
Digital
Discovery

PAPER

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

0
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d

on
 1

1/
21

/2
02

5
11

:5
6:

28
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.

View Article Online
View Journal | View Issue
A python workflo
aMax Planck Institute for Sustainable Mater

janssen@mpi-susmat.de
bBundesanstalt für Materialforschung und -p
cFriedrich-Schiller-Universität Jena, 07743 J
dPSI Center for Scientic Computing, Theory
eKarlsruhe Institute of Technology (KIT), 76
fImperial College London, 80 Wood Lane, W

Cite this: Digital Discovery, 2025, 4,
3149

Received 26th May 2025
Accepted 1st October 2025

DOI: 10.1039/d5dd00231a

rsc.li/digitaldiscovery

© 2025 The Author(s). Published by
w definition for computational
materials design

Jan Janssen, *a Janine George, bc Julian Geiger,d Marnik Bercx, d Xing Wang,d

Christina Ertural, b Jörg Schaarschmidt,e Alex M. Ganose, f Giovanni Pizzi, d

Tilmann Hickel ab and Jörg Neugebauer a

Numerous Workflow Management Systems (WfMS) have been developed in the field of computational

materials science with different workflow formats, hindering interoperability and reproducibility of

workflows in the field. To address this challenge, we introduce here the Python Workflow Definition

(PWD) as a workflow exchange format to share workflows between Python-based WfMS, currently AiiDA,

jobflow, and pyiron. This development is motivated by the similarity of these three Python-based WfMS,

that represent the different workflow steps and data transferred between them as nodes and edges in

a graph. With the PWD, we aim at fostering the interoperability and reproducibility between the different

WfMS in the context of Findable, Accessible, Interoperable, Reusable (FAIR) workflows. To separate the

scientific from the technical complexity, the PWD consists of three components: (1) a conda

environment that specifies the software dependencies, (2) a Python module that contains the Python

functions represented as nodes in the workflow graph, and (3) a workflow graph stored in the JavaScript

Object Notation (JSON). The first version of the PWD supports Directed Acyclic Graph (DAG)-based

workflows. Thus, any DAG-based workflow defined in one of the three WfMS can be exported to the

PWD and afterwards imported from the PWD to one of the other WfMS. After the import, the input

parameters of the workflow can be adjusted and computing resources can be assigned to the workflow,

before it is executed with the selected WfMS. This import from and export to the PWD is enabled by the

PWD Python library that implements the PWD in AiiDA, jobflow, and pyiron.
1 Introduction

Due to their intrinsic hierarchical nature, material properties
depend on the coupling of various domains, among others,
materials chemistry, defect engineering, microstructure physics,
and mechanical engineering. This oen requires multiscale
simulation approaches to adequately model materials with
different communities representing the different scales. Conse-
quently, the goal of multiscale simulations inmaterials science is
to bridge the gap between the macroscale relevant for applying
these materials and the quantum mechanical ab initio approach
of a universal parameter-free description of materials at the
atomic scale. One of these multiscale simulation approaches that
has recently gained popularity is coupling the electronic-
structure scale and atomic scale by training machine-learned
interatomic potentials (MLIP).1 Such a training of a MLIP
ials, 40237 Düsseldorf, Germany. E-mail:

rüfung, 12205 Berlin, Germany

ena, Germany

and Data, 5232 Villigen PSI, Switzerland

344 Eggenstein-Leopoldshafen, Germany

12 7TA London, UK

the Royal Society of Chemistry
typically consists of the generation of a reference dataset of
electronic structure simulations, the tting of the MLIP with
a specialized tting code, typically written in Python based on
machine learning frameworks like pytorch and tensorow, and
the validation of the MLIP with atomistic simulations, oen with
widespread soware such as the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS)2 or the atomic simula-
tion environment (ASE),3 both of which also provide Python
interfaces. Consequently, it requires expertise in electronic
structure simulations, in tting the MLIP, as well as in inter-
atomic potential simulation, with the corresponding simulation
and tting codes being developed by different communities.4,5

The resulting challenge of managing simulation codes from
different communities in a combined study of hundreds or
thousands of simulations has led to the development of
a number of Workow Management Systems (WfMS). Similarly,
high-throughput screening studies, which also couple large
numbers of simulations executed with simulation codes at
different scales, with different computational costs, and devel-
oped from different communities, benet from WfMS.

In this context, a scientic workow is commonly dened as
the reproducible protocol of a series of process steps, including
the transfer of information between them.6,7 This can be
Digital Discovery, 2025, 4, 3149–3161 | 3149

http://crossmark.crossref.org/dialog/?doi=10.1039/d5dd00231a&domain=pdf&date_stamp=2025-11-02
http://orcid.org/0000-0001-9948-7119
http://orcid.org/0000-0001-8907-0336
http://orcid.org/0000-0001-8470-1012
http://orcid.org/0000-0002-7696-5824
http://orcid.org/0000-0002-4486-3321
http://orcid.org/0000-0002-3583-4377
http://orcid.org/0000-0003-0698-4891
http://orcid.org/0000-0002-7903-2472
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD004011

Fig. 1 The Python Workflow Definition (PWD) consists of three
components: a conda environment, a Python module, and a JSON
workflow representation. The three Workflow Management Systems
AiiDA, jobflow, and pyiron all support both importing and exporting to
and from the PWD.

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

0
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d

on
 1

1/
21

/2
02

5
11

:5
6:

28
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
visualized as a graph with the nodes referencing the computa-
tional tools and the edges the information transferred between
those nodes. Correspondingly, a WfMS is a soware tool to
orchestrate the construction, management, and execution of the
workow.8 The advantages of using a WfMS are: (1) Automized
execution of the workow nodes on high-performance
computing (HPC) clusters; (2) improved reproducibility, docu-
mentation, and distribution of workows based on a standard-
ized format; (3) user-friendly interface for creating, editing, and
executing workows; (4) interoperability of scientic soware
codes; (5) orchestration of high-throughput studies with a large
number of individual calculations; (6) out-of-process caching of
the data transferred via the edges of the workow and storage of
the nal results; (7) interfaces to community databases for
accessing and publishing data.7 As a consequence, using a WfMS
abstracts the technical complexity, and the workow centers
around the scientic complexity.

In contrast to WfMS in other communities like BioPipe,9

which denes workows in the Extensible Markup Language
(XML), or SnakeMake,10 NextFlow11 and Common Workow
Language (CWL),12 which introduce their own workow
languages, many WfMS in the computational materials science
community use Python as the workow language.13–24 Using
a programming language to dene workows has the benet
that ow control elements, like loops and conditionals, are
readily available as basic features of the language, which is not
the case for static languages. This is a limitation of static
languages, such as XML (more on this in Sec. 1 and the SI).
Furthermore, the choice of Python in the eld of computational
materials science has three additional advantages: (1) the
Python programming language is easy to learn as its syntax is
characterized by very few rules and special cases, resulting in
better readability compared to most workow languages and
a large number of users in the scientic community, (2) the
improved computational efficiency of transferring large
amounts of small data objects between the different workow
steps in-memory, compared to le-based input and output (IO),
and (3) a large number of scientic libraries for the Python
programming language, including many for machine learning,
materials science and related domain sciences.

The increasing number of WfMS being developed in the
computational materials science community and beyond led to
the development of benchmarks implementing the same
workow in different WfMS25 and the extension of the FAIR
(Findable, Accessible, Interoperable, and Reusable) principles
to FAIR workows.8 However, the interoperability between
different WfMS remains challenging, even within the subgroup
of WfMS that use Python as the workow language. For this
specic case, three levels of interoperability can be identied:
(1) the same scientic Python functions are shared between
multiple WfMS, e.g., parsers for the input and output les of
a given simulation code, (2) the Python functions representing
the nodes and the corresponding edges are shared as
a template, so that the same workow can be executed with
multiple WfMS and (3) the workow template, including the
intermediate results of the workow, e.g., the inputs and
outputs of each node, is shared.
3150 | Digital Discovery, 2025, 4, 3149–3161
In the following, the Python Workow Denition (PWD) for
Directed Acyclic Graphs (DAG) and the corresponding Python
interface26 are introduced. They implement the second level of
interoperability for the following three WfMS: AiiDA,13,14,27 job-
ow,16 and pyiron.20 The interoperability of the PWD is demon-
strated in three examples: (1) The coupling of Python functions, (2)
the calculation of an energy-versus-volume curve with the
Quantum ESPRESSO Density Functional Theory (DFT) simulation
code28,29 and (3) the benchmark le-based workow for a nite
element simulation introduced in ref. 25. These three examples
highlight the application of the PWD to pure Python workows,
le-based workows based on calling external executables with le
transfer between them, andmixedworkows that combine Python
functions and external executables. Different users have different
preferences for their choice of WfMS and the PWD is not intended
to replace any of them, instead it is an interoperability format to
allow users of different WfMS to exchange their workows.
2 Python workflow definition

Following the goal of separating technical complexity from
scientic complexity, our suggestion for a PWD consists of three
parts: (1) The soware dependencies of the workow are speci-
ed in a conda environment le, so all dependencies can be
installed using the conda package manager, which is commonly
used in the scientic community.30 (2) Additional Python func-
tions, which represent the nodes in the workow graph, are
provided in a separate Python module. (3) Finally, the workow
graph with nodes and edges is stored in the JavaScript Object
Notation (JSON) with the nomenclature inspired by the Eclipse
Layout Kernel (ELK) JSON format.31 This is illustrated in Fig. 1,
together with the threeWfMS currently supporting the PWD. If all
the involved scientic functionalities are already available within
preexisting conda packages, the Python module (part 2) is not
required. Still, while an increasing number of open-source
simulation codes and utilities for atomistic simulations are
available on conda for different scientic domains,30 in most
cases, additional Python functions are required. These functions
are typically stored in the Python module.
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

0
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d

on
 1

1/
21

/2
02

5
11

:5
6:

28
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
As a rst simple example workow, the addition of the product
and quotient of two numbers, c = a/b + a$b, and subsequent
squaring of their sum is represented in the PWD. To illustrate the
coupling of multiple Python functions, this computation is split
into three Python functions, a function to
compute the product and quotient of two numbers, a
function for the summation, and a function to
raise the number to the power of two:

It is important to note here, that the Python functions are
dened independently of a specic WfMS, so they can be reused
with anyWfMS or even without. Furthermore, the Python functions
highlight different levels of complexity supported by the PWD: The

function returns a dictionary with two
output variables, with the keys and referencing the
product and quotient of the two input parameters. Instead, the
summation function takes two input variables and
returns only a single output, which is then fed into the

function that returns the nal result. In addition,
the function uses default parameter values
and type hints, which are optional features of the Python
programming language supported by the PWD to improve the
interoperability of the workow. While the computation of the
product and quotient of two numbers could be done in two separate
functions, the purpose here is to demonstrate the implementation
of a function with more than one return value. Another example of
such a function could be a matrix diagonalization function that
returns the eigenvalues and eigenvectors. The supplementary
information provides a more in-depth discussion of how function
returns are resolved to an unambiguous mapping in the graph.

As a demonstration, the Python functions
, and are stored

in a Python module named . In addition, as these
functions have no dependencies other than the Python stan-
dard library, the conda environment, , is
sufficiently dened by specifying the Python version:

The conda-forge community channel is selected as the
package source as it is freely available and provides a large
number of soware packages for materials science and related
disciplines.30 For other examples, e.g., the calculation of the
© 2025 The Author(s). Published by the Royal Society of Chemistry
energy-versus-volume curve with Quantum ESPRESSO (see
below), the conda environment would contain the soware
dependencies of the workow, including the simulation code
and additional utilities like parsers. It is important to note that
the combination of the Python module and the conda envi-
ronment already addresses the requirements for the rst level of
interoperability dened above. As the scientic Python func-
tions are dened independently of any workow environment,
they can be used with any WfMS that supports Python functions
as nodes. Furthermore, conda environments can be converted
to containers, such as docker32 and PyPI packages can be con-
verted to conda packages,33 highlighting the interoperability
advantage of using conda packages.

The limitation of the rst level of interoperability is the loss of
connection of the individual functions, that is, which output of
one function is reused as input of another function. In terms of
the workow as a graph with the Python functions representing
the nodes of the graph, these connections are the edges between
the nodes. To dene the workow, we wrap the individual
function calls in another function to which we can then pass our
input values and from which we retrieve our output value:

We pass the inputs and to our
function, in which the computation of the product and quotient
with the is executed rst. This is then
followed by a summation of the two results with the
function, which returns a single output value that is then fed
into the function. The corresponding graph is
visualized in Fig. 2.

In the next step, the resulting graph is serialized to an
internal JSON representation with the nomenclature and overall
structure inspired by the ELK JSON format,31 for sharing the
workow between different WfMS. While human-readable, the
JSON format is not intended for direct user interaction, i.e.
generating or modifying the JSON with a text editor; rather, it is
primarily focused on enabling interoperability of WfMS and
long-term storage. For the construction of a workow, we rec-
ommended using one of the existing WfMS and aerwards
exporting the workow to the PWD. The resulting PWD JSON for
the arithmetic workow is:

On the rst level, the PWD JSON format denes the workow
metadata given by the version number, nodes and edges:

� The version number (of the PWD JSON format) is given by
three non-negative integers combined in a string, to enable
semantic versioning. Minor changes and patches which do not
affect the backwards compatibility are indicated by increasing
the second and third numbers, respectively. In contrast, an
Digital Discovery, 2025, 4, 3149–3161 | 3151

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Fig. 2 The arithmetic workflow computes the sum of the product and
quotient of two numbers. The red nodes of the workflow graph denote
inputs, the orange the outputs, and the blue nodes the Python func-
tions for the computations. The labels of the edges denote the data
transferred between the nodes.

3152 | Digital Discovery, 2025, 4, 3149–3161

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

0
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d

on
 1

1/
21

/2
02

5
11

:5
6:

28
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
increase in the rst number indicates changes that are no
longer backwards compatible.

� The nodes section is (in this example) a list of six items: The
three Python functions dened in the Python
module, the two input parameters for the workow, in this case

and , and the output data node. Each node is
dened as a dictionary consisting of an , a , and
a . In case of the and data nodes, the

is an identier that denotes how the inputs and outputs
are exposed by the overall workow. Moreover, for data
nodes, the is an optional default value (if provided during
workow construction). On the other hand, for
nodes, the entry contains the module and function
name. The usage of the dictionary format allows future extensions
by adding additional keys to the dictionary for each node.

� In analogy to the nodes, also the edges are stored as a list of
dictionaries. Therst two edges connect the input parameters with
the function. Each edge is dened based on
the source node , the source port , the
target node and the target port . As the
input data nodes do not have associated ports, their source ports
are null. In contrast, the target ports are the input parameters
and of the function. The PWD JSON
representation also contains two edges that connect the two
outputs from the function to the inputs of
the function. In analogy to the target port, the source
port species the output dictionary key to select from the output. If
no source port is available (typically because a function does not
return a dictionary containing keys that can serve as source ports),
then the source port is set to and, in that case, the entire
return value of the function (possibly, also a tuple, list, dictionary
or any other Python data type) is transferred to the target node.
This is the case for the h edge that maps the return value of the

function to the input of the func-
tion. Finally, its result is exposed as the global output of
the workow, the last edge in the graph. As the
function does return the value directly, and the target of the edge is
an output data node (that does not dene a port), both

and are null in this edge.
By using a list of dictionaries for both the nodes and edges,

as well as a dictionary at the rst level, the PWD JSON format is
extensible, and additional metadata beyond the version number
can be added in the future. As the focus of this rst version of
the PWD is the interoperability between the different WfMS,
apart from the node types (useful for parsing and validation), no
additional metadata is included in the PWD JSON format. To
assist the users in analyzing the JSON representation of the
PWD, the PWD Python interface provides a function to
visualize the workow graph. The function is introduced
in the supplementary material.
3 Export to the Python workflow
definition

The focus of the PWD is to enable the interoperability between
different WfMS. Thus, it is recommended that users always use
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

0
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d

on
 1

1/
21

/2
02

5
11

:5
6:

28
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
one of the supportedWfMS to create the workow and export it to
the PWD using the PWD Python library. Aerwards, the workow
can be imported into a different WfMS, the input parameters can
be modied, and computational resources can be assigned
before the workow is executed. In the following, the same
workow introduced above is dened in AiiDA, jobow, and
pyiron. This highlights the similarities between these Python-
based WfMS, which all use the Python programming language
as their workow language, with the selection of WfMS being
based on the authors' experience. While this section covers the
export of the workow to the WfMS, the import is discussed in
the application section below. Finally, interfaces for additional
WfMS are planned in the future. Full integration will be achieved
with PWD support becoming an integral part of the WfMS itself
and the PWD package possibly becoming a dependency.

3.1 AiiDA

The “Automated Interactive Infrastructure and Database for
Computational Science” (AiiDA)13,14,27 is aWfMS with a strong focus
on data provenance and high-throughput performance. AiiDA
provides check pointing, caching, and error handling features for
dynamic workows at full data provenance (via an SQL database),
among other features. While it originated from the eld of
computational materials science,34 it has recently been extended to
several otherelds (see e.g. the codes supported in the AiiDA plugin
registry35) and to experiments.36 In the following code snippets, we
will be using the , a recently added and actively devel-
oped new AiiDA workow component.37 The functions
like a canvas for workow creation to which a user can dynamically
add , that is, workow components (also called “nodes” in
a graph-based representation of a workow), and connect them
with (the “edges“ in the PWD). This approach to workow
creation offers the exibility of dynamically chaining workow
components together “on-the-y”, an approach especially crucial
for rapid prototyping common in scientic environments. Imple-
mentation of the arithmetic workow is shown in the following
snippets. It starts with the import of relevant modules:

We rst import the module,
which contains the necessary code to import from and export to
the general Python workow denition. In addition, from the
AiiDA core module, we import AiiDA's Object-Relational Mapper
(ORM), as well as the function. The ORM module
allows mapping Python data types to the corresponding entries in
© 2025 The Author(s). Published by the Royal Society of Chemistry
AiiDA's underlying SQL database, and calling the
function ensures that an AiiDA prole (necessary for running
workows via AiiDA) is loaded. From the
module, we import the main class, as well as the
decorator. Lastly, we import the Python functions from the

module.
To convert the pure Python functions from the arithmetic

workow into AiiDA WorkGraph workow components, we
wrap them with the function (decorator):

As the function returns a dictionary with
multiple outputs, we pass this information to the function
via the argument, such that we can reference them at
a later stage (they will become the ports in the PWD JSON).
Without the argument, the whole output dictionary

would be wrapped as one
port with the default key. This is what actually
happens to the single return value of the function (as
further outlined in the supplementary information, we follow
a similar approach to resolve the “ports” entries in the “edges”
of the PWD). Next follows the instantiation of the WorkGraph:

Which then allows adding the previously dened :

Here, we wrap the inputs as AiiDA ORM nodes to ensure they
are registered as nodes when exporting to the PWD. Further, in
the , the outputs of the previous

are passed as inputs. Note that at
this stage, the workow has not been run, and these output
values do not exist yet. In WorkGraph, such outputs are
represented by a that serves as a placeholder for future
values and already allows linking them to each other in the
workow:
Digital Discovery, 2025, 4, 3149–3161 | 3153

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

0
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d

on
 1

1/
21

/2
02

5
11

:5
6:

28
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
Alternatively, adding tasks to the WorkGraph and linking
their outputs can also be done in two separate steps, shown
below for linking the and

:

Lastly, the JSON le containing the PWD can be written to disk
via:

The import of the workow that is exported from AiiDA, in
jobow and pyiron is discussed in Sec. 4. In addition, the cor-
responding examples on GitHub contain both the import and
export for each of the three examples, to highlight the inter-
operability between the different WfMS.26
3.2 Jobow

Jobow16 was developed to simplify the development of high-
throughput workows. It uses a decorator-based approach to
dene the that can be connected to form complex
workows (s). Jobow is the workow language of the
workow library atomate2,38 designed to replace atomate,39

which was central to the development of the Materials Project40

database.
First, the decorator, which allows the creation of

objects, and the class are imported. In addition, the PWD
Python module and the functions of the arithmetic workow
are imported in analogy to the previous example.
3154 | Digital Discovery, 2025, 4, 3149–3161
Using the job object decorator, the imported functions from
the arithmetic workow are transformed into jobow s.
These s can delay the execution of Python functions and can
be chained into workows (s). A can return serializable
outputs (e.g., a number, a dictionary, or a Pydanticmodel) or a so-
called object, which enables the execution of dynamic
workows where the number of nodes is not known prior to the
workow's execution. As jobow itself is only a workow
language, the workows are typically executed on high-
performance computers with a workow manager such as Fire-
works41 or jobow-remote.42 For smaller and test workows,
simple linear, non-parallel execution of the workow graph can
be performed with jobow itself. All outputs of individual jobs
are saved in a database. For high-throughput applications, typi-
cally, a MongoDB database is used. For testing and smaller
workows, amemory database can be used instead. In Fireworks,
its predecessor in theMaterials Project infrastructure, this option
did not exist, which was a signicant drawback.

As before in the AiiDA example, the workow has not yet
been run. refers to an

object instead of the actual output.
Finally, aer the workow is constructed, it can be exported

to the PWD using the PWD Python package to store the jobow
workow in the JSON format, which again can be imported with
AiiDA and pyiron as demonstrated in the examples in the
GitHub repository.26
3.3 pyiron

The pyiron WfMS was developed with a focus on rapid proto-
typing and up-scaling atomistic simulation workows.20 It
has since been extended to support simulation workows at
different scales, including the recent extension to experimental
workows.43 Based on this generalization, the same
arithmetic Python workow is implemented in the pyiron
WfMS. Starting with the import of the pyiron job object deco-
rator and the PWD Python module, the functions of the
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Fig. 3 Energy-versus-volume curve calculation workflow with
Quantum ESPRESSO. Red boxes denote inputs, orange boxes outputs,
blue boxes Python functions and green boxes calls to external
executables.

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

0
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d

on
 1

1/
21

/2
02

5
11

:5
6:

28
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
arithmetic workow are imported in analogy to the previous
examples above.

Using the job object decorator, the imported functions
from the arithmetic workow are converted to pyiron job
generators. These job generators can be executed like
Python functions; still, internally, they package the Python
function and corresponding inputs in a pyiron job object, whi-
ch enables the execution on HPC clusters by assigning dedicated
computing resources and provides the permanent storage of the
inputs and output in the Hierarchical Data Format (HDF5). For
the function, an additional list of output
parameter names is provided, which enables the coupling of the
functions before the execution, to construct the workow graph.

Aer the conversion of the Python functions to pyiron job
generators, the workow is constructed. The pyiron job genera-
tors are called just like Python functions; still, they return pyiron
delayed job objects rather than the computed values. These
delayed job objects are linked with each other by using a delayed
job object as an input to another pyiron job generator. Finally,
the whole workow would be only executed once the pull func-
tion is called on the delayed pyiron object of the

function. At this point, the delayed pyiron objects
are converted to pyiron job objects, which are executed using the
pyiron WfMS. In particular, the conversion to pyiron job objects
enables the automated caching to the hierarchical data format
(HDF5) and the assignment of computing resources.

For the example here, the workow execution is skipped and
the workow is exported to the PWD using the PWD Python
package to store the pyiron workow in JSON format. The export
command is implemented in analogy to the export commands
for AiiDA and jobow, taking a delayed pyiron object as an input
in combination with the desired le name for the JSON repre-
sentation of the workow graph, which again can be imported
© 2025 The Author(s). Published by the Royal Society of Chemistry
with AiiDA and jobow as demonstrated in the examples in the
GitHub repository.26

The implementation of the arithmetic workow in pyiron
demonstrates the similarities to AiiDA and jobow.
4 Import from the Python workflow
definition

To demonstrate the application of the PWD beyond just the arith-
metic example above, we consider a secondworkow that describes
the calculation of an energy-versus-volume curve with Quantum
ESPRESSO. The energy-versus-volume curve is typically employed to
calculate the equilibrium volume and the compressive bulk
modulus for bulk materials. The workow is illustrated in Fig. 3,
with the red and orange nodes marking the inputs and outputs of
the workow, the blue nodes the Python functions, and the green
nodes indicating Python functions that internally launch Quantum
ESPRESSO simulations. The individual steps of the workow are:

1. Based on the input of the chemical element, the lattice
constant, and the crystal symmetry, the atomistic bulk structure
is generated by calling the bulk structure generation function

. This function is obtained via the
Atomistic Simulation Environment (ASE)3 and extended to
enable the serialization of the atomistic structure to the JSON
format using the OPTIMADE44 Python tools.45

2. The structure is relaxed aerwards with Quantum
ESPRESSO to get an initial guess for the equilibrium lattice
constant. Quantum ESPRESSO is written in FORTRAN and does
Digital Discovery, 2025, 4, 3149–3161 | 3155

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

0
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d

on
 1

1/
21

/2
02

5
11

:5
6:

28
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
not provide Python bindings, so that the communication is
implemented in the function by writing input
les, calling the external executable, and parsing the output
les. This Python function has been imple-
mented once and is reused by all three WfMS.

3. Following the equilibration, the resulting structure is
strained in the function with two
compressive strains of −10% and −5% and two tensile strains
of 5% and 10%. Together with the initially equilibrated struc-
ture, this leads to a total of ve structures.

4. Each structure is again evaluated with Quantum
ESPRESSO to compute the energy of the strained structure.

5. Aer the evaluation with Quantum ESPRESSO, the calcu-
lated energy–volume pairs are collected in the

function and plotted as an
energy-versus-volume plot. The nal plot is saved in a le named

.
Compared to the previous arithmetic example, this workow

is more advanced and not only illustrates one-to-one connec-
tions, in terms of one node being connected to another node,
but also one-to-many and many-to-one connections. The latter
two are crucial to construct the loop over different strains,
compute the corresponding volume and energy pairs, and
gather the results in two lists, one for the volumes and one for
the energies, to simplify plotting. In addition, it highlights the
challenge of workows in computational materials science to
couple Python functions for structure generation, modica-
tions, and data aggregation with simulation codes that do not
provide Python bindings and require le-based communica-
tion. Given the increased complexity of the workow, the
implementation for the individual WfMS is provided in the
supplementary material. Instead, the following briey high-
lights how the workow, which was previously stored in the
PWD, can be reloaded with the individual frameworks.

Starting with the AiiDAWfMS, the rst step is to load the AiiDA
prole and import the PWD Python interface. Aerwards, the
workow can be loaded from the JSON representation
using the function. To demonstrate the
capability of modifying the workow parameters before the
execution of the (re-)loaded workow, we then modify the lattice
constant of the node to 4.05 Å. Similarly,
one could also adapt the element, bulk structure, or strain list
input parameters of the workow. Finally, the workow is executed
by calling the function of the AiiDA WorkGraph object:
3156 | Digital Discovery, 2025, 4, 3149–3161
The same JSON representation of the workow can
also be loaded with the jobow WfMS. Again, the jobow WfMS
and the PWD Python interface are imported. The JSON repre-
sentation is loaded with the
function. Aerwards, the lattice constant is adjusted to 4.05 Å
and nally the workow is executed with the jobow

function. We note that the same workow could
also be submitted to a HPC cluster, but local execution is
primarily chosen here for demonstration purposes to enable the
local execution of the provided code examples.

In analogy to the AiiDA WfMS and the jobow WfMS. the
energy-versus-volume curve workow can also be executed with
the pyiron WfMS. Starting with the import of the PWD Python
interface, the JSON representation of the workow is
again loaded with the function, fol-
lowed by the adjustment of the lattice constant to 4.05 Å by
accessing the input of the rst delayed job object. Finally, the
last delayed job object's function is called to execute the
workow.

The focus of this second example is to highlight that
a workow stored in the PWD can be executed with all three
workow frameworks with minimally adjusted code. This not
only applies to simple workows consisting of multiple Python
functions but also includes more complex logical structures like
the one-to-many and many-to-one connections, covering any
Directed Acyclic Graphs (DAG) topology. We remark, though,
that in the current version the restriction to DAGs is also
a limitation of the PWD, as it does not cover dynamic workows,
such as a while loop that adds additional steps until a given
condition is fullled. Another challenge is the assignment of
computational resources, like the assignment of a xed number
of CPU cores, as the wide variety of different HPC clusters with
different availability of computing resources hinders stan-
dardization. As such, the user is required to adjust the
computational resources via the WfMS aer reloading the
workow graph. For this reason, the workow is also not
directly executed by the function, but
rather the user can explore and modify the workow and
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

0
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d

on
 1

1/
21

/2
02

5
11

:5
6:

28
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
aerwards initiate the execution with any of the WfMS once the
required computational resources are assigned.
5 Compatibility to non-Python-based
workflows

The two previous examples demonstrated Python-based work-
ows, which couple either solely Python functions or Python
functions and external executables, wrapped by other Python
functions that write the input les and parse the output les.
Before Python-based WfMS, a number of previous WfMS were
introduced, which couple simulation codes solely based on
transferring les between the different steps of the workow.9–12

To demonstrate that the PWD can also be applied to these le-
based workows, we implement the benchmark published in
ref. 25 for le-based workows in materials science in the PWD.
The corresponding workow is illustrated in Fig. 4.

As the le-based workow for nite element simulations is
already discussed in the corresponding publication,25 it is only
summarized here. A mesh is generated in the rst pre-
processing step, followed by the conversion of the mesh
format in the second pre-processing step. Aerwards, the
Poisson solver of the nite element code is invoked. Finally, in
the postprocessing, the data is rst visualized in a line plot,
a TeX macro is generated, and a TeX document is compiled,
resulting in the as the nal output. To represent this le-
based workow in the PWD, each node is represented by
Fig. 4 File-based finite element workflow from ref. 25 implemented
with the Python Workflow Definition (PWD). Red nodes denote inputs,
orange nodes outputs, green nodes calls to external executables, and
the labels on the edges the files and data transferred between them.
Files are passed as path objects between the individual steps.

© 2025 The Author(s). Published by the Royal Society of Chemistry
a Python function. This Python function acts as an interface to
the corresponding command line tool, handling the writing of
the input les, calling of the command line tool and the parsing
of the output les. In this specic case, which is purely based on
external executables, the output les of one node are copied to
be used as input les for the next node, and only the path to the
corresponding le is transferred in Python. The Python func-
tion for the node is given below:

The input parameters of the function are
the and the with the

referencing the location of additional input
les. Following the denition of a number of variables,
a directory is created and the source les are copied as
templates to this directory. Then the external executable is
called. Here we use the package,46 which
allows us to execute the external executable in a separate conda
environment. This was a requirement of the le-based bench-
mark workow.25 Finally, the path to the output le

is returned as result of the Python function.
While the denition of a Python function for each node is an

additional overhead, it is important to emphasize that the
Python functions were only dened once, independently of the
Digital Discovery, 2025, 4, 3149–3161 | 3157

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

0
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d

on
 1

1/
21

/2
02

5
11

:5
6:

28
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
different WfMS and aerwards the same Python functions were
used in all three WfMS. Again, the step-by-step implementation
in the three different WfMS and the exporting to the PWD is
available in the supplementary material. This third example
again highlights the universal applicability of the PWD, as it can
cover both Python-based workows and le-based workows.

Finally, to increase the impact of the PWD and extend its
generality beyond the three WfMS discussed in this work, we
provide a rst proof-of-concept implementation to convert
a PWD JSON le to the Common Workow Language (CWL).12

In this case each input and output of every node is serialized
using the built-in pickle serialization of the Python Standard
library. The resulting pickle les are then transferred from one
node to another through CWL. To convert a given PWD JSON
le, use the from the CWL submodule of the
PWD Python interface:

This Python function creates the corresponding CWL les to
represent the individual nodes, as well as the resulting workow
in the CWL, which can then be executed by any CWL engine
(given that the necessary dependencies are available on the
system). Still, it is important to emphasize that in contrast to the
interfaces to the Python-based WfMS, the interface to the CWL
is a one-way conversion only from the PWD to the CWL, not the
other way around. Furthermore, by converting the workow to
the CWL, the performance benet of handling the data on the
edges of the workow inside the Python process is lost as the
CWL interface is based on le-based communication. Lastly,
another notable concept close to the PWD is the graph-based
Abstract Syntax Tree (AST)47 representation of the Python stan-
dard library. For brevity this comparison is discussed in the
supplementary information.
6 Conclusions

The Python Workow Denition (PWD) enables users to
develop interoperable workows to fulll the requirements for
Findable, Accessible, Interoperable and Reusable (FAIR) work-
ows. The rst version of the PWD currently supports Directed
Acyclic Graphs (DAGs) based workows and interoperability
between the Workow Management Systems (WfMS) AiiDA,
jobow, and pyiron. It is based on three components: (1)
a conda environment that species the soware dependencies,
(2) a Python module that contains the Python functions repre-
sented as nodes in the workow graph, and (3) a workow graph
stored in the JavaScript Object Notation (JSON). The application
of the PWD is demonstrated on three different workows with
different combinations of Python functions and external
executables, which require interfacing using le-based
communication, highlighting the universal applicability of the
PWD. With the corresponding Python interface that we
3158 | Digital Discovery, 2025, 4, 3149–3161
developed, users can export DAG-based workows from one
WfMS to the PWD and then import the PWD representation of
the workow with any of the supported WfMS. Aer the import
of the workow, the user still has the option to adjust the input
parameters of the workow, adjust and add WfMS specic
features, and assign computational resources to leverage HPC
during the execution of the workow. In the current version, the
assignment of the computational environment is not included
in the PWD as it is not expected that a user would use multiple
WfMS on the same HPC cluster, but rather uses the PWD when
transferring a workow from one HPC cluster with a specic
WfMS to a different HPC cluster with a different WfMS. In this
case, the assignment of the compute environment changes
based on the different HPC resources.

Future development directions of the PWD will focus on
broadening its adoption and enhancing its capabilities:

� Engage a wider array of WfMS developers and scientic
communities in the joint effort. It is recommended to start with
the implementation of the function,
i.e., with the mapping of the workow stored in the JSON le to
the internal workow data structure of a given WfMS. The
inverse, the implementation of the
function, then follows analogously.

� Enable connections to data handling frameworks like
datatractor,48 and leverage the PWD to create containerized,
portable versions of generalized workows for both simulation
and experiment.

� Extend the PWD format to include standardized speci-
cations for submitting workows to standardized HPC
resources, thereby simplifying execution across different
infrastructures.

� Transcend PWD's current limitation to DAGs by incorpo-
rating support for dynamic ow control elements like loops and
conditional branching, enabling the representation of more
complex scientic workows.Ultimately, the vision is to evolve
the PWD towards a comprehensive schema capable of capturing
all information necessary to dene computational workows,
from initial setup to nal results, beyond the eld of materials
science. For this vision the key difference of the PWD in
comparison to other workow standardization efforts is the use
of the Python programming language to dene workow nodes,
which benets from the wide adoption of the Python
programming language in the scientic community and the
direct transfer of data in memory, without requiring to store
intermediate results in les.

Author contributions

Jan Janssen: Writing – original dra, conceptualization, inves-
tigation, methodology, soware, visualization, project admin-
istration. Janine George: Writing – original dra, methodology,
funding acquisition. Julian Geiger: Writing – original dra,
investigation, soware. Marnik Bercx: Writing – review & edit-
ing, methodology. Xing Wang: Writing – review & editing,
investigation, soware. Christina Ertural: Writing – review &
editing. Jörg Schaarschmidt: Writing – review & editing. Alex
Ganose: Writing – review & editing. Giovanni Pizzi: Writing –
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

0
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d

on
 1

1/
21

/2
02

5
11

:5
6:

28
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
review & editing, methodology, funding acquisition. Tilmann
Hickel: Writing – review & editing, funding acquisition. Jörg
Neugebauer: Writing – review & editing, methodology, funding
acquisition.
Conflicts of interest

The authors declare that they have no known competing
nancial interests or personal relationships that could have
appeared to inuence the work reported in this paper.
Data availability

The Python implementation of the Python Workow Denition
python_workow_denition including all the examples from
the paper are available at: https://github.com/pythonworkow/
python-workow-denition.26 The same repository is also
published on Zenodo: https://doi.org/10.5281/
zenodo.15516180.49

Supplementary information is available. See DOI: https://
doi.org/10.1039/d5dd00231a.
Acknowledgements

JJ, JS, TH, and JN thank the German Federal Ministry of
Education and Research (BMBF) for nancial support of the
project Innovation-Platform MaterialDigital (https://
www.materialdigital.de) through project funding FKZ no:
13XP5094A, 13XP5094C, and 13XP5094E. Further JJ, TH and
JN also acknowledge funding from the Deutsche
Forschungsgemeinscha (DFG) through the CRC1394
“Structural and Chemical Atomic Complexity – From Defect
Phase Diagrams to Material Properties”, project ID 409476157
and the consortium NFDI-MatWerk under the National
Research Data Infrastructure, NFDI 38/1, project ID 460247524.
CE and JaG acknowledge the Gauss Centre for Supercomputing
e.V. (https://www.gauss-centre.eu) for funding workow-related
developments by providing generous computing time on the
GCS Supercomputer SuperMUC-NG at Leibniz Supercomputing
Centre (https://www.lrz.de) (Project pn73da). JaG was supported
by ERC Grant MultiBonds (grant agreement no: 101161771;
Funded by the European Union. Views and opinions
expressed are, however, those of the author(s) only and do not
necessarily reect those of the European Union or the
European Research Council Executive Agency. Neither the
European Union nor the granting authority can be held
responsible for them.) JuG, MB, XW and GP acknowledge
nancial support from the NCCR MARVEL, a National Centre
of Competence in Research, funded by the Swiss National
Science Foundation (grant no: 205602), and from the
SwissTwins project, funded by the Swiss State Secretariat for
Education, Research and Innovation (SERI). GP acknowledges
nancial support from the Open Research Data Program of
the ETH Board (project “PREMISE”: Open and Reproducible
Materials Science Research).
© 2025 The Author(s). Published by the Royal Society of Chemistry
References

1 R. Jacobs, D. Morgan, S. Attarian, J. Meng, C. Shen, Z. Wu,
C. Y. Xie, J. H. Yang, N. Artrith, B. Blaiszik, G. Ceder,
K. Choudhary, G. Csanyi, E. D. Cubuk, B. Deng, R. Drautz,
X. Fu, J. Godwin, V. Honavar, O. Isayev, A. Johansson,
B. Kozinsky, S. Martiniani, S. P. Ong, I. Poltavsky, K. Schmidt,
S. Takamoto, A. P. Thompson, J. Westermayr and
B.M.Wood,Curr. Opin. Solid StateMater. Sci., 2025, 35, 101214.

2 A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu,
W. M. Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer,
S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens,
J. Tranchida, C. Trott and S. J. Plimpton, Comp. Phys.
Comm., 2022, 271, 108171.

3 A. Hjorth Larsen, J. Jørgen Mortensen, J. Blomqvist,
I. E. Castelli, R. Christensen, M. Dułak, J. Friis,
M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes,
P. C. Jennings, P. Bjerre Jensen, J. Kermode, J. R. Kitchin,
E. Leonhard Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard,
J. Bergmann Maronsson, T. Maxson, T. Olsen, L. Pastewka,
A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange,
K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng
and K. W. Jacobsen, J. Phys.: Condens. Matter, 2017, 29,
273002.

4 S. Menon, Y. Lysogorskiy, A. L. M. Knoll, N. Leimeroth,
M. Poul, M. Qamar, J. Janssen, M. Mrovec, J. Rohrer,
K. Albe, J. Behler, R. Drautz and J. Neugebauer, npj
Comput. Mater., 2024, 10, 261.

5 Y. Liu, J. D. Morrow, C. Ertural, N. L. Fragapane,
J. L. A. Gardner, A. A. Naik, Y. Zhou, J. George and
V. L. Deringer, Nat. Commun., 2025, 16, 7666.

6 J. Schaarschmidt, J. Yuan, T. Strunk, I. Kondov, S. P. Huber,
G. Pizzi, L. Kahle, F. T. Bölle, I. E. Castelli, T. Vegge,
F. Hanke, T. Hickel, J. Neugebauer, C. R. C. Rêgo and
W. Wenzel, Adv. Energy Mater., 2022, 12, 2102638.

7 S. Bekemeier, C. R. Caldeira Rêgo, H. L. Mai, U. Saikia,
O. Waseda, M. Apel, F. Arendt, A. Aschemann, B. Bayerlein,
R. Courant, G. Dziwis, F. Fuchs, U. Giese, K. Junghanns,
M. Kamal, L. Koschmieder, S. Leineweber, M. Luger,
M. Lukas, J. Maas, J. Mertens, B. Mieller, L. Overmeyer,
N. Pirch, J. Reimann, S. Schröck, P. Schulze, J. Schuster,
A. Seidel, O. Shchyglo, M. Sierka, F. Silze, S. Stier,
M. Tegeler, J. F. Unger, M. Weber, T. Hickel and
J. Schaarschmidt, Adv. Eng. Mater., 2025, 27, 2402149.

8 C. de Visser, L. F. Johansson, P. Kulkarni, H. Mei,
P. Neerincx, K. Joeri van der Velde, P. Horvatovich, A. J. van
Gool, M. A. Swertz, P. A. C. t. Hoen and A. Niehues, PLoS
Comput. Biol., 2023, 19, 1–13.

9 S. Hoon, K. K. Ratnapu, J.-m. Chia, B. Kumarasamy,
X. Juguang, M. Clamp, A. Stabenau, S. Potter, L. Clarke and
E. Stupka, Genome Res., 2003, 13, 1904–1915.

10 J. Köster and S. Rahmann, Bioinformatics, 2012, 28, 2520–
2522.

11 P. D. Tommaso, M. Chatzou, E. W. Floden, P. P. Barja,
E. Palumbo and C. Notredame, Nat. Biotechnol., 2017, 35,
316–319.
Digital Discovery, 2025, 4, 3149–3161 | 3159

https://github.com/pythonworkflow/python-workflow-definition
https://github.com/pythonworkflow/python-workflow-definition
https://doi.org/10.5281/zenodo.15516180
https://doi.org/10.5281/zenodo.15516180
https://doi.org/10.1039/d5dd00231a
https://doi.org/10.1039/d5dd00231a
https://www.materialdigital.de
https://www.materialdigital.de
https://www.gauss-centre.eu
https://www.lrz.de
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Digital Discovery Paper

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

0
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d

on
 1

1/
21

/2
02

5
11

:5
6:

28
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
12 M. R. Crusoe, S. Abeln, A. Iosup, P. Amstutz, J. Chilton,
N. Tijanić, H. Ménager, S. Soiland-Reyes, B. Gavrilović,
C. Goble and T. C. Community, Commun. ACM, 2022, 65,
54–63.

13 G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari and
B. Kozinsky, Comput. Mater. Sci., 2016, 111, 218–230.

14 S. P. Huber, S. Zoupanos, M. Uhrin, L. Talirz, L. Kahle,
R. Häuselmann, D. Gresch, T. Müller, A. V. Yakutovich,
C. W. Andersen, F. F. Ramirez, C. S. Adorf, F. Gargiulo,
S. Kumbhar, E. Passaro, C. Johnston, A. Merkys,
A. Cepellotti, N. Mounet, N. Marzari, B. Kozinsky and
G. Pizzi, Sci. Data, 2020, 7, 300.

15 M. Gjerding, T. Skovhus, A. Rasmussen, F. Bertoldo,
A. H. Larsen, J. J. Mortensen and K. S. Thygesen, Comput.
Mater. Sci., 2021, 199, 110731.

16 A. S. Rosen, M. Gallant, J. George, J. Riebesell,
H. Sahasrabuddhe, J.-X. Shen, M. Wen, M. L. Evans,
G. Petretto, D. Waroquiers, G.-M. Rignanese, K. A. Persson,
A. Jain and A. M. Ganose, J. Open Source Sow., 2024, 9, 5995.

17 S. Vandenhaute, M. Cools-Ceuppens, S. DeKeyser,
T. Verstraelen and V. V. Speybroeck, npj Comput. Mater.,
2023, 9, 19.

18 J. J. Mortensen, M. Gjerding and K. S. Thygesen, J. Open
Source Sow., 2020, 5, 1844.

19 E. Geľzinytė, S. Wengert, T. K. Stenczel, H. H. Heenen,
K. Reuter, G. Csányi and N. Bernstein, J. Chem. Phys., 2023,
159, 124801.

20 J. Janssen, S. Surendralal, Y. Lysogorskiy, M. Todorova,
T. Hickel, R. Drautz and J. Neugebauer, Comput. Mater.
Sci., 2019, 163, 24–36.

21 Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J. Wozniak, I. Foster, M. Wilde and
K. Chard, 28th ACM International Symposium on High-
Performance Parallel and Distributed Computing, HPDC, 2019.

22 C. S. Adorf, P. M. Dodd, V. Ramasubramani and S. C. Glotzer,
Comput. Mater. Sci., 2018, 146, 220–229.

23 B. H. Sjølin, W. S. Hansen, A. A. Morin-Martinez,
M. H. Petersen, L. H. Rieger, T. Vegge, J. M. Garćıa-Lastra
and I. E. Castelli, Digital Discovery, 2024, 3, 1832–1841.

24 F. Zapata, L. Ridder, J. Hidding, C. R. Jacob, I. Infante and
L. Visscher, J. Chem. Inf. Model., 2019, 59, 3191–3197.

25 P. Diercks, D. Gläser, O. Lünsdorf, M. Selzer, B. Flemisch
and J. F. Unger, ing.grid, 2023, 1(1), DOI: 10.48694/
inggrid.3726.

26 Python Workow Denition, https://github.com/
pythonworkow/python-workow-denition, accessed:
2025-05-21.

27 M. Uhrin, S. P. Huber, J. Yu, N. Marzari and G. Pizzi, Comput.
Mater. Sci., 2021, 187, 110086.

28 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni,
I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi,
R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj,
M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri,
R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto,
C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen,
3160 | Digital Discovery, 2025, 4, 3149–3161
A. Smogunov, P. Umari and R. M. Wentzcovitch, J. Phys.:
Condens. Matter, 2009, 21, 395502.

29 P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau,
M. Buongiorno Nardelli, M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna,
I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas,
R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo,
R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia,
M. Kawamura, H.-Y. Ko, A. Kokalj, E. Küçükbenli,
M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen,
H.-V. Nguyen, A. Otero-de-la Roza, L. Paulatto, S. Poncé,
D. Rocca, R. Sabatini, B. Santra, M. Schlipf,
A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser,
P. Umari, N. Vast, X. Wu and S. Baroni, J. Phys.: Condens.
Matter, 2017, 29, 465901.

30 B. Grüning, R. Dale, A. Sjödin, B. A. Chapman, J. Rowe,
C. H. Tomkins-Tinch, R. Valieris, J. Köster and T. B. Team,
Nat. Methods, 2018, 475–476.

31 Eclipse Layout Kernel JSON Format, https://eclipse.dev/elk/
documentation/tooldevelopers/graphdatastructure/
jsonformat.html, accessed: 2025-05-21.

32 repo2docker, https://github.com/jupyterhub/repo2docker/,
accessed: 2025-08-21.

33 grayskull, https://github.com/conda/grayskull/, accessed:
2025-08-21.

34 S. P. Huber, E. Bosoni, M. Bercx, J. Bröder, A. Degomme,
V. Dikan, K. Eimre, E. Flage-Larsen, A. Garcia, L. Genovese,
D. Gresch, C. Johnston, G. Petretto, S. Poncé,
G.-M. Rignanese, C. J. Sewell, B. Smit, V. Tseplyaev,
M. Uhrin, D. Wortmann, A. V. Yakutovich, A. Zadoks,
P. Zarabadi-Poor, B. Zhu, N. Marzari and G. Pizzi, npj
Comput. Mater., 2021, 7, 136.

35 AiiDA plugin registry, https://aiidateam.github.io/aiida-
registry/, accessed: 2025-05-21.

36 P. Kraus, E. Bainglass, F. F. Ramirez, E. Svaluto-Ferro,
L. Ercole, B. Kunz, S. P. Huber, N. Plainpan, N. Marzari,
C. Battaglia and G. Pizzi, J. Mater. Chem. A, 2024, 12,
10773–10783.

37 AiiDA workgraph documentation, https://aiida-
workgraph.readthedocs.io/en/latest/, accessed: 2025-05-22.

38 A. M. Ganose, H. Sahasrabuddhe, M. Asta, K. Beck,
T. Biswas, A. Bonkowski, J. Bustamante, X. Chen,
Y. Chiang, D. C. Chrzan, J. Clary, O. A. Cohen, C. Ertural,
M. Gallant, J. George, S. Gerits, R. E. A. Goodall, R. Guha,
G. Hautier, M. Horton, A. D. Kaplan, R. Kingsbury,
M. C. Kuner, B. Li, X. Linn, M. McDermott,
R. S. Mohanakrishnan, A. N. Naik, J. B. Neaton,
K. A. Persson, G. Petretto, T. Purcell, F. Ricci, B. Rich,
J. Riebesell, G.-M. Rignanese, A. S. Rosen, M. Scheffler,
J. Schmidt, J.-X. Shen, A. Sobolev, R. Sundararaman,
C. Tezak, V. Trinquet, J. Varley, D. Vigil-Fowler, D. Wang,
D. Waroquiers, M. Wen, H. Yang, H. Zheng, J. Zheng,
Z. Zhu and A. Jain, Digital Discovery, 2025, 4, 1944–1973.

39 K. Mathew, J. H. Montoya, A. Faghaninia, S. Dwarakanath,
M. Aykol, H. Tang, I.-H. Chu, T. Smidt, B. Bocklund,
M. Horton, J. Dagdelen, B. Wood, Z.-K. Liu, J. Neaton,
© 2025 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.48694/inggrid.3726
https://doi.org/10.48694/inggrid.3726
https://github.com/pythonworkflow/python-workflow-definition
https://github.com/pythonworkflow/python-workflow-definition
https://eclipse.dev/elk/documentation/tooldevelopers/graphdatastructure/jsonformat.html
https://eclipse.dev/elk/documentation/tooldevelopers/graphdatastructure/jsonformat.html
https://eclipse.dev/elk/documentation/tooldevelopers/graphdatastructure/jsonformat.html
https://github.com/jupyterhub/repo2docker/
https://github.com/conda/grayskull/
https://aiidateam.github.io/aiida-registry/
https://aiidateam.github.io/aiida-registry/
https://aiida-workgraph.readthedocs.io/en/latest/
https://aiida-workgraph.readthedocs.io/en/latest/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Paper Digital Discovery

O
pe

n
A

cc
es

s
A

rt
ic

le
. P

ub
lis

he
d

on
 1

0
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d

on
 1

1/
21

/2
02

5
11

:5
6:

28
 P

M
.

 T
hi

s
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e

C
om

m
on

s
A

ttr
ib

ut
io

n
3.

0
U

np
or

te
d

L
ic

en
ce

.
View Article Online
S. P. Ong, K. Persson and A. Jain, Comput. Mater. Sci., 2017,
139, 140–152.

40 A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,
S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and
K. A. Persson, APL Mater., 2013, 1, 011002.

41 A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher,
M. Brafman, G. Petretto, G.-M. Rignanese, G. Hautier,
D. Gunter and K. A. Persson, Concurr. Comput. Pract. Exp.,
2015, 27, 5037–5059.

42 G. Petretto, M. Evans, D. Waroquiers, F. Ricci, J. Riebesell
and C. Ertural, jobow-remote, 2024, https://github.com/
Matgenix/jobow-remote/tree/v0.1.4.

43 M. Stricker, L. Banko, N. Sarazin, N. Siemer, J. Janssen,
L. Zhang, J. Neugebauer and A. Ludwig, Computationally
accelerated experimental materials characterization –

drawing inspiration from high-throughput simulation
workows, 2025, https://arxiv.org/abs/2212.04804.

44 M. L. Evans, J. Bergsma, A. Merkys, C. W. Andersen,
O. B. Andersson, D. Beltrán, E. Blokhin, T. M. Boland,
R. Castañeda Balderas, K. Choudhary, A. D́ıaz D́ıaz,
R. Domı́nguez Garćıa, H. Eckert, K. Eimre, M. E. Fuentes
Montero, A. M. Krajewski, J. J. Mortensen, J. M. Nápoles
© 2025 The Author(s). Published by the Royal Society of Chemistry
Duarte, J. Pietryga, J. Qi, F. d. J. Trejo Carrillo, A. Vaitkus,
J. Yu, A. Zettel, P. B. de Castro, J. Carlsson,
T. F. T. Cerqueira, S. Divilov, H. Hajiyani, F. Hanke,
K. Jose, C. Oses, J. Riebesell, J. Schmidt, D. Winston,
C. Xie, X. Yang, S. Bonella, S. Botti, S. Curtarolo, C. Draxl,
L. E. Fuentes Cobas, A. Hospital, Z.-K. Liu,
M. A. L. Marques, N. Marzari, A. J. Morris, S. P. Ong,
M. Orozco, K. A. Persson, K. S. Thygesen, C. Wolverton,
M. Scheidgen, C. Toher, G. J. Conduit, G. Pizzi, S. Gražulis,
G.-M. Rignanese and R. Armiento, Digital Discovery, 2024,
3, 1509–1533.

45 M. L. Evans, C. W. Andersen, S. Dwaraknath, M. Scheidgen,
Á. Fekete and D. Winston, J. Open Source Sow., 2021, 6,
3458.

46 Conda Subprocess Package, https://github.com/pyiron/
conda_subprocess, accessed: 2025-05-21.

47 Abstract Syntax Trees, https://docs.python.org/3/library/
ast.html, accessed: 2025-05-21.

48 M. L. Evans, G.-M. Rignanese, D. Elbert and P. Kraus, MRS
Bull., 2025, 50, 838–845.

49 Zenodo, DOI: 10.5281/zenodo.15516180, accessed: 2025-10-09.
Digital Discovery, 2025, 4, 3149–3161 | 3161

https://github.com/Matgenix/jobflow-remote/tree/v0.1.4
https://github.com/Matgenix/jobflow-remote/tree/v0.1.4
https://arxiv.org/abs/2212.04804
https://github.com/pyiron/conda_subprocess
https://github.com/pyiron/conda_subprocess
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://doi.org/10.5281/zenodo.15516180
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

	A python workflow definition for computational materials design
	A python workflow definition for computational materials design
	A python workflow definition for computational materials design
	A python workflow definition for computational materials design
	A python workflow definition for computational materials design
	A python workflow definition for computational materials design
	A python workflow definition for computational materials design

	A python workflow definition for computational materials design
	A python workflow definition for computational materials design
	A python workflow definition for computational materials design
	A python workflow definition for computational materials design
	A python workflow definition for computational materials design
	A python workflow definition for computational materials design
	A python workflow definition for computational materials design

