a)–(c)), CO2/
orming materials identified as a function of sample size. (middle row)
ottom row) Distribution of target property values across each dataset,
s the performance of BO and random sampling, illustrating the relative

© 2025 The Author(s). Published by the Royal Society of Chemistry
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ranks of the materials, in terms of their performance (see
Fig. S3).

Fig. 4(a) demonstrates that for the more challenging
methane deliverable capacity target, BO still vastly outperforms
the conventional ML approach based on Random Sampling ML
in terms of recall@100. The BO approach identies up to 80 of
the top-100 COFs—slightly lower than the performance for
methane uptake—that creates a clear performance gap with the
Random Sampling ML, which at 1500 samples identies 19 top-
100. This highlights BO's superior ability to target high-interest
regions in complex design spaces.

Fig. 4(b) further emphasizes this advantage when it comes to
identifying the single best-performing COF. For methane
deliverable capacity, BO requires approximately 300 samples to
reliably pinpoint the best COF, compared to just 50 samples for
methane uptake. In contrast, the Random Sampling ML
approach shows a steady but limited improvement in the best
COF value as more samples are added, indicating its difficulty
in effectively exploiting additional data to locate the optimum.
Fig. 7 Comparison of Bayesian Optimization (BO) and Random Sampling
((d)–(f)), and CH4 uptake ((g)–(i)). (top row) Number of top-10 performing
of samples required to identify the top-1 performing material. (bottom ro
context on the difficulty of each search task. Each plot compares th
effectiveness of each approach in different regimes.

© 2025 The Author(s). Published by the Royal Society of Chemistry
Moreover, nDCG is consistenly higher for BO, reaching almost
1, while Random Sampling ML maxes below 0.9 (Fig. S3). These
results conrm that BO is a highly effective sampling strategy,
particularly in challenging scenarios where the design space is
vast and the optimal regions are hard to exploit using conven-
tional methods.

Fig. 5–7 summarize the results for the remaining datasets
considered in this work. The rst two columns of Fig. 5 illus-
trate the number of samples required by both Bayesian Opti-
mization (BO) and Random Sampling ML to identify the top-100
and top-1 performing MOFs for ethylene and ethane uptake,
respectively, based on the dataset from Daoo and Singh.30 It is
evident that, in both cases, BO successfully identies signi-
cantly more of the top-100 performing materials with the same
number of samples. Furthermore, BO is able to identify the
single best-performing MOF within the very rst steps, whereas
Random Sampling ML exhibits only marginal improvements
throughout the search (up to 1600 samples). Even in the case of
H2 uptake (Fig. 5(g) and (h)), based on the dataset reported by
ML across three target properties: O2/N2 selectivity ((a)–(c)), H2 uptake
materials identified as a function of sample size. (middle row) Number
w) Distribution of target property values across each dataset, providing
e performance of BO and random sampling, illustrating the relative

Digital Discovery, 2025, 4, 3753–3763 | 3761
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Majumdar et al.,29 where random sampling shows a comparable
ability to BO in identifying top-100 materials aer approxi-
mately 1000 samples, it fails to identify the best-performing
MOF—even aer 2000 samples—highlighting the greater effi-
ciency of the BO strategy. Again, the nDCG values of BO remain
consistently higher than those of random sampling across all
three cases (Fig. S3), highlighting BO's superior ability not only
to identify the region containing the top-performing materials,
but also to rank them in a manner that more closely reects
their true performance.

The same strong performance in identifying top-performing
MOFs is observed when our BO method is applied to the three
datasets reported by Majumdar et al.,29 targeting CO2 working
capacity, CO2/N2 selectivity, and CO2 uptake (Fig. 6). We draw
the reader's attention particularly to the case of CO2/N2 selec-
tivity, where the underlying distribution illustrates the difficulty
of the task. Despite this challenge, BO achieves signicantly
higher identication performance and successfully discovers
the best-performing MOF early in the search process. Once
again, the nDCG values for BO are considerably higher than
those for random sampling (Fig. S3), further demonstrating its
superior ranking capabilities.

Finally, Fig. 7 presents the results for three additional data-
sets: O2/N2 diffusion selectivity inMOFs (fromOrhan et al.28), H2

uptake in MOFs (from Villajos et al.31), and CH4 uptake in COFs
(from Aksu and Keskin2). Due to the relatively smaller size of
these datasets, we focused on the identication of the top-10
performing materials, reducing the evaluation threshold by an
order of magnitude compared to previous cases. Even under
this more stringent setting, our BO approach consistently
outperforms random sampling, both in terms of identifying top
performers and in ranking them effectively. BO successfully
identies a greater portion of the top-10 candidates with fewer
samples, and—as conrmed by the nDCG scores—produces
rankings that more closely reect the true order of performance.

4 Conclusions

We have presented a frugality-oriented Bayesian Optimization
(BO) framework tailored to the practical needs of materials
scientists seeking not just a single optimum, but an ensemble
of top-N performers from vast design spaces of functionalized
nanoporous materials. By integrating three practical
elements—(i) a diversity-preserving initialization scheme, (ii)
batch-mode acquisitions to reduce retraining overhead, and (iii)
a surrogate enrichment step in which an XGBoost model is
trained on BO-acquired samples to predict and rerank the
remainder of the space—we achieve a data-efficient workow
that dramatically reduces the number of expensive evaluations
required. Across eight literature-derived datasets (MOFs and
COFs spanning adsorption, diffusion, and selectivity targets),
our BO framework recovers up to 2×–5× more true top-N
candidates than a conventional ML pipeline trained on random
samples (as measured by recall@N), and produces more accu-
rate rankings (nDCG). Moreover, our BO method locates the
single best performer with just 100–200 evaluations, whereas
the random-sampling approach oen still fails to nd it aer
3762 | Digital Discovery, 2025, 4, 3753–3763
2000 samples. By prioritizing task-specic metrics (recall@N,
nDCG) over global measures (e.g., R2, MSE), we directly address
the experimental goal of discovering rare, high-value materials
under strict budget constraints. It is worth mentioning, in
general, when comparing BO and Random Sampling ML, that
BO is by construction a sequential process, whereas random
sampling allows fully independent evaluations. In principle, if
very large-scale parallel evaluation were available, random
sampling could exploit this more directly and achieve faster
turnaround despite lower sample efficiency. In practice,
however, such scenarios remain largely hypothetical in mate-
rials discovery, where evaluations are typically costly and
parallel resources are limited. Under these realistic conditions,
BO provides a clear advantage by reducing the total number of
evaluations required. The result is a robust and practical
workow—effective across diverse chemistries and objectives,
and built entirely on standard Gaussian process and XGBoost
tools. While our benchmarking focused on Random-Sampling
ML as a baseline—reecting its widespread use in prior litera-
ture and practice—we note that other strategies, such as
uncertainty-based or diversity-driven active learning,11 have also
been explored for chemical design spaces. Incorporating such
baselines in future work would provide additional perspective,
but our present goal was to highlight the benets of useful
extensions to BO relative to the most common ML pipeline.

We envisage several concrete extensions to further enhance
our framework's practical utility. First, integrating multi-
objective BO methods—such as those by Kim et al.32 and
Hoang et al.33—would enable simultaneous optimization of
multiple performance criteria (e.g., selectivity vs. capacity).
Second, replacing the Gaussian process surrogate with alter-
native probabilistic models (e.g., Bayesian Neural Networks34 or
Gradient Boosting models with uncertainty estimation35) could
alleviate the computational and scaling limitations of GPs.
Third, human-in-the-loop strategies, as in HypBO,36would allow
domain experts to steer the sampling process in real time,
potentially accelerating convergence in difficult regions. Finally,
minimizing the effective design space—following the ZoMBI
algorithm of Siemenn et al.17 —offers a promising route to
reduce memory overhead, runtime, and the number of required
samples, thereby addressing both the computational and the
sampling costs. We are actively exploring these directions,
though detailed implementation lies beyond the scope of this
work.
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The codes for our (a) Bayesian optimization implementation as
described in this manuscript and (b) the evaluation metrics
estimation underlying this work are freely available for general
use under the Apache License 2.0. They are deposited at https://
github.com/insane-group/BO_for_Design_Space_Exploration
and archived on Zenodo with DOI: https://doi.org/10.5281/
zenodo.17491026. The datasets used in this work were
obtained from literature, as cited in this manuscript.
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Gaussian process models, comparison of efficient vs. random
initialization, batch sampling performance, additional R2, MSE
and nDCG analyses, and computational setup used in this work.
See DOI: https://doi.org/10.1039/d5dd00237k.
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