#® ROYAL SOCIETY
PPN OF CHEMISTRY

Digital
Discovery

View Article Online

View Journal | View Issue

A python workflow definition for computational

i") Check for updates‘
materials design

Cite this: Digital Discovery, 2025, 4,
3149
Jan Janssen, ©*2 Janine George, © °° Julian Geiger,® Marnik Bercx, ©¢9 Xing Wang,®

Christina Ertural, ©° Jorg Schaarschmidt,® Alex M. Ganose, © Giovanni Pizzi, ©¢
Tilmann Hickel ©2° and Jérg Neugebauer 2

Numerous Workflow Management Systems (WfMS) have been developed in the field of computational
materials science with different workflow formats, hindering interoperability and reproducibility of
workflows in the field. To address this challenge, we introduce here the Python Workflow Definition
(PWD) as a workflow exchange format to share workflows between Python-based WfMS, currently AiiDA,
jobflow, and pyiron. This development is motivated by the similarity of these three Python-based WfMS,
that represent the different workflow steps and data transferred between them as nodes and edges in
a graph. With the PWD, we aim at fostering the interoperability and reproducibility between the different
WFMS in the context of Findable, Accessible, Interoperable, Reusable (FAIR) workflows. To separate the
scientific from the technical complexity, the PWD consists of three components: (1) a conda
environment that specifies the software dependencies, (2) a Python module that contains the Python
functions represented as nodes in the workflow graph, and (3) a workflow graph stored in the JavaScript
Object Notation (JSON). The first version of the PWD supports Directed Acyclic Graph (DAG)-based
workflows. Thus, any DAG-based workflow defined in one of the three WfMS can be exported to the
PWD and afterwards imported from the PWD to one of the other WfMS. After the import, the input
parameters of the workflow can be adjusted and computing resources can be assigned to the workflow,

Received 26th May 2025
Accepted 1st October 2025

DOI: 10.1035/d5dd00231a before it is executed with the selected WfMS. This import from and export to the PWD is enabled by the

Open Access Article. Published on 10 October 2025. Downloaded on 11/21/2025 11:56:28 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

rsc.li/digitaldiscovery

1 Introduction

Due to their intrinsic hierarchical nature, material properties
depend on the coupling of various domains, among others,
materials chemistry, defect engineering, microstructure physics,
and mechanical engineering. This often requires multiscale
simulation approaches to adequately model materials with
different communities representing the different scales. Conse-
quently, the goal of multiscale simulations in materials science is
to bridge the gap between the macroscale relevant for applying
these materials and the quantum mechanical ab initio approach
of a universal parameter-free description of materials at the
atomic scale. One of these multiscale simulation approaches that
has recently gained popularity is coupling the -electronic-
structure scale and atomic scale by training machine-learned
interatomic potentials (MLIP).' Such a training of a MLIP

“Max Planck Institute for Sustainable Materials, 40237 Diisseldorf, Germany. E-mail:
Janssen@mpi-susmat.de

*Bundesanstalt fiir Materialforschung und -priifung, 12205 Berlin, Germany
‘Friedrich-Schiller-Universitdt Jena, 07743 Jena, Germany

“PSI Center for Scientific Computing, Theory and Data, 5232 Villigen PSI, Switzerland
“Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
/Imperial College London, 80 Wood Lane, W12 7TA London, UK

© 2025 The Author(s). Published by the Royal Society of Chemistry

PWD Python library that implements the PWD in AiiDA, jobflow, and pyiron.

typically consists of the generation of a reference dataset of
electronic structure simulations, the fitting of the MLIP with
a specialized fitting code, typically written in Python based on
machine learning frameworks like pytorch and tensorflow, and
the validation of the MLIP with atomistic simulations, often with
widespread software such as the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS)* or the atomic simula-
tion environment (ASE),®> both of which also provide Python
interfaces. Consequently, it requires expertise in electronic
structure simulations, in fitting the MLIP, as well as in inter-
atomic potential simulation, with the corresponding simulation
and fitting codes being developed by different communities.**
The resulting challenge of managing simulation codes from
different communities in a combined study of hundreds or
thousands of simulations has led to the development of
a number of Workflow Management Systems (WfMS). Similarly,
high-throughput screening studies, which also couple large
numbers of simulations executed with simulation codes at
different scales, with different computational costs, and devel-
oped from different communities, benefit from WfMS.

In this context, a scientific workflow is commonly defined as
the reproducible protocol of a series of process steps, including
the transfer of information between them.®” This can be

Digital Discovery, 2025, 4, 3149-3161 | 3149

http://crossmark.crossref.org/dialog/?doi=10.1039/d5dd00231a&domain=pdf&date_stamp=2025-11-02
http://orcid.org/0000-0001-9948-7119
http://orcid.org/0000-0001-8907-0336
http://orcid.org/0000-0001-8470-1012
http://orcid.org/0000-0002-7696-5824
http://orcid.org/0000-0002-4486-3321
http://orcid.org/0000-0002-3583-4377
http://orcid.org/0000-0003-0698-4891
http://orcid.org/0000-0002-7903-2472
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD004011

Open Access Article. Published on 10 October 2025. Downloaded on 11/21/2025 11:56:28 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

visualized as a graph with the nodes referencing the computa-
tional tools and the edges the information transferred between
those nodes. Correspondingly, a WfMS is a software tool to
orchestrate the construction, management, and execution of the
workflow.® The advantages of using a WIMS are: (1) Automized
execution of the workflow nodes on high-performance
computing (HPC) clusters; (2) improved reproducibility, docu-
mentation, and distribution of workflows based on a standard-
ized format; (3) user-friendly interface for creating, editing, and
executing workflows; (4) interoperability of scientific software
codes; (5) orchestration of high-throughput studies with a large
number of individual calculations; (6) out-of-process caching of
the data transferred via the edges of the workflow and storage of
the final results; (7) interfaces to community databases for
accessing and publishing data.” As a consequence, using a WfMS
abstracts the technical complexity, and the workflow centers
around the scientific complexity.

In contrast to WEMS in other communities like BioPipe,®
which defines workflows in the Extensible Markup Language
(XML), or SnakeMake,' NextFlow" and Common Workflow
Language (CWL),”” which introduce their own workflow
languages, many WfMS in the computational materials science
community use Python as the workflow language.”*>* Using
a programming language to define workflows has the benefit
that flow control elements, like loops and conditionals, are
readily available as basic features of the language, which is not
the case for static languages. This is a limitation of static
languages, such as XML (more on this in Sec. 1 and the SI).
Furthermore, the choice of Python in the field of computational
materials science has three additional advantages: (1) the
Python programming language is easy to learn as its syntax is
characterized by very few rules and special cases, resulting in
better readability compared to most workflow languages and
a large number of users in the scientific community, (2) the
improved computational efficiency of transferring large
amounts of small data objects between the different workflow
steps in-memory, compared to file-based input and output (IO),
and (3) a large number of scientific libraries for the Python
programming language, including many for machine learning,
materials science and related domain sciences.

The increasing number of WfMS being developed in the
computational materials science community and beyond led to
the development of benchmarks implementing the same
workflow in different WfMS*® and the extension of the FAIR
(Findable, Accessible, Interoperable, and Reusable) principles
to FAIR workflows.? However, the interoperability between
different WEMS remains challenging, even within the subgroup
of WEMS that use Python as the workflow language. For this
specific case, three levels of interoperability can be identified:
(1) the same scientific Python functions are shared between
multiple WEMS, e.g., parsers for the input and output files of
a given simulation code, (2) the Python functions representing
the nodes and the corresponding edges are shared as
a template, so that the same workflow can be executed with
multiple WfMS and (3) the workflow template, including the
intermediate results of the workflow, e.g., the inputs and
outputs of each node, is shared.

3150 | Digital Discovery, 2025, 4, 3149-3161

View Article Online

Paper

In the following, the Python Workflow Definition (PWD) for
Directed Acyclic Graphs (DAG) and the corresponding Python
interface®® are introduced. They implement the second level of
interoperability for the following three WEMS: AiiDA,"*'**” job-
flow,'® and pyiron.” The interoperability of the PWD is demon-
strated in three examples: (1) The coupling of Python functions, (2)
the calculation of an energy-versus-volume curve with the
Quantum ESPRESSO Density Functional Theory (DFT) simulation
code®®** and (3) the benchmark file-based workflow for a finite
element simulation introduced in ref. 25. These three examples
highlight the application of the PWD to pure Python workflows,
file-based workflows based on calling external executables with file
transfer between them, and mixed workflows that combine Python
functions and external executables. Different users have different
preferences for their choice of WfMS and the PWD is not intended
to replace any of them, instead it is an interoperability format to
allow users of different WfMS to exchange their workflows.

2 Python workflow definition

Following the goal of separating technical complexity from
scientific complexity, our suggestion for a PWD consists of three
parts: (1) The software dependencies of the workflow are speci-
fied in a conda environment file, so all dependencies can be
installed using the conda package manager, which is commonly
used in the scientific community.* (2) Additional Python func-
tions, which represent the nodes in the workflow graph, are
provided in a separate Python module. (3) Finally, the workflow
graph with nodes and edges is stored in the JavaScript Object
Notation (JSON) with the nomenclature inspired by the Eclipse
Layout Kernel (ELK) JSON format.* This is illustrated in Fig. 1,
together with the three WEMS currently supporting the PWD. If all
the involved scientific functionalities are already available within
preexisting conda packages, the Python module (part 2) is not
required. Still, while an increasing number of open-source
simulation codes and utilities for atomistic simulations are
available on conda for different scientific domains,* in most
cases, additional Python functions are required. These functions
are typically stored in the Python module.

¢>AlIDA Job

|

(Python Workflow Deﬁnition}

N

Python Module

o>
JSON

JSON Workflow

Conda Environment

Fig. 1 The Python Workflow Definition (PWD) consists of three
components: a conda environment, a Python module, and a JSON
workflow representation. The three Workflow Management Systems
AiiDA, jobflow, and pyiron all support both importing and exporting to
and from the PWD.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Open Access Article. Published on 10 October 2025. Downloaded on 11/21/2025 11:56:28 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

As a first simple example workflow, the addition of the product
and quotient of two numbers, ¢ = a/b + a-b, and subsequent
squaring of their sum is represented in the PWD. To illustrate the
coupling of multiple Python functions, this computation is split
into three Python functions, a get_prod_and_div() function to
compute the product and quotient of two numbers, a get_sum()
function for the summation, and a get_square() function to
raise the number to the power of two:

1 def get_prod_and_div(
float = 1.0, y: float = 1.0
3) -> dict[str, float]:

4 return {"prod": x * y, "div":

2 X:
x / y}

6 def get_sum(x, y):
7 return x +y

8

o def get_square(x):
10 return x**2

It is important to note here, that the Python functions are
defined independently of a specific WEMS, so they can be reused
with any WfMS or even without. Furthermore, the Python functions
highlight different levels of complexity supported by the PWD: The
get_prod_and_div() function returns a dictionary with two
output variables, with the keys "prod" and "div" referencing the
product and quotient of the two input parameters. Instead, the
summation function get_sum() takes two input variables and
returns only a single output, which is then fed into the
get_square () function that returns the final result. In addition,
the get_prod_and_div() function uses default parameter values
and type hints, which are optional features of the Python
programming language supported by the PWD to improve the
interoperability of the workflow. While the computation of the
product and quotient of two numbers could be done in two separate
functions, the purpose here is to demonstrate the implementation
of a function with more than one return value. Another example of
such a function could be a matrix diagonalization function that
returns the eigenvalues and eigenvectors. The supplementary
information provides a more in-depth discussion of how function
returns are resolved to an unambiguous mapping in the graph.

As a demonstration, the Python functions
get_prod_and_div(), get_sum() and get_square() are stored
in a Python module named workflow.py. In addition, as these
functions have no dependencies other than the Python stan-
dard library, the conda environment, environment.yml, is
sufficiently defined by specifying the Python version:

1 channels:

2 - conda-forge
3 dependencies:
4 - python=3.12

The conda-forge community channel is selected as the
package source as it is freely available and provides a large
number of software packages for materials science and related
disciplines.* For other examples, e.g., the calculation of the

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

energy-versus-volume curve with Quantum ESPRESSO (see
below), the conda environment would contain the software
dependencies of the workflow, including the simulation code
and additional utilities like parsers. It is important to note that
the combination of the Python module and the conda envi-
ronment already addresses the requirements for the first level of
interoperability defined above. As the scientific Python func-
tions are defined independently of any workflow environment,
they can be used with any WfMS that supports Python functions
as nodes. Furthermore, conda environments can be converted
to containers, such as docker®* and PyPI packages can be con-
verted to conda packages,® highlighting the interoperability
advantage of using conda packages.

The limitation of the first level of interoperability is the loss of
connection of the individual functions, that is, which output of
one function is reused as input of another function. In terms of
the workflow as a graph with the Python functions representing
the nodes of the graph, these connections are the edges between
the nodes. To define the workflow, we wrap the individual
function calls in another function to which we can then pass our
input values and from which we retrieve our output value:

1 def workflow(x: float = 1, y: float = 2):

2 tmp_dict = get_prod_and_div(x=x, y=y)
3 tmp_sum = get_sum(

4 x=tmp_dict["prod"],

s y=tmp_dict["div"],

6)

7 return get_square(x=tmp_sum)

3 result = workflow(x=1, y=2)

We pass the inputs x=1.0 and y=2.0 to our workflow
function, in which the computation of the product and quotient
with the get_prod_and_div() is executed first. This is then
followed by a summation of the two results with the get_sum()
function, which returns a single output value that is then fed
into the get_square() function. The corresponding graph is
visualized in Fig. 2.

In the next step, the resulting graph is serialized to an
internal JSON representation with the nomenclature and overall
structure inspired by the ELK JSON format,* for sharing the
workflow between different WfMS. While human-readable, the
JSON format is not intended for direct user interaction, ie.
generating or modifying the JSON with a text editor; rather, it is
primarily focused on enabling interoperability of WfMS and
long-term storage. For the construction of a workflow, we rec-
ommended using one of the existing WfMS and afterwards
exporting the workflow to the PWD. The resulting PWD JSON for
the arithmetic workflow is:

On the first level, the PWD JSON format defines the workflow
metadata given by the version number, nodes and edges:

e The version number (of the PWD JSON format) is given by
three non-negative integers combined in a string, to enable
semantic versioning. Minor changes and patches which do not
affect the backwards compatibility are indicated by increasing
the second and third numbers, respectively. In contrast, an

Digital Discovery, 2025, 4, 3149-3161 | 3151

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Open Access Article. Published on 10 October 2025. Downloaded on 11/21/2025 11:56:28 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

get_prod_and_div()

prod

div

get_sum()

B —

X

get_square()

result

Fig.2 The arithmetic workflow computes the sum of the product and
quotient of two numbers. The red nodes of the workflow graph denote
inputs, the orange the outputs, and the blue nodes the Python func-
tions for the computations. The labels of the edges denote the data
transferred between the nodes.

1 {

2 "version": "1.0.0",

3 "nodes": [

4 {"id": 0, "type": "function",

5 "value": "workflow.get_prod_and_div"},
6 {"id": 1, "type": "function",

7 "value": "workflow.get_sum"},

8 {"id": 2, "type": "function",

9 "value": "workflow.get_square"},
10 {"id": 3, "type": "input",

11 "value": 1, "name": "x"},

12 {"id": 4, "type": "input",

13 "value": 2, "name": "y"},

14 {"id": 5, "type": "output",

15 "name": "result"}

16 1,

17 "edges": [

18 {"source": 3, "sourcePort": null,
19 "target": 0, "targetPort": "x"},
20 {"source": 4, "sourcePort": null,
21 "target": 0, "targetPort": "y"},
22 {"source": 0, "sourcePort": "prod",
23 "target": 1, "targetPort": "x"},
24 {"source": 0, "sourcePort": "div",
25 "target": 1, "targetPort": "y"},
26 {"source": 1, "sourcePort": null,
27 "target": 2, "targetPort": "x"},
28 {"source": 2, "sourcePort": null,
29 "target": 5, "targetPort": null}
30]

31}

3152 | Digital Discovery, 2025, 4, 3149-3161

View Article Online

Paper

increase in the first number indicates changes that are no
longer backwards compatible.

e The nodes section is (in this example) a list of six items: The
three Python functions defined in the workflow.py Python
module, the two input parameters for the workflow, in this case
x=1.0 and y=2.0, and the output data node. Each node is
defined as a dictionary consisting of an "id", a "type", and
a "value". In case of the "input" and "output" data nodes, the
"name" is an identifier that denotes how the inputs and outputs
are exposed by the overall workflow. Moreover, for "input" data
nodes, the "value" is an optional default value (if provided during
workflow construction). On the other hand, for "function"
nodes, the "value" entry contains the module and function
name. The usage of the dictionary format allows future extensions
by adding additional keys to the dictionary for each node.

e In analogy to the nodes, also the edges are stored as a list of
dictionaries. The first two edges connect the input parameters with
the get_prod_and_div () function. Each edge is defined based on
the source node "source", the source port "sourcePort", the
target node "target" and the target port "targetPort". As the
input data nodes do not have associated ports, their source ports
are null. In contrast, the target ports are the input parameters x
and ¥ of the get_prod_and_div() function. The PWD JSON
representation also contains two edges that connect the two
outputs from the get_prod_and_div() function to the inputs of
the get_sum() function. In analogy to the target port, the source
port specifies the output dictionary key to select from the output. If
no source port is available (typically because a function does not
return a dictionary containing keys that can serve as source ports),
then the source port is set to null and, in that case, the entire
return value of the function (possibly, also a tuple, list, dictionary
or any other Python data type) is transferred to the target node.
This is the case for the fifth edge that maps the return value of the
get_sum() function to the "x" input of the get_square() func-
tion. Finally, its result is exposed as the global "result" output of
the workflow, the last edge in the graph. As the get_square()
function does return the value directly, and the target of the edge is
an output data node (that does not define a port), both
"targetPort" and "sourcePort" are null in this edge.

By using a list of dictionaries for both the nodes and edges,
as well as a dictionary at the first level, the PWD JSON format is
extensible, and additional metadata beyond the version number
can be added in the future. As the focus of this first version of
the PWD is the interoperability between the different WfMS,
apart from the node types (useful for parsing and validation), no
additional metadata is included in the PWD JSON format. To
assist the users in analyzing the JSON representation of the
PWD, the PWD Python interface provides a plot () function to
visualize the workflow graph. The plot () function is introduced
in the supplementary material.

3 Export to the Python workflow
definition

The focus of the PWD is to enable the interoperability between
different WfMS. Thus, it is recommended that users always use

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Open Access Article. Published on 10 October 2025. Downloaded on 11/21/2025 11:56:28 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

one of the supported WEMS to create the workflow and export it to
the PWD using the PWD Python library. Afterwards, the workflow
can be imported into a different WEMS, the input parameters can
be modified, and computational resources can be assigned
before the workflow is executed. In the following, the same
workflow introduced above is defined in AiiDA, jobflow, and
pyiron. This highlights the similarities between these Python-
based WMS, which all use the Python programming language
as their workflow language, with the selection of WEMS being
based on the authors' experience. While this section covers the
export of the workflow to the WfMS, the import is discussed in
the application section below. Finally, interfaces for additional
WIMS are planned in the future. Full integration will be achieved
with PWD support becoming an integral part of the WfMS itself
and the PWD package possibly becoming a dependency.

3.1 AiiDA
The
Computational Science” (AiiDA)*****” is a WIMS with a strong focus
on data provenance and high-throughput performance. AiiDA
provides check pointing, caching, and error handling features for
dynamic workflows at full data provenance (via an SQL database),
among other features. While it originated from the field of
computational materials science,* it has recently been extended to
several other fields (see e.g. the codes supported in the AiiDA plugin
registry®) and to experiments.* In the following code snippets, we
will be using the WorkGraph, a recently added and actively devel-
oped new AiiDA workflow component.”” The WorkGraph functions
like a canvas for workflow creation to which a user can dynamically
add Tasks, that is, workflow components (also called “nodes” in
a graph-based representation of a workflow), and connect them
with Links (the “edges“ in the PWD). This approach to workflow
creation offers the flexibility of dynamically chaining workflow
components together “on-the-fly”, an approach especially crucial
for rapid prototyping common in scientific environments. Imple-
mentation of the arithmetic workflow is shown in the following
snippets. It starts with the import of relevant modules:

We first import the python_workflow_definition module,
which contains the necessary code to import from and export to
the general Python workflow definition. In addition, from the
AiiDA core module, we import AiiDA's Object-Relational Mapper
(ORM), as well as the load_profile function. The ORM module
allows mapping Python data types to the corresponding entries in

“Automated Interactive Infrastructure and Database for

1 import python_workflow_definition as pwd
2
3 from aiida import orm, load_profile

4 from aiida_workgraph import WorkGraph, task

6 from arithmetic_workflow import (

7 get_sum as _get_sum,

8 get_prod_and_div as _get_prod_and_div,
9 get_square as _get_square

10)

12 load_profile()

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

AiiDA's underlying SQL database, and calling the load_profile
function ensures that an AiiDA profile (necessary for running
workflows via AiiDA) is loaded. From the aiida-workgraph
module, we import the main WorkGraph class, as well as the task
decorator. Lastly, we import the Python functions from the
arithmetic_workflow module.

To convert the pure Python functions from the arithmetic
workflow into AiiDA WorkGraph workflow components, we
wrap them with the task function (decorator):

1 get_prod_and_div = task(outputs=["prod", "div"])(
2 _get_prod_and_div

3)

4+ get_sum = task() (_get_sum)

5 get_square = task() (_get_square)

As the get_prod_and_div function returns a dictionary with
multiple outputs, we pass this information to the task function
via the outputs argument, such that we can reference them at
a later stage (they will become the ports in the PWD JSON).
Without the outputs argument, the whole output dictionary
{"prod": x * y, "div": x / y} would be wrapped as one
port with the default "result" key. This is what actually
happens to the single return value of the get_sum() function (as
further outlined in the supplementary information, we follow
a similar approach to resolve the “ports” entries in the “edges”
of the PWD). Next follows the instantiation of the WorkGraph:

1 wg = WorkGraph("arithmetic")

Which then allows adding the previously defined Tasks:

1 get_prod_and_div_task = wg.add_task(

2 get_prod_and_div,

3 x=orm.Float(1.0),

4 y=orm.Float(2.0),

500)

6 get_sum_task = wg.add_task(

7 get_sum,

8 x=get_prod_and_div_task.outputs.prod,
9 y=get_prod_and_div_task.outputs.div,
0)

1 get_square_task = wg.add_task(

12 get_square,

13 x=get_sum_task.outputs.result,

1w)

Here, we wrap the inputs as AiiDA ORM nodes to ensure they
are registered as nodes when exporting to the PWD. Further, in
the get_sum_task, the outputs of the previous
get_prod_and_div_task are passed as inputs. Note that at
this stage, the workflow has not been run, and these output
values do not exist yet. In WorkGraph, such outputs are
represented by a Socket that serves as a placeholder for future
values and already allows linking them to each other in the
workflow:

Digital Discovery, 2025, 4, 3149-3161 | 3153

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Open Access Article. Published on 10 October 2025. Downloaded on 11/21/2025 11:56:28 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

1 In [1]: print(get_prod_and_div_task.outputs.prod)
2 Out[1]: SocketAny(name="prod", value=None)

Alternatively, adding tasks to the WorkGraph and linking
their outputs can also be done in two separate steps, shown
below for linking the get_prod_and div_task and
get_sum_task:

2 get_sum_task = wg.add_task(

3 get_sum,

4)

5 wg.add_link(

6 get_prod_and_div_task.outputs.prod,
7 get_sum_task.inputs.x,

s)

9 wg.add_link(

10 get_prod_and_div_task.outputs.div,
11 get_sum_task.inputs.y,

12)

Lastly, the JSON file containing the PWD can be written to disk
via:

1 pwd.aiida.write_workflow_json(
2 wg=wg,

3 file_name="arithmetic.json"
4)

The import of the workflow that is exported from AiiDA, in
jobflow and pyiron is discussed in Sec. 4. In addition, the cor-
responding examples on GitHub contain both the import and
export for each of the three examples, to highlight the inter-
operability between the different WfMS.>®

3.2 Jobflow

Jobflow'® was developed to simplify the development of high-
throughput workflows. It uses a decorator-based approach to
define the Job’s that can be connected to form complex
workflows (Flows). Jobflow is the workflow language of the
workflow library atomate2,*® designed to replace atomate,*
which was central to the development of the Materials Project*’
database.

First, the job decorator, which allows the creation of Job
objects, and the Flow class are imported. In addition, the PWD
Python module and the functions of the arithmetic workflow
are imported in analogy to the previous example.

1 from jobflow import job, Flow
2 import python_workflow_definition as pwd

3 from arithmetic_workflow import (

4 get_sum as _get_sum,

5 get_prod_and_div as _get_prod_and_div,
6 get_square as _get_square,

7))

3154 | Digital Discovery, 2025, 4, 3149-3161

View Article Online

Paper

Using the job object decorator, the imported functions from
the arithmetic workflow are transformed into jobflow Jobs.
These Jobs can delay the execution of Python functions and can
be chained into workflows (Flows). A Job can return serializable
outputs (e.g;, a number, a dictionary, or a Pydantic model) or a so-
called Response object, which enables the execution of dynamic
workflows where the number of nodes is not known prior to the
workflow's execution. As jobflow itself is only a workflow
language, the workflows are typically executed on high-
performance computers with a workflow manager such as Fire-
works*' or jobflow-remote.*” For smaller and test workflows,
simple linear, non-parallel execution of the workflow graph can
be performed with jobflow itself. All outputs of individual jobs
are saved in a database. For high-throughput applications, typi-
cally, a MongoDB database is used. For testing and smaller
workflows, a memory database can be used instead. In Fireworks,
its predecessor in the Materials Project infrastructure, this option
did not exist, which was a significant drawback.

1 get_prod_and_div = job(_get_prod_and_div)
2 get_sum = job(_get_sum)

3 get_square = job(_get_square)

s prod_and_div = get_prod_and_div(x=1.0, y=2.0)

6 tmp_sum = get_sum(
7 x=prod_and_div.output.prod,
8 y=prod_and_div.output.div,

9)
10 result = get_square(x=tmp_sum.output)

12 flow = Flow([prod_and_div, tmp_sum, result])

As before in the AiiDA example, the workflow has not yet
been run. prod_and_div.output.div refers to an
OutputReference object instead of the actual output.

Finally, after the workflow is constructed, it can be exported
to the PWD using the PWD Python package to store the jobflow
workflow in the JSON format, which again can be imported with
AiiDA and pyiron as demonstrated in the examples in the
GitHub repository.>*

1 pwd.jobflow.write_workflow_json(

2 flow=flow,
3 file_name="arithmetic.json",
4)

3.3 pyiron

The pyiron WEMS was developed with a focus on rapid proto-
typing and up-scaling atomistic simulation workflows.”® It
has since been extended to support simulation workflows at
different scales, including the recent extension to experimental
workflows.*> Based on this generalization, the same
arithmetic Python workflow is implemented in the pyiron
WIMS. Starting with the import of the pyiron job object deco-
rator and the PWD Python module, the functions of the

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Open Access Article. Published on 10 October 2025. Downloaded on 11/21/2025 11:56:28 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

arithmetic workflow are imported in analogy to the previous
examples above.

1 from pyiron_base import job
2 import python_workflow_definition as pwd
3 from arithmetic_workflow import (

4 get_sum as _get_sum,

5 get_prod_and_div as _get_prod_and_div,
6 get_square as _get_square,

7))

Using the job object decorator, the imported functions
from the arithmetic workflow are converted to pyiron job
generators. These job generators can be executed like
Python functions; still, internally, they package the Python
function and corresponding inputs in a pyiron job object, whi-
ch enables the execution on HPC clusters by assigning dedicated
computing resources and provides the permanent storage of the
inputs and output in the Hierarchical Data Format (HDF5). For
the get_prod_and_div() function, an additional list of output
parameter names is provided, which enables the coupling of the
functions before the execution, to construct the workflow graph.

1 get_sum = job(_get_sum)

2 get_prod_and_div = job(
3 _get_prod_and_div,
4 output_key_lst=["prod", "div"],

s)

6 get_square = job(_get_square)

After the conversion of the Python functions to pyiron job
generators, the workflow is constructed. The pyiron job genera-
tors are called just like Python functions; still, they return pyiron
delayed job objects rather than the computed values. These
delayed job objects are linked with each other by using a delayed
job object as an input to another pyiron job generator. Finally,
the whole workflow would be only executed once the pull func-
tion pull() is called on the delayed pyiron object of the
get_square () function. At this point, the delayed pyiron objects
are converted to pyiron job objects, which are executed using the
pyiron WfMS. In particular, the conversion to pyiron job objects
enables the automated caching to the hierarchical data format
(HDF5) and the assignment of computing resources.

1 prod_and_div = get_prod_and_div(x=1.0, y=2.0)
2 tmp_sum = get_sum(

3 x=prod_and_div.output.prod,
4 y=prod_and_div.output.div,
50)

6 result = get_square(x=tmp_sum)

For the example here, the workflow execution is skipped and
the workflow is exported to the PWD using the PWD Python
package to store the pyiron workflow in JSON format. The export
command is implemented in analogy to the export commands
for AiiDA and jobflow, taking a delayed pyiron object as an input
in combination with the desired file name for the JSON repre-
sentation of the workflow graph, which again can be imported

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

with AiiDA and jobflow as demonstrated in the examples in the
GitHub repository.>®

1 pwd.pyiron_base.write_workflow_json(

2 delayed_object=result,
3 file_name="arithmetic.json",
4)

The implementation of the arithmetic workflow in pyiron
demonstrates the similarities to AiiDA and jobflow.

4 Import from the Python workflow
definition
To demonstrate the application of the PWD beyond just the arith-
metic example above, we consider a second workflow that describes
the calculation of an energy-versusvolume curve with Quantum
ESPRESSO. The energy-versus-volume curve is typically employed to
calculate the equilibrium volume and the compressive bulk
modulus for bulk materials. The workflow is illustrated in Fig. 3,
with the red and orange nodes marking the inputs and outputs of
the workflow, the blue nodes the Python functions, and the green
nodes indicating Python functions that internally launch Quantum
ESPRESSO simulations. The individual steps of the workflow are:

1. Based on the input of the chemical element, the lattice
constant, and the crystal symmetry, the atomistic bulk structure
is generated by calling the bulk structure generation function
get_bulk_structure(). This function is obtained via the
Atomistic Simulation Environment (ASE)* and extended to
enable the serialization of the atomistic structure to the JSON
format using the OPTIMADE* Python tools.*

2. The structure is relaxed afterwards with Quantum
ESPRESSO to get an initial guess for the equilibrium lattice
constant. Quantum ESPRESSO is written in FORTRAN and does

element | a

get_bulk_structure()

structife~structure

[calculate_qe()][calculate_qe()]{ calculate_ge() }{ Iculate_qe() }[Iculate_ge() }

plot.png

Fig. 3 Energy-versus-volume curve calculation workflow with
Quantum ESPRESSO. Red boxes denote inputs, orange boxes outputs,
blue boxes Python functions and green boxes calls to external
executables.

Digital Discovery, 2025, 4, 3149-3161 | 3155

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Open Access Article. Published on 10 October 2025. Downloaded on 11/21/2025 11:56:28 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

not provide Python bindings, so that the communication is
implemented in the calculate_ge() function by writing input
files, calling the external executable, and parsing the output
files. This calculate_ge() Python function has been imple-
mented once and is reused by all three WfMS.

3. Following the equilibration, the resulting structure is
strained in the function generate_structures() with two
compressive strains of —10% and —5% and two tensile strains
of 5% and 10%. Together with the initially equilibrated struc-
ture, this leads to a total of five structures.

4. Each structure is again evaluated with Quantum
ESPRESSO to compute the energy of the strained structure.

5. After the evaluation with Quantum ESPRESSO, the calcu-
lated energy-volume pairs are collected in the
plot_energy_volume_curve() function and plotted as an
energy-versus-volume plot. The final plot is saved in a file named
plot.png.

Compared to the previous arithmetic example, this workflow
is more advanced and not only illustrates one-to-one connec-
tions, in terms of one node being connected to another node,
but also one-to-many and many-to-one connections. The latter
two are crucial to construct the loop over different strains,
compute the corresponding volume and energy pairs, and
gather the results in two lists, one for the volumes and one for
the energies, to simplify plotting. In addition, it highlights the
challenge of workflows in computational materials science to
couple Python functions for structure generation, modifica-
tions, and data aggregation with simulation codes that do not
provide Python bindings and require file-based communica-
tion. Given the increased complexity of the workflow, the
implementation for the individual WfMS is provided in the
supplementary material. Instead, the following briefly high-
lights how the workflow, which was previously stored in the
PWD, can be reloaded with the individual frameworks.

Starting with the AiiDA WfMS, the first step is to load the AiiDA
profile and import the PWD Python interface. Afterwards, the
workflow can be loaded from the JSON representation ge. json
using the load_workflow_json() function. To demonstrate the
capability of modifying the workflow parameters before the
execution of the (re-)loaded workflow, we then modify the lattice
constant of the get_bulk_structure () node to 4.05 A. Similarly,
one could also adapt the element, bulk structure, or strain list
input parameters of the workflow. Finally, the workflow is executed
by calling the run() function of the AiiDA WorkGraph object:

1 from aiida import orm, load_profile
2 import python_workflow_definition as pwd

4 load_profile()

6 wg = pwd.aiida.load_workflow_json(
7 file_name="ge.json"

s)

o wg.tasks[0].inputs.a.value = orm.Float(4.05)

10 wg.run()

3156 | Digital Discovery, 2025, 4, 3149-3161

View Article Online

Paper

The same JSON representation ge. json of the workflow can
also be loaded with the jobflow WEMS. Again, the jobflow WfMS
and the PWD Python interface are imported. The JSON repre-
sentation ge.json is loaded with the load_workflow_json()
function. Afterwards, the lattice constant is adjusted to 4.05 A
and finally the workflow is executed with the jobflow
run_locally () function. We note that the same workflow could
also be submitted to a HPC cluster, but local execution is
primarily chosen here for demonstration purposes to enable the
local execution of the provided code examples.

1 from jobflow.managers.local import run_locally
2 import python_workflow_definition as pwd

4 flow = pwd.jobflow.load_workflow_json(
5 file_name="ge.json"

6)

7 flow[0].function_kwargs["a"] = 4.05

s run_locally(flow)

In analogy to the AiiDA WfMS and the jobflow WfMS. the
energy-versus-volume curve workflow can also be executed with
the pyiron WfMS. Starting with the import of the PWD Python
interface, the JSON representation ge.json of the workflow is
again loaded with the load_workflow_json() function, fol-
lowed by the adjustment of the lattice constant to 4.05 A by
accessing the input of the first delayed job object. Finally, the
last delayed job object's pull () function is called to execute the
workflow.

1 import python_workflow_definition as pwd

3 wf = pwd.pyiron_base.load_workflow_json(
4 file_name="qge. json"

s)

6 wfl[0].input["a"] = 4.05

7 wil-11.pull

The focus of this second example is to highlight that
a workflow stored in the PWD can be executed with all three
workflow frameworks with minimally adjusted code. This not
only applies to simple workflows consisting of multiple Python
functions but also includes more complex logical structures like
the one-to-many and many-to-one connections, covering any
Directed Acyclic Graphs (DAG) topology. We remark, though,
that in the current version the restriction to DAGs is also
alimitation of the PWD, as it does not cover dynamic workflows,
such as a while loop that adds additional steps until a given
condition is fulfilled. Another challenge is the assignment of
computational resources, like the assignment of a fixed number
of CPU cores, as the wide variety of different HPC clusters with
different availability of computing resources hinders stan-
dardization. As such, the user is required to adjust the
computational resources via the WfMS after reloading the
workflow graph. For this reason, the workflow is also not
directly executed by the load_workflow_json() function, but
rather the user can explore and modify the workflow and

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Open Access Article. Published on 10 October 2025. Downloaded on 11/21/2025 11:56:28 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

afterwards initiate the execution with any of the WfMS once the
required computational resources are assigned.

5 Compatibility to non-Python-based
workflows

The two previous examples demonstrated Python-based work-
flows, which couple either solely Python functions or Python
functions and external executables, wrapped by other Python
functions that write the input files and parse the output files.
Before Python-based WfMS, a number of previous WEMS were
introduced, which couple simulation codes solely based on
transferring files between the different steps of the workflow.***
To demonstrate that the PWD can also be applied to these file-
based workflows, we implement the benchmark published in
ref. 25 for file-based workflows in materials science in the PWD.
The corresponding workflow is illustrated in Fig. 4.

As the file-based workflow for finite element simulations is
already discussed in the corresponding publication,* it is only
summarized here. A mesh is generated in the first pre-
processing step, followed by the conversion of the mesh
format in the second pre-processing step. Afterwards, the
Poisson solver of the finite element code is invoked. Finally, in
the postprocessing, the data is first visualized in a line plot,
a TeX macro is generated, and a TeX document is compiled,
resulting in the paper as the final output. To represent this file-
based workflow in the PWD, each node is represented by

domain _size

generate_mesh()

mesh_file

convert_to_xdmf()

mesh_file

domain_size

poisson()

result_file

plot_over_line()

compile_paper()

paper file

paper.pdf

Fig. 4 File-based finite element workflow from ref. 25 implemented
with the Python Workflow Definition (PWD). Red nodes denote inputs,
orange nodes outputs, green nodes calls to external executables, and
the labels on the edges the files and data transferred between them.
Files are passed as path objects between the individual steps.

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

a Python function. This Python function acts as an interface to
the corresponding command line tool, handling the writing of
the input files, calling of the command line tool and the parsing
of the output files. In this specific case, which is purely based on
external executables, the output files of one node are copied to
be used as input files for the next node, and only the path to the
corresponding file is transferred in Python. The Python func-
tion for the generate_mesh() node is given below:

The input parameters of the generate_mesh() function are
the domain_size and the source_directory with the
source_directory referencing the location of additional input
files. Following the definition of a number of variables,
a directory is created and the source files are copied as
templates to this directory. Then the external executable is
called. Here we use the conda_subprocess package,*® which
allows us to execute the external executable in a separate conda
environment. This was a requirement of the file-based bench-
mark workflow.” Finally, the path to the output file
"square.msh" is returned as result of the Python function.

While the definition of a Python function for each node is an
additional overhead, it is important to emphasize that the
Python functions were only defined once, independently of the

1 import os
2 from conda_subprocess import check_output
3 import shutil

s def generate_mesh(

6 domain_size: float,

7 source_directory: str

s) -> str:

9 stage_name = "preprocessing"

10 output_file_name = "square.msh"

1 source_file_name = "unit_square.geo"

12 os.makedirs(stage_name, exist_ok=True)
13 source_file = os.path.join(

14 source_directory, source_file_name
15)

16 shutil.copyfile(

17 source_file,

18 os.path. join(stage_name, source_file_name)
19)

20 _ = check_output(

21 [

22 "gmsh", "-2", "-setnumber",

2 "domain_size", str(domain_size),
24 source_file_name,

25 "-o0", output_file_name

26 1,

27 prefix_name=stage_name,

28 cwd=stage_name,

29 universal_newlines=True,

30)

31 return os.path.abspath(

32 os.path. join(stage_name, output_file_name)

Digital Discovery, 2025, 4, 3149-3161 | 3157

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Open Access Article. Published on 10 October 2025. Downloaded on 11/21/2025 11:56:28 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

different WEMS and afterwards the same Python functions were
used in all three WfMS. Again, the step-by-step implementation
in the three different WfMS and the exporting to the PWD is
available in the supplementary material. This third example
again highlights the universal applicability of the PWD, as it can
cover both Python-based workflows and file-based workflows.

Finally, to increase the impact of the PWD and extend its
generality beyond the three WfMS discussed in this work, we
provide a first proof-of-concept implementation to convert
a PWD JSON file to the Common Workflow Language (CWL).*?
In this case each input and output of every node is serialized
using the built-in pickle serialization of the Python Standard
library. The resulting pickle files are then transferred from one
node to another through CWL. To convert a given PWD JSON
file, use the write_workflow() from the CWL submodule of the
PWD Python interface:

1 import python_workflow_definition as pwd
2

3 pwd.cwl.write_workflow(

4 file_name="workflow. json"

s)

This Python function creates the corresponding CWL files to
represent the individual nodes, as well as the resulting workflow
in the CWL, which can then be executed by any CWL engine
(given that the necessary dependencies are available on the
system). Still, it is important to emphasize that in contrast to the
interfaces to the Python-based WfMS, the interface to the CWL
is a one-way conversion only from the PWD to the CWL, not the
other way around. Furthermore, by converting the workflow to
the CWL, the performance benefit of handling the data on the
edges of the workflow inside the Python process is lost as the
CWL interface is based on file-based communication. Lastly,
another notable concept close to the PWD is the graph-based
Abstract Syntax Tree (AST)*” representation of the Python stan-
dard library. For brevity this comparison is discussed in the
supplementary information.

6 Conclusions

The Python Workflow Definition (PWD) enables users to
develop interoperable workflows to fulfill the requirements for
Findable, Accessible, Interoperable and Reusable (FAIR) work-
flows. The first version of the PWD currently supports Directed
Acyclic Graphs (DAGs) based workflows and interoperability
between the Workflow Management Systems (WfMS) AiiDA,
jobflow, and pyiron. It is based on three components: (1)
a conda environment that specifies the software dependencies,
(2) a Python module that contains the Python functions repre-
sented as nodes in the workflow graph, and (3) a workflow graph
stored in the JavaScript Object Notation (JSON). The application
of the PWD is demonstrated on three different workflows with
different combinations of Python functions and external
executables, which require interfacing using file-based
communication, highlighting the universal applicability of the
PWD. With the corresponding Python interface that we

3158 | Digital Discovery, 2025, 4, 3149-3161

View Article Online

Paper

developed, users can export DAG-based workflows from one
WIMS to the PWD and then import the PWD representation of
the workflow with any of the supported WfMS. After the import
of the workflow, the user still has the option to adjust the input
parameters of the workflow, adjust and add W{MS specific
features, and assign computational resources to leverage HPC
during the execution of the workflow. In the current version, the
assignment of the computational environment is not included
in the PWD as it is not expected that a user would use multiple
WIMS on the same HPC cluster, but rather uses the PWD when
transferring a workflow from one HPC cluster with a specific
WIMS to a different HPC cluster with a different WEMS. In this
case, the assignment of the compute environment changes
based on the different HPC resources.

Future development directions of the PWD will focus on
broadening its adoption and enhancing its capabilities:

e Engage a wider array of WfMS developers and scientific
communities in the joint effort. It is recommended to start with
the implementation of the read_workflow_json() function,
i.e., with the mapping of the workflow stored in the JSON file to
the internal workflow data structure of a given WfMS. The
inverse, the implementation of the write_workflow_json()
function, then follows analogously.

e Enable connections to data handling frameworks like
datatractor,*® and leverage the PWD to create containerized,
portable versions of generalized workflows for both simulation
and experiment.

e Extend the PWD format to include standardized specifi-
cations for submitting workflows to standardized HPC
resources, thereby simplifying execution across different
infrastructures.

e Transcend PWD's current limitation to DAGs by incorpo-
rating support for dynamic flow control elements like loops and
conditional branching, enabling the representation of more
complex scientific workflows.Ultimately, the vision is to evolve
the PWD towards a comprehensive schema capable of capturing
all information necessary to define computational workflows,
from initial setup to final results, beyond the field of materials
science. For this vision the key difference of the PWD in
comparison to other workflow standardization efforts is the use
of the Python programming language to define workflow nodes,
which benefits from the wide adoption of the Python
programming language in the scientific community and the
direct transfer of data in memory, without requiring to store
intermediate results in files.

Author contributions

Jan Janssen: Writing - original draft, conceptualization, inves-
tigation, methodology, software, visualization, project admin-
istration. Janine George: Writing - original draft, methodology,
funding acquisition. Julian Geiger: Writing - original draft,
investigation, software. Marnik Bercx: Writing - review & edit-
ing, methodology. Xing Wang: Writing - review & editing,
investigation, software. Christina Ertural: Writing - review &
editing. Jorg Schaarschmidt: Writing - review & editing. Alex
Ganose: Writing - review & editing. Giovanni Pizzi: Writing —

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Open Access Article. Published on 10 October 2025. Downloaded on 11/21/2025 11:56:28 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

review & editing, methodology, funding acquisition. Tilmann
Hickel: Writing - review & editing, funding acquisition. Jorg
Neugebauer: Writing - review & editing, methodology, funding
acquisition.

Conflicts of interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

The Python implementation of the Python Workflow Definition
python_workflow_definition including all the examples from
the paper are available at: https://github.com/pythonworkflow/
python-workflow-definition.”* The same repository is also
published on Zenodo: https://doi.org/10.5281/
zenodo.15516180.%°

Supplementary information is available. See DOI: https://
doi.org/10.1039/d5dd00231a.

Acknowledgements

JJ, JS, TH, and JN thank the German Federal Ministry of
Education and Research (BMBF) for financial support of the
project Innovation-Platform MaterialDigital (https://
www.materialdigital.de) through project funding FKZ no:
13XP5094A, 13XP5094C, and 13XP5094E. Further JJ, TH and
JN also acknowledge funding from the Deutsche
Forschungsgemeinschaft (DFG) through the CRC1394
“Structural and Chemical Atomic Complexity - From Defect
Phase Diagrams to Material Properties”, project ID 409476157
and the consortium NFDI-MatWerk under the National
Research Data Infrastructure, NFDI 38/1, project ID 460247524.
CE and JaG acknowledge the Gauss Centre for Supercomputing
e.V. (https://www.gauss-centre.eu) for funding workflow-related
developments by providing generous computing time on the
GCS Supercomputer SuperMUC-NG at Leibniz Supercomputing
Centre (https://www.lrz.de) (Project pn73da). JaG was supported
by ERC Grant MultiBonds (grant agreement no: 101161771;
Funded by the European Union. Views and opinions
expressed are, however, those of the author(s) only and do not
necessarily reflect those of the European Union or the
European Research Council Executive Agency. Neither the
European Union nor the granting authority can be held
responsible for them.) JuG, MB, XW and GP acknowledge
financial support from the NCCR MARVEL, a National Centre
of Competence in Research, funded by the Swiss National
Science Foundation (grant no: 205602), and from the
SwissTwins project, funded by the Swiss State Secretariat for
Education, Research and Innovation (SERI). GP acknowledges
financial support from the Open Research Data Program of
the ETH Board (project “PREMISE”: Open and Reproducible
Materials Science Research).

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

References

1 R. Jacobs, D. Morgan, S. Attarian, J. Meng, C. Shen, Z. Wu,
C. Y. Xie, J. H. Yang, N. Artrith, B. Blaiszik, G. Ceder,
K. Choudhary, G. Csanyi, E. D. Cubuk, B. Deng, R. Drautz,
X. Fu, J. Godwin, V. Honavar, O. Isayev, A. Johansson,
B. Kozinsky, S. Martiniani, S. P. Ong, I. Poltavsky, K. Schmidt,
S. Takamoto, A. P. Thompson, J. Westermayr and
B. M. Wood, Curr. Opin. Solid State Mater. Sci., 2025, 35,101214.

2 A.P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu,
W. M. Brown, P. S. Crozier, P. J. in 't Veld, A. Kohlmeyer,
S. G. Moore, T. D. Nguyen, R. Shan, M.]. Stevens,
J. Tranchida, C. Trott and S. J. Plimpton, Comp. Phys.
Comm., 2022, 271, 108171

3 A. Hjorth Larsen,]. Jorgen Mortensen, J. Blomgqvist,
I. E. Castelli R. Christensen, M. Dulak, J. Friis,
M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes,
P. C. Jennings, P. Bjerre Jensen, J. Kermode, J. R. Kitchin,
E. Leonhard Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard,
J. Bergmann Maronsson, T. Maxson, T. Olsen, L. Pastewka,
A. Peterson, C. Rostgaard, J. Schigtz, O. Schiitt, M. Strange,
K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng
and K. W. Jacobsen, J. Phys.: Condens. Matter, 2017, 29,
273002.

4 S. Menon, Y. Lysogorskiy, A. L. M. Knoll, N. Leimeroth,
M. Poul, M. Qamar, J. Janssen, M. Mrovec,]J. Rohrer,
K. Albe, J. Behler, R. Drautz and J. Neugebauer, npj
Comput. Mater., 2024, 10, 261.

5Y. Liu, J. D. Morrow, C. Ertural, N. L. Fragapane,
J. L. A. Gardner, A. A. Naik, Y. Zhou, J. George and
V. L. Deringer, Nat. Commun., 2025, 16, 7666.

6 J. Schaarschmidt, J. Yuan, T. Strunk, I. Kondov, S. P. Huber,
G. Pizzi, L. Kahle, F. T. Bolle, I. E. Castelli, T. Vegge,
F. Hanke, T. Hickel,]J. Neugebauer, C. R. C. Régo and
W. Wenzel, Adv. Energy Mater., 2022, 12, 2102638.

7 S. Bekemeier, C. R. Caldeira Régo, H. L. Mai, U. Saikia,
O. Waseda, M. Apel, F. Arendt, A. Aschemann, B. Bayerlein,
R. Courant, G. Dziwis, F. Fuchs, U. Giese, K. Junghanns,
M. Kamal, L. Koschmieder, S. Leineweber, M. Luger,
M. Lukas, J. Maas, J. Mertens, B. Mieller, L. Overmeyer,
N. Pirch, J. Reimann, S. Schrock, P. Schulze, J. Schuster,
A. Seidel, O. Shchyglo, M. Sierka, F. Silze, S. Stier,
M. Tegeler, J. F. Unger, M. Weber, T. Hickel and
J. Schaarschmidt, Adv. Eng. Mater., 2025, 27, 2402149.

8 C. de Visser, L. F. Johansson, P. Kulkarni, H. Mei,
P. Neerincx, K. Joeri van der Velde, P. Horvatovich, A. J. van
Gool, M. A. Swertz, P. A. C. t. Hoen and A. Niehues, PLoS
Comput. Biol., 2023, 19, 1-13.

9 S. Hoon, K. K. Ratnapu, J.-m. Chia, B. Kumarasamy,
X. Juguang, M. Clamp, A. Stabenau, S. Potter, L. Clarke and
E. Stupka, Genome Res., 2003, 13, 1904-1915.

10 J. Koster and S. Rahmann, Bioinformatics, 2012, 28, 2520-
2522.

11 P. D. Tommaso, M. Chatzou, E. W. Floden, P. P. Barja,
E. Palumbo and C. Notredame, Nat. Biotechnol., 2017, 35,
316-319.

Digital Discovery, 2025, 4, 3149-3161 | 3159

https://github.com/pythonworkflow/python-workflow-definition
https://github.com/pythonworkflow/python-workflow-definition
https://doi.org/10.5281/zenodo.15516180
https://doi.org/10.5281/zenodo.15516180
https://doi.org/10.1039/d5dd00231a
https://doi.org/10.1039/d5dd00231a
https://www.materialdigital.de
https://www.materialdigital.de
https://www.gauss-centre.eu
https://www.lrz.de
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Open Access Article. Published on 10 October 2025. Downloaded on 11/21/2025 11:56:28 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

12 M. R. Crusoe, S. Abeln, A. Iosup, P. Amstutz, J. Chilton,
N. Tijani¢, H. Ménager, S. Soiland-Reyes, B. Gavrilovi¢,
C. Goble and T. C. Community, Commun. ACM, 2022, 65,
54-63.

13 G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari and
B. Kozinsky, Comput. Mater. Sci., 2016, 111, 218-230.

14 S. P. Huber, S. Zoupanos, M. Uhrin, L. Talirz, L. Kahle,
R. Hiauselmann, D. Gresch, T. Miiller, A. V. Yakutovich,
C. W. Andersen, F. F. Ramirez, C. S. Adorf, F. Gargiulo,
S. Kumbhar, E. Passaro, C. Johnston, A. Merkys,
A. Cepellotti, N. Mounet, N. Marzari, B. Kozinsky and
G. Pizzi, Sci. Data, 2020, 7, 300.

15 M. Gjerding, T. Skovhus, A. Rasmussen, F. Bertoldo,
A. H. Larsen, J.]J. Mortensen and K. S. Thygesen, Comput.
Mater. Sci., 2021, 199, 110731.

16 A. S. Rosen, M. Gallant, J. George,]. Riebesell,
H. Sahasrabuddhe, J.-X. Shen, M. Wen, M. L. Evans,
G. Petretto, D. Waroquiers, G.-M. Rignanese, K. A. Persson,
A.Jain and A. M. Ganose, J. Open Source Softw., 2024, 9, 5995.

17 S. Vandenhaute, M. Cools-Ceuppens, S. DeKeyser,
T. Verstraelen and V. V. Speybroeck, npj Comput. Mater.,
2023, 9, 19.

18 J. J. Mortensen, M. Gjerding and K. S. Thygesen, J. Open
Source Softw., 2020, 5, 1844.

19 E. Gelzinyté, S. Wengert, T. K. Stenczel, H. H. Heenen,
K. Reuter, G. Csanyi and N. Bernstein, J. Chem. Phys., 2023,
159, 124801.

20 J. Janssen, S. Surendralal, Y. Lysogorskiy, M. Todorova,
T. Hickel, R. Drautz and]J. Neugebauer, Comput. Mater.
Sci., 2019, 163, 24-36.

21 Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J. Wozniak, I. Foster, M. Wilde and
K. Chard, 28th ACM International Symposium on High-
Performance Parallel and Distributed Computing, HPDC, 2019.

22 C.S. Adorf, P. M. Dodd, V. Ramasubramani and S. C. Glotzer,
Comput. Mater. Sci., 2018, 146, 220-229.

23 B. H. Sjolin, W. S. Hansen, A. A. Morin-Martinez,
M. H. Petersen, L. H. Rieger, T. Vegge, J. M. Garcia-Lastra
and 1. E. Castelli, Digital Discovery, 2024, 3, 1832-1841.

24 F. Zapata, L. Ridder,]J. Hidding, C. R. Jacob, 1. Infante and
L. Visscher, J. Chem. Inf. Model., 2019, 59, 3191-3197.

25 P. Diercks, D. Glaser, O. Liunsdorf, M. Selzer, B. Flemisch
and J. F. Unger, inggrid, 2023, 1(1), DOIL 10.48694/

inggrid.3726.

26 Python = Workflow Definition, https://github.com/
pythonworkflow/python-workflow-definition, accessed:
2025-05-21.

27 M. Uhrin, S. P. Huber, J. Yu, N. Marzari and G. Pizzi, Comput.
Mater. Sci., 2021, 187, 110086.

28 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni,
1. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi,
R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj,
M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri,
R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto,
C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen,

3160 | Digital Discovery, 2025, 4, 3149-3161

29

30

3

-

32

3

w

34

35

36

37

38

39

View Article Online

Paper

A. Smogunov, P. Umari and R. M. Wentzcovitch, J. Phys.:
Condens. Matter, 2009, 21, 395502.

P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau,
M. Buongiorno Nardelli M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna,
I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas,
R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo,
R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia,
M. Kawamura, H.-Y. Ko, A. Kokalj, E. Kigciikbenli,
M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen,
H.-V. Nguyen, A. Otero-de-la Roza, L. Paulatto, S. Poncé,
D. Rocca, R. Sabatini, B. Santra, M. Schlipf,
A. P. Seitsonen, A. Smogunov, 1. Timrov, T. Thonhauser,
P. Umari, N. Vast, X. Wu and S. Baroni, J. Phys.: Condens.
Matter, 2017, 29, 465901.

B. Griining, R. Dale, A. Sjodin, B. A. Chapman, J. Rowe,
C. H. Tomkins-Tinch, R. Valieris, J. Koster and T. B. Team,
Nat. Methods, 2018, 475-476.

Eclipse Layout Kernel JSON Format, https://eclipse.dev/elk/
documentation/tooldevelopers/graphdatastructure/
jsonformat.html, accessed: 2025-05-21.

repo2docker, https://github.com/jupyterhub/repo2docker/,
accessed: 2025-08-21.

grayskull, https://github.com/conda/grayskull/, accessed:
2025-08-21.
S. P. Huber, E. Bosoni, M. Bercx, J. Broder, A. Degomme,

V. Dikan, K. Eimre, E. Flage-Larsen, A. Garcia, L. Genovese,
D. Gresch, C. Johnston, G. Petretto, S. Poncé,
G.-M. Rignanese, C.]J. Sewell, B. Smit, V. Tseplyaev,
M. Uhrin, D. Wortmann, A. V. Yakutovich, A. Zadoks,
P. Zarabadi-Poor, B. Zhu, N. Marzari and G. Pizzi, npj
Comput. Mater., 2021, 7, 136.

AiiDA plugin registry, https://aiidateam.github.io/aiida-
registry/, accessed: 2025-05-21.

P. Kraus, E. Bainglass, F. F. Ramirez, E. Svaluto-Ferro,
L. Ercole, B. Kunz, S. P. Huber, N. Plainpan, N. Marzari,
C. Battaglia and G. Pizzi, J. Mater. Chem. A, 2024, 12,
10773-10783.

AiiDA workgraph documentation, https://aiida-
workgraph.readthedocs.io/en/latest/, accessed: 2025-05-22.
A. M. Ganose, H. Sahasrabuddhe, M. Asta, K. Beck,
T. Biswas, A. Bonkowski, J. Bustamante, X. Chen,
Y. Chiang, D. C. Chrzan, J. Clary, O. A. Cohen, C. Ertural,
M. Gallant, J. George, S. Gerits, R. E. A. Goodall, R. Guha,
G. Hautier, M. Horton, A. D. Kaplan, R. Kingsbury,
M. C. Kuner, B. Li, X. Linn, M. McDermott,
R. S. Mohanakrishnan, A. N. Naik, J. B. Neaton,
K. A. Persson, G. Petretto, T. Purcell, F. Ricci, B. Rich,
J. Riebesell, G.-M. Rignanese, A. S. Rosen, M. Scheffler,
J. Schmidt, J.-X. Shen, A. Sobolev, R. Sundararaman,
C. Tezak, V. Trinquet,]J. Varley, D. Vigil-Fowler, D. Wang,
D. Waroquiers, M. Wen, H. Yang, H. Zheng, J. Zheng,
Z. Zhu and A. Jain, Digital Discovery, 2025, 4, 1944-1973.

K. Mathew, J. H. Montoya, A. Faghaninia, S. Dwarakanath,
M. Aykol, H. Tang, L-H. Chu, T. Smidt, B. Bocklund,
M. Horton, J. Dagdelen, B. Wood, Z.-K. Liu,]J. Neaton,

© 2025 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.48694/inggrid.3726
https://doi.org/10.48694/inggrid.3726
https://github.com/pythonworkflow/python-workflow-definition
https://github.com/pythonworkflow/python-workflow-definition
https://eclipse.dev/elk/documentation/tooldevelopers/graphdatastructure/jsonformat.html
https://eclipse.dev/elk/documentation/tooldevelopers/graphdatastructure/jsonformat.html
https://eclipse.dev/elk/documentation/tooldevelopers/graphdatastructure/jsonformat.html
https://github.com/jupyterhub/repo2docker/
https://github.com/conda/grayskull/
https://aiidateam.github.io/aiida-registry/
https://aiidateam.github.io/aiida-registry/
https://aiida-workgraph.readthedocs.io/en/latest/
https://aiida-workgraph.readthedocs.io/en/latest/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

Open Access Article. Published on 10 October 2025. Downloaded on 11/21/2025 11:56:28 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

S. P. Ong, K. Persson and A. Jain, Comput. Mater. Sci., 2017,
139, 140-152.

40 A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards,
S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and
K. A. Persson, APL Mater., 2013, 1, 011002.

41 A. Jain, S. P. Ong, W. Chen, B. Medasani, X. Qu, M. Kocher,
M. Brafman, G. Petretto, G.-M. Rignanese, G. Hautier,
D. Gunter and K. A. Persson, Concurr. Comput. Pract. Exp.,
2015, 27, 5037-5059.

42 G. Petretto, M. Evans, D. Waroquiers, F. Ricci, J. Riebesell
and C. Ertural, jobflow-remote, 2024, https://github.com/
Matgenix/jobflow-remote/tree/v0.1.4.

43 M. Stricker, L. Banko, N. Sarazin, N. Siemer,]J. Janssen,
L. Zhang, J. Neugebauer and A. Ludwig, Computationally
accelerated experimental materials characterization -
drawing inspiration from high-throughput simulation
workflows, 2025, https://arxiv.org/abs/2212.04804.

44 M. L. Evans,]J. Bergsma, A. Merkys, C. W. Andersen,
O. B. Andersson, D. Beltran, E. Blokhin, T. M. Boland,
R. Castafieda Balderas, K. Choudhary, A. Diaz Diaz,
R. Dominguez Garcia, H. Eckert, K. Eimre, M. E. Fuentes
Montero, A. M. Krajewski, J. J. Mortensen, J. M. Napoles

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

Duarte, J. Pietryga, J. Qi, F. d. J. Trejo Carrillo, A. Vaitkus,
J. Yu, A. Zettel, P. B. de Castro, J. Carlsson,
T. F. T. Cerqueira, S. Divilov, H. Hajiyani, F. Hanke,
K. Jose, C. Oses, J. Riebesell, J. Schmidt, D. Winston,
C. Xie, X. Yang, S. Bonella, S. Botti, S. Curtarolo, C. Draxl,
L. E. Fuentes Cobas, A. Hospital, Z.-K. Liu,
M. A. L. Marques, N. Marzari, A. J. Morris, S. P. Ong,
M. Orozco, K. A. Persson, K. S. Thygesen, C. Wolverton,
M. Scheidgen, C. Toher, G. J. Conduit, G. Pizzi, S. Grazulis,
G.-M. Rignanese and R. Armiento, Digital Discovery, 2024,
3, 1509-1533.

45 M. L. Evans, C. W. Andersen, S. Dwaraknath, M. Scheidgen,
A. Fekete and D. Winston, J. Open Source Softw., 2021, 6,
3458.

46 Conda Subprocess Package, https://github.com/pyiron/
conda_subprocess, accessed: 2025-05-21.

47 Abstract Syntax Trees, https://docs.python.org/3/library/
ast.html, accessed: 2025-05-21.

48 M. L. Evans, G.-M. Rignanese, D. Elbert and P. Kraus, MRS
Bull., 2025, 50, 838-845.

49 Zenodo, DOI: 10.5281/zenodo0.15516180, accessed: 2025-10-09.

Digital Discovery, 2025, 4, 3149-3161 | 3161

https://github.com/Matgenix/jobflow-remote/tree/v0.1.4
https://github.com/Matgenix/jobflow-remote/tree/v0.1.4
https://arxiv.org/abs/2212.04804
https://github.com/pyiron/conda_subprocess
https://github.com/pyiron/conda_subprocess
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://doi.org/10.5281/zenodo.15516180
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00231a

	A python workflow definition for computational materials design
	A python workflow definition for computational materials design
	A python workflow definition for computational materials design
	A python workflow definition for computational materials design
	A python workflow definition for computational materials design
	A python workflow definition for computational materials design
	A python workflow definition for computational materials design

	A python workflow definition for computational materials design
	A python workflow definition for computational materials design
	A python workflow definition for computational materials design
	A python workflow definition for computational materials design
	A python workflow definition for computational materials design
	A python workflow definition for computational materials design
	A python workflow definition for computational materials design

