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Abstract

Generative artificial intelligence (AI) is emerging as a powerful tool for advancing the design of 

nanoporous materials such as metal−organic frameworks, covalent−organic frameworks, and 

zeolites. These materials have potential application in important areas such as carbon capture, 

catalysis, gas storage, chemical separation, and drug delivery due to their modular, tunable 

structures, and their performance in these areas depends on precise control over their structure, 

chemical functionalities, and properties. Herein, we provide a review of generative AI algorithms 

that are emerging as powerful tools for the design of nanoporous materials, namely generative 

adversarial networks, variational autoencoders, diffusion models, genetic algorithms, 

reinforcement learning, and large language models. Some models are particularly good at 

generating diverse and high-quality designs, while others excel at exploring large design spaces or 

optimizing materials with desired properties. Certain algorithms also allow for efficient transitions 

between different designs, and some offer versatility in generating materials based on textual input. 

We discuss the advantages, limitations, and applications of these algorithms in porous material 
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design and emphasize the future potential of integrating AI with experimental workflows to 

accelerate the development and validation of AI-generated materials.

1. Introduction

Artificial intelligence (AI) is revolutionizing material design and discovery, especially 

through the use of new generative AI models. Traditional methods for material discovery often 

involve a trial-and-error process, extensively sampling the material space to search for those that 

meet the desired properties.1,2 This approach is not only time-consuming but also resource-

intensive, requiring substantial investments in laboratory equipment, materials, and human time. 

More recently, high-throughput computational screening of materials has emerged as a way to 

more quickly find top-performing materials for a given application.3–5 The properties or 

performance of the materials may be predicted using methods such as electronic structure 

calculations (especially density functional theory), molecular simulations (e.g., Monte Carlo (MC) 

or molecular dynamics (MD) simulations), or other methods (e.g., geometric analysis). Since the 

cost of such calculations can quickly become prohibitive, machine learning (ML) algorithms, such 

as decision trees,6 random forest,7 and XG boost,8 can be used instead to predict the properties of 

candidate material at much lower cost, but usually also reduced accuracy. These ML models are 

often trained on computational data and, once trained, allow vast chemical spaces to be rapidly 

explored. Training a ML model in this way is referred to as “supervised” learning, and the goal is 

to create a surrogate model that can predict the properties of a candidate material more quickly 

than, say, a MC simulation. In contrast, generative models suggest new candidate materials, where 

the suggested materials have specific targeted properties. This capability significantly accelerates 

material discovery process by identifying promising candidates early in the research cycle, 

allowing researchers to focus more detailed simulations or experiments on the most promising 

candidates, significantly reducing the time and cost in material discovery.

Nanoporous materials,9 such activated carbons and zeolites, are important in a variety of 

important processes, including adsorptive separations and heterogeneous catalysis. Zeolites are 

crystalline framework materials made from interconnected rings of silicon (or other atoms in 

tetrahedral sites) and oxygen atoms. They are widely used in petroleum refining, air separation, 

and other separations.10 Activated carbons, by contrast, are amorphous materials with a high 

surface area and tunable porosity, commonly employed in gas purification, water treatment, and 
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energy storage applications.11 In the past 25 years, several classes of new nanoporous materials 

have emerged in which the materials are synthesized from well-defined building blocks. For 

example, metal−organic frameworks (MOFs) are synthesized from metal nodes and organic 

“linkers” that connected between the metal nodes. Covalent−organic frameworks (COFs) are 

constructed from organic molecules linked together by strong covalent bonds. Due to the building-

block synthesis approach, a wide variety of MOFs and COFs can be synthesized, and it is possible 

to tune properties such as their porosity,12–14 surface area,15,16 and topology.17–19 These attributes 

make them ideal candidates for various applications contributing to clean energy solutions and 

environmental sustainability. For example, nanoporous materials are being developed for storage 

of hydrogen20 and methane21 and for carbon dioxide capture22,23 and other molecular 

separations.24–26 In catalysis, metal atoms in MOF nodes or decorated in these frameworks can 

serve as active sites to catalyze various chemical reactions, including hydrogenation, 

oligomerization, and electron donor-acceptor reactions.27–30 Additionally, the porous structures of 

these frameworks allow for the loading of drugs into their cavities.31 By modifying the pore sizes, 

topology, and surface chemistry, the release rate of the encapsulated drugs can be finely tuned, 

ensuring sustained and controlled drug delivery over time.32–35

The immense application potential of nanoporous materials has motivated tremendous 

efforts to accelerate their discovery using ML. These efforts have successfully predicted gas 

adsorption,36–38 catalytic,39,40 thermal,41 and electronic properties42,43 for various families of 

nanoporous materials.44–47 However, ML in this field relies on large, labeled datasets for model 

training. Acquiring such datasets can be challenging and resource-intensive due to the inherent 

complexity of porous materials, especially when considering that performance metrics may require 

predictions at a range of temperatures, pressures, and adsorbate compositions. Additionally, 

traditional ML models struggle with generalizing beyond the data they are trained on, making it 

difficult to efficiently explore the vast chemical space or generate new materials with targeted 

properties. In contrast, generative models have shown great promise in mitigating these challenges, 

either by rapidly generating a large number of new materials beyond the training data for further 

screening or by purposefully designing new materials with desired properties. This enables more 

efficient exploration of the vast material space with reduced sampling requirements and thereby 

facilitates material design, where desired properties directly guide the generation of suitable 
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material structures.48 This approach is particularly compelling for porous frameworks, given their 

modular nature, which allows for precise tuning of building blocks to achieve targeted properties. 

The remainder of this review is organized as follows. First, we present six generative AI 

approaches that have shown potential in the design of porous materials. Next, we examine key 

practical considerations, including data requirements, user-friendliness, and the scalability of these 

AI approaches. Then, we discuss the challenges and opportunities in applying generative AI to 

porous material design. We conclude with a summary of key findings and a perspective on the 

future of generative AI in nanoporous materials design.

2. Generative AI approaches for Design of Porous Materials

In this section, we provide an overview and illustrative examples of six generative AI 

approaches that have demonstrated potential in designing nanoporous materials (Figure 1): 

generative adversarial networks (GANs), variational autoencoders (VAEs), diffusion models 

(DMs), genetic algorithms (GAs), reinforcement learning (RL), and large language models 

(LLMs). Each of these approaches offers distinct solutions to the challenge of porous material 

design, allowing researchers to generate new structures and explore the vast chemical space in 

ways previously unattainable with traditional methods. We highlight their advantages, limitations, 

and specific case studies that demonstrate their impact in the discovery and optimization of 

nanoporous frameworks. A comprehensive overview of the reviewed research studies is provided 

in Table 1. The table includes the systems studied, target applications, the generative AI methods 

used, dataset sizes, challenges addressed, performance metrics, validation approaches, and notable 

findings, aiming to highlight how these methods advance the field of porous material design.
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Figure 1. Schematic illustration of generative AI applied to nanoporous material design.

2.1. Generative Adversarial Networks (GANs)

GANs have been extensively applied in generating high-quality images49 and have shown 

great potential in material design, enabling the exploration of vast design spaces and the creation 

of novel compounds.50–53 GANs are a type of deep learning model comprising two neural 

networks—a generator and a discriminator54 —that are trained simultaneously in a competitive 

process called adversarial training (Figure 2a). The generator aims to create synthetic data (e.g., 

images, molecular structures) that resemble real-world data, while the discriminator works as a 

“judge,” attempting to distinguish between the real data and the generator's synthetic outputs. This 

setup forms a zero-sum game: the generator tries to “fool” the discriminator, while the 

discriminator becomes increasingly skilled at detecting fakes. In mathematical terms, the objective 

of the GAN is to optimize the following loss function through adversarial training:54

min
𝐺

max
𝐷

𝑉(𝐷,𝐺) = 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) log𝐷(𝑥) + 𝔼𝑧~𝑝𝑧(𝑧) log (1 ― 𝐷(𝐺(𝑧)))

where 𝑥 represents the real data, 𝑧 represents the latent vector, 𝑝𝑑𝑎𝑡𝑎(𝑥) models the distribution of 

the real data, and 𝑝𝑧(𝑧) models the distribution of the latent vector. 𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) log𝐷(𝑥)  is the 

loss function that encourages the discriminator 𝐷 to assign high probabilities to real data samples 

and 𝔼𝑧~𝑝𝑧(𝑧) log (1 ― 𝐷(𝐺(𝑧)))  is the loss function that encourages the discriminator to assign 

low probabilities to fake data generated by the generator 𝐺. The discriminator aims to maximize 
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the loss function to correctly classify real and fake data, while the generator aims to minimize the 

loss function by producing synthetic data that the discriminator misclassifies as real. This 

adversarial dynamic encourages the generator to create outputs that become increasingly 

indistinguishable from the real data. 

Figure 2. (a) Basic architecture of a GAN, featuring two neural networks: the Generator and 

Discriminator, which work adversarially to generate realistic data. (b) Overview of the ZeoGAN 

model. Energy (green) refers to the potential energy for methane adsorbate molecules, and material 

grids indicate silicon (red) and oxygen (yellow) atoms. Adapted with permission from Ref. 55. 

Copyright 2020 American Association for the Advancement of Science (AAAS).

In the context of porous material design, GANs are known for their ability to produce 

highly realistic samples.50,56 The generator proposes new frameworks meeting specific criteria, 

such as optimal pore size,57 chemical stability,51 or surface area, while the discriminator ensures 

that these proposed designs resemble real frameworks. This adversarial setup allows GANs to 

explore expansive chemical spaces and generate novel porous frameworks that might be 

overlooked by human intuition. For example, Kim et al.55 developed a zeolite GAN, named 

ZeoGAN, to generate pure silica zeolite structures (Figure 2b). The input features for training 

include material grids representing fixed silicon and oxygen atom distributions, and energy grids 

representing the methane-host interaction potential derived from classical force fields. The 

workflow of ZeoGAN involves feeding structured grids into the generator, which attempts to 

create realistic zeolites while the critic evaluates their plausibility. The model iteratively refines 

its outputs using adversarial training. In this work, the Earth mover's distance (EMD)58 which 
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represents the minimum cost required to transform one probability distribution into another, is 

used to quantify the difference between the distribution of generated data and that of the training 

data. The goal of optimizing EMD is to make the generated data distribution increasingly similar 

to the training data distribution, ensuring that the generated samples are realistic and physically 

meaningful. Using this approach, trained on 31,173 methane-accessible zeolites, ZeoGAN 

generated 1 million potential structures. After screening for proper bond connectivity and 

maintaining the correct Si:O ratio, eight unique zeolites were identified that were not present in 

the training dataset, suggesting that ZeoGAN generated structures beyond the scope of its training 

data. ZeoGAN was further refined to generate structures with specific user-desired properties, by 

biasing its learning process to generate materials within a specific heat of adsorption range (18–22 

kJ/mol), resulting in 121 feasible zeolites with the desired adsorption properties.

GANs offer significant flexibility in porous design because of their ability to learn and 

model complex data distributions. Unlike traditional methods like descriptor-based regression 

models that assume relatively simple structure property relationships, GANs can adapt to a wide 

variety of data patterns. For instance, Mao et al.53 leveraged GANs to design 2D porous materials 

with optimized isotropic elastic properties by generating configurations based on crystallographic 

symmetries and porosity constraints. They constructed datasets representing different symmetry 

groups, each containing around one million configurations with varying pixel matrices, Young's 

modulus, and isotropy. By training GANs on these various datasets, they produced 400 

configurations that achieved over 94% of the theoretical maximum Young’s modulus across 

different porosities, demonstrating the ability of GANs in generating near-optimal designs without 

extensive trial-and-error.59

While GANs have been successfully used for designing materials with relatively simple 

compositions, such as zeolites (especially all-silica zeolites),53,55,60 their application to more 

complex materials like MOFs and COFs remains challenging. The primary difficulty stems from 

the significant structural diversity of these materials, as traditional GAN architectures struggle to 

capture the vast range of topologies, bonding patterns, and coordination environments present in 

MOFs and COFs.61 Unlike zeolites, these materials incorporate a wide variety of atom types, 

metal-ligand interactions and the complexity of organic molecules, which GANs find difficult to 

encode in a latent space and accurately reconstruct during generation. Another fundamental 

challenge lies in mode collapse, a well-known limitation of GANs, where the model tends to 
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generate only a limited subset of structures rather than fully exploring the diverse chemical space. 

Given the complexity of MOFs and COFs, this issue is exacerbated as the model struggles to 

balance long-range periodicity with local coordination constraints, often leading to unrealistic or 

repetitive frameworks.

To mitigate these challenges, some studies have used advanced versions of GANs, such as 

deep convolutional GANs (DCGANs), to better manage these complexities. For example, Long et 

al.51 developed a constrained crystal DCGAN (CCDCGAN), integrating deep convolutional layers, 

to learn hierarchical features from the input data.62 By leveraging deep convolutional layers, the 

model progressively extracts hierarchical features from input data. Early layers focus on simple 

geometric details, such as edges or corners, while deeper layers learn more complex 

representations, such as the spatial arrangements and symmetries that define crystal lattices. This 

layered approach enables the model to capture both local bonding environments and global 

structural characteristics. The CCDCGAN further incorporates constraints directly into the 

generative process, ensuring that the generated structures meet thermodynamic stability and 

symmetry requirements. By embedding these constraints, the model not only adheres to physical 

and chemical principles but also explores a broader latent space to identify novel configurations. 

This combination of hierarchical feature learning and constraint integration allows CCDCGAN to 

overcome the limitations of traditional GANs in capturing the vast structural diversity and complex 

connectivity of porous materials.

We note that traditional GANs also face challenges with training instability, where the 

generator and discriminator fail to converge properly,63 or with mode collapse, where the generator 

fails to capture the full diversity of the target distribution and repeatedly produces only a limited 

subset of samples.64 These issues also hinder discovering new materials that may differ 

significantly from the training data, such as MOFs and COFs with similar building blocks yet 

different topologies. To mitigate these challenges, some studies52,55,65 have adopted Wasserstein 

GANs (wGANs),66 which replace the traditional GAN loss function with the EMD introduced 

earlier. This leads to more stable training and helps the model converge more effectively.

2.2. Variational Autoencoders (VAEs) 

Variational Autoencoders (VAEs) are another type of generative model increasingly used 

for material discovery. They encode high-dimensional data, such as material structures, into a 
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lower-dimensional latent space that captures the essential features of the data, which is then 

decoded back into the original data space.67,73 Additionally, the decoding step allows for the 

reconstruction of material structures, enabling the generation of new, chemically and structurally 

valid materials based on the learned latent space representation.68,69 This can be particularly useful 

for designing new materials with targeted properties, as it facilitates the exploration of large design 

spaces while maintaining computational efficiency. The training of a VAE involves two main 

components: the encoder, which compresses the material data into the latent space, and the decoder, 

which reconstructs the material data from this latent space. Instead of learning a single 

deterministic encoding, the encoder maps the input data 𝑥 to a probabilistic distribution in the 

latent space, specifically a Gaussian distribution 𝑞(𝑧|𝑥) characterized by a mean 𝜇(𝑥) and variance 

𝜎2(𝑥). A latent vector 𝑧 is sampled from this distribution and passed through the decoder to 

reconstruct 𝑥. 

The training objective of VAEs is to maximize the Evidence Lower Bound (ELBO) ℒ: 

ℒ = 𝔼𝑞(𝑧|𝑥)[ log 𝑝(𝑥|𝑧)] ― 𝐾𝐿(𝑞(𝑧|𝑥)||𝑝(𝑧))

The equation includes two parts – the reconstruction loss: 𝔼𝑞(𝑧|𝑥)[log 𝑝(𝑥|𝑧)] and the Kullback-

Leibler (KL) divergence: 𝐾𝐿(𝑞(𝑧|𝑥)||𝑝(𝑧)). The reconstruction loss ensures that the decoder 

learns to reconstruct input data 𝑥 that closely matches the original input data. The KL divergence 

regularizes the latent space 𝑧 to follow a smooth, structured distribution. Maximizing the ELBO 

results in a minimization of the KL divergence. Minimizing the KL divergence ensures that the 

learned latent space is close to the desired prior distribution, which is typically a standard Gaussian. 

This encoding-decoding process learns a probabilistic mapping from the input data to a latent space, 

enabling the generation of plausible new material structures by sampling from this latent 

distribution70,71 (Figure 3a).
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Figure 3. (a) Basic architecture of a VAE with an encoder-decoder structure for molecular or 

material design. Adapted from Ref. 71. Licensed under CC BY 4.0. (b) Automated porous 

framework discovery platform using the supramolecular variational autoencoder (SmVAE). 

Reprinted from Ref. 72, with permission from Springer Nature Copyright 2021.

One of the major advantages of VAEs is their ability to create a smooth and continuous 

latent space, which makes it easier to explore new material structures and discover materials with 

specific properties. This latent space represents the complex, high-dimensional data of material 

structures in simpler, lower-dimensional form. The continuous nature of this latent space is 

particularly beneficial for exploring and interpolating between different material designs. 
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Additionally, optimization in the continuous latent space is more tractable than optimizing discrete 

structures, as it allows for the use of gradient-based methods.

In contrast, discrete optimization is often challenging due to the combinatorial nature and 

non-differentiability of the structure space. A notable example of this is the supramolecular 

variational encoder (SmVAE) developed by Yao et al.72 which aimed to design new MOFs with 

enhanced properties for CO2/N2 and CO2/CH4 separation. The structural training data came from 

the CoRE MOF 2019-ASR database,73 which contains experimentally synthesized MOFs. The 

dataset was augmented to approximately two million MOF structures by applying random 

functionalization to known molecular fragments. The features extracted for input into the model 

included the MOF edges, vertices (both inorganic and organic), and topologies defining the 

reticular framework connectivity. Grand canonical Monte Carlo (GCMC) simulations were 

performed on 45,000 randomly selected MOFs to obtain the gas adsorption properties. Four 

textural properties (pore-limiting diameter (PLD), largest cavity diameter (LCD), density, and 

accessible gravimetric surface area (AGSA)) were computed geometrically for these 45,000 

structures. The workflow of the SmVAE consists of an encoder that maps discrete framework 

representations (RFcodes) into a continuous latent vector space and a decoder that reconstructs 

MOFs from this space. RFcode is an extension of MOFid,74 which is a unique identifier string that 

encodes the metal node, organic linker, and topology information of a MOF. Similarly, RFcode72 

represents the structure as a tuple of edges (represented by SMILES), vertices, and topology of the 

decomposed MOF. The model was trained in a semi-supervised manner using both structures with 

known properties (45,000 MOFs) and those without property data (the remaining dataset). A 

Gaussian Process (GP) model was then trained on the latent space to guide optimization towards 

structures with improved properties. The optimization was achieved by navigating the latent space 

and generating new MOFs predicted to have superior CO2 separation capabilities. Using this 

approach, the SmVAE successfully identified candidates with high CO2 capacity and selectivity, 

with the top-performing MOF achieving a CO2 capacity of 7.55 mol/kg and a selectivity of 16.0 

for CO2/CH2 separation, making it strongly competitive against the best performing materials in 

the literature for this separation.

In a related study, Zhou et al.69 developed a VAE called Cage-VAE, specifically designed 

for generating porous organic cages (POCs). Cage-VAE encodes the structural features of existing 

POCs into a continuous latent space, effectively capturing their geometric and stability 
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characteristics. By sampling different points in the latent space of the model, the authors found 

that Cage-VAE was highly effective at creating new POCs, particularly in biasing the generation 

process toward a specific desired property, such as shape persistence, which refers to the ability of 

a cage to retain its three-dimensional geometry without collapsing. Cage-VAE achieved a high 

success rate for producing valid, novel, and unique POC structures, with validity, novelty, and 

uniqueness scores all exceeding 0.900. Here, validity refers to the proportion of chemically valid 

molecules, as determined by whether the generated SMILES strings can be successfully parsed 

into molecular graphs. Novelty measures the fraction of valid molecules that do not appear in the 

training dataset. Uniqueness represents the proportion of valid molecules that are non-duplicated 

within the generated batch. Additionally, the study incorporated advanced techniques like 

Bayesian optimization and spherical linear interpolation to explore the latent space more 

efficiently, demonstrating how VAE, when integrated with other ML methods, can enhance the 

targeted design of functional materials by guiding generative processes toward specific chemical 

and structural goals.

Another advantage of VAEs is their stability during training. Unlike GANs that need much 

fine-tuning, VAEs tend to converge consistently because of their well-defined loss function. This 

loss function balances how well the model reconstructs the original data with a regularization term 

that shapes the structure of the latent space. As a result, VAEs are less likely to experience issues 

like mode collapse, which is a common problem with GANs where the model fails to capture the 

full diversity of the training data. Furthermore, the latent space created by VAEs allows researchers 

to generate new structures with combined or intermediate properties.

In recent years, variants of VAEs have been increasingly applied to assist porous materials 

design. For instance, Sun et al.47 developed a VAE-like encoder-decoder architecture within a 

meta-learning framework to extract structural fingerprints of nanoporous materials and predict 

their hydrogen adsorption behavior. Their study leveraged high-throughput MC simulations to 

generate adsorption data for a diverse set of materials, including MOFs, hyper-cross-linked 

polymers (HCPs), and zeolites, across a broad range of temperatures and pressures. By encoding 

the adsorption loading surface into a latent fingerprint representation, their model enabled accurate 

prediction of hydrogen uptake while circumventing the limitations of traditional adsorption 

isotherm fitting approaches. Instead of training separate models for different materials, the authors 

developed a single meta-learning model that generalizes across material classes and effectively 
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predicts their hydrogen adsorption performance, demonstrating improved accuracy and 

transferability compared to conventional methods.54

A common problem with VAEs is an insufficient disentangling effect. This issue arises 

when the VAE learns a latent space where multiple factors are entangled or overlapping in a single 

latent dimension, making it difficult to control or interpret specific features of the data. This 

happens because the VAE’s decoding process is probabilistic, which can blend different features 

together and smooth out important details.75 In the context of materials design, this means that the 

VAE may not be able to differentiate between subtle variations in properties like chemical 

composition, pore structure, or topology required for practical applications.76,77 As a result, 

additional refinement steps, such as using further computational or experimental validations71,75,78 

may be required to ensure that the generated materials meet the desired performance and exhibit 

clearly defined and controllable structural and chemical features necessary for real-world synthesis 

and application..

2.3 Diffusion Models

Diffusion models (DMs), initially developed for high-quality image generation, are now 

being used in porous material design because they can learn from existing structures and generate 

new ones that are both diverse and chemically reasonable.79 These models are grounded in a 

probabilistic framework and operate through a two-step process:89 a forward process and a reverse 

process (Figure 4a). In the forward process, noise is incrementally added to the original data over 

a series of discrete time steps. At each step 𝑡, the data become noisier, progressively approaching 

a standard Gaussian distribution. This process can be mathematically expressed as:

𝑞 𝑥𝑡│𝑥𝑡―1 = 𝒩(𝑥𝑡; 𝛼𝑡 𝑥𝑡―1 ,𝛽𝑡𝐼)

where the variable 𝑥 represents a data sample in the diffusion process, such as structural or 

property-related features of a material. 𝑞 𝑥𝑡│𝑥𝑡―1  represents a conditional probability 

distribution (a Gaussian distribution 𝒩) that defines how 𝑥𝑡―1, a version of 𝑥 at timestep 𝑡 ― 1, 

transitions to 𝑥𝑡, a slightly noisier version, in the forward process. 𝒩(𝑥𝑡;𝜇,𝛴) represents a 

multivariate Gaussian distribution where 𝜇 is the mean of the distribution and 𝛴 is the covariance 

matrix. In this case, the mean 𝜇 = 𝛼𝑡 𝑥𝑡―1  carries forward the signal from the previous step, 

where 𝛼𝑡  is a scaling factor controlling the contribution of the original data, to ensure that the 
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new state 𝑥𝑡 is primarily influenced by 𝑥𝑡―1. The parameter 𝛼𝑡 is defined as 𝛼𝑡 = 1 ― 𝛽𝑡, where 

𝛽𝑡 is the variance of the Gaussian noise added at timestep 𝑡. The choice of hyperparameter 𝛽𝑡 

determines the noise schedule. 𝐼 represents the identity matrix and the covariance matrix 𝛴 = 𝛽𝑡𝐼 

introduces isotropic Gaussian noise at each time step, progressively corrupting the data.

Figure 4. (a) Overview of the diffusion model, which begins with random noise and iteratively 

denoises the input through learned probabilistic transitions to generate outputs resembling the 

original data distribution. (b) Graphical representation of the diffusion process for zeolite 

generation using ZeoDiff. Adapted from Ref. 80. Licensed under CC BY 3.0. (c) Model architecture 

of MOFFUSION. Within MOFFUSION, a denoising 3D U-Net is used for the diffusion process. 

Adapted from Ref. 81. Licensed under CC BY-NC.
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This gradual corruption encodes the data into a form that is easy to model statistically but 

retains traces of the original structure. Next, the reverse process learns to reverse the noise addition 

by iteratively denoising the data to recover the original distribution. Using a trained neural network, 

the model predicts the noise added at each step and refines the data accordingly. The reverse 

process can be approximated as:

𝑝𝜃 𝑥𝑡―1│𝑥𝑡 = 𝒩 𝑥𝑡―1;𝜇𝜃 𝑥𝑡, 𝑡 , 
𝜃
(𝑥𝑡, 𝑡)

where 𝑝𝜃 𝑥𝑡│𝑥𝑡―1  is the learned reverse process distribution with parameters 𝜃. 𝜇𝜃 𝑥𝑡, 𝑡  is the 

predicted mean of the Gaussian distribution. It represents the most likely denoised value of 𝑥𝑡―1 

given 𝑥𝑡 and the current timestamp 𝑡. ∑𝜃(𝑥𝑡, 𝑡) is the variance of the Gaussian distribution, which 

can be either fixed or learned. By starting from Gaussian noise, the trained diffusion model 

gradually generates realistic data through this reverse denoising process, making it particularly 

suitable for generative material discovery.79 

In generative discovery, DMs have been shown to create high-performing, complex 

material structures, including MOFs. For example, Park et al.82 utilized a diffusion model named 

DiffLinker to generate chemically diverse MOF linkers for enhanced CO2 capture. The model was 

trained on the hMOF dataset,83 which contains 137,652 hypothetical MOFs with geometric 

features and adsorption data for various gases. The training data included high-performing MOF 

linkers, which were extracted and decomposed into molecular fragments serving as input features. 

DiffLinker employed a generative diffusion process, where Gaussian noise was iteratively added 

to the molecular fragments and then removed through a denoising network, enabling the generation 

of chemically diverse and unique linkers. These linkers were subsequently assembled with pre-

selected metal nodes (Cu paddlewheel, Zn paddlewheel, Zn4O nodes) into MOFs with a primitive 

cubic (pcu) topology. To evaluate these AI-generated MOFs, the study employed a comprehensive 

screening workflow that included MD and GCMC simulations. This process ensured that the 

MOFs not only met structural validity and stability requirements but also demonstrated high CO2 

adsorption capacities. Among the generated candidates, six MOFs exhibited CO2 adsorption 

capacities exceeding 2 mmol g-1 at 0.1 bar pressure and room temperature, outperforming 96.9% 

of the MOFs in the reference dataset.

Researchers have also worked to enhance the robustness of DMs by combining them with 

other generative algorithms, such as VAEs. For example, the Crystal Diffusion Variational 
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Autoencoder (CDVAE) was introduced by Xie et al.84 in 2021 to generate realistic 3D periodic 

structures of stable crystalline materials. They integrated a VAE with a diffusion model, 

specifically a noise conditional score network (NCSN), by encoding material structures into a 

latent space and using the NCSN in the decoder to refine noisy structures (a process that predicts 

adjustments needed to move towards a stable state) through Langevin dynamics. This integration 

embeds physical inductive biases, such as energy minimization and bonding preferences, ensuring 

that the generation process respects stability constraints and invariances, thus improving model 

robustness. Since then, it has been adapted for various applications. For example, Lyngby et al.85 

adapted CDVAE to generate 2D materials, training it on 2,615 known stable materials. Their 

model predicted 11,630 new 2D materials, many of which were more complex than the training 

examples. Among these, over 8500 materials were found to be chemically stable, with formation 

energies within 0.3 eV/atom of the convex hull (reference energy), and over 2000 were potentially 

synthesizable, within 50 meV/atom of the convex hull. In another study, Pakornchote et al.86 

employed a different approach called the denoising diffusion probabilistic model (DDPM) in the 

diffusion model component of the CDVAE. They found that this modified model generated 

structures that were closer to their true ground states, as predicted by DFT, with an improvement 

of around 68.1 meV/atom compared to the original CDVAE.

One reason that DMs are effective is that they can introduce diversity in the generated 

samples, which is crucial for discovering materials that might be overlooked by human intuition. 

Park et al.80 developed a diffusion model named ZeoDiff to generate all-silica zeolites. ZeoDiff 

significantly outperformed a previously developed GAN model, ZeoGAN,55 in terms of structural 

validity, achieving a 2000-fold increase in the ratio of valid to total generated structures. 

Specifically, after post-processing, only 0.0008% of the structures generated by ZeoGAN were 

valid, whereas ZeoDiff achieved a validity rate of 1.83%, highlighting its enhanced capability in 

producing physically realistic and synthesizable materials. ZeoDiff introduces diversity in the 

generated samples through its stochastic diffusion-denoising process. Its workflow begins with a 

representation of zeolite structures as three-dimensional grids composed of energy, silicon, and 

oxygen channels (Figure 4b), akin to RGB channels in image processing. These grids are 

progressively noised and then denoised by the model to generate new, realistic zeolite frameworks. 

To ensure the validity of generated structures, a post-processing procedure corrects atomic 

connectivity and Si/O ratios, further refining the outputs. Using this approach, ZeoDiff 
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successfully generated a variety of complex zeolite structures that were previously unknown. 

Among the 183 generated structures, 84 were entirely new and featured unique geometric 

properties (Figure 4b).

In another study, Alverson et al.52 compared the performance of Wasserstein GANs, 

Vanilla GANs, and DMs in generating crystal structures that are both synthesizable and chemically 

stable, as determined by predicted formation energy using a pre-trained ML model and stability 

analysis through iterative DFT relaxation calculations. They found that the diffusion model greatly 

outperformed the GAN models, creating symmetrical and realistic-looking structures that were 

validated through energy relaxation calculations. Importantly, the DMs did not suffer from mode 

collapse, a common problem with GAN models where diversity in generated samples is lost. 

Instead, the DMs produced a wide range of lattice parameters, lattice angles, and space groups. 

The ability of DMs to effectively process and accurately reconstruct complex data distributions 

ensures that the generated frameworks not only meet a variety of design requirements but also 

maintain structural stability.

One challenge for DMs is their high computational cost. Despite offering high fidelity and 

rich structure generation, training a DM can require several days on multiple high-performance 

GPUs, with reported carbon emissions reaching ~9 kg of CO2 equivalent for training alone, and 

up to hundreds of kilograms for large-scale data generation depending on resolution and sample 

size.87 Although efficient sampling methods88–90 such as the DDPM88 employed by Pakornchote et 
al.86 can help reduce some of this cost by speeding up the inference process, the overall 

computational demands are still significant. For example, when comparing regular DMs, DDPMs, 

and GANs in image synthesis on the ImageNet 256×256 dataset, regular DMs and DDPMs have 

significantly higher computational demands compared to GANs. Regular DMs require the longest 

training time—7 million steps—and have the largest model size, with 675 million parameters.91 In 

contrast, GANs offer the fastest inference time at 0.07 seconds92 and the smallest model size, with 

166.3 million parameters.93 Although DDPMs are 3x faster than regular DMs, they still require 

substantial computational resources compared to GANs.93 

This challenge has driven researchers to develop innovative approaches that balance 

computational efficiency and generative performance in DMs. A notable example is the work by 

Park et al.81, who developed MOFFUSION, a denoising diffusion probabilistic model for MOF 

structure generation designed to efficiently explore the vast chemical space of MOFs while 

ensuring structural validity and tunable properties (Figure 4c). A key innovation of MOFFUSION 
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is its use of the signed distance function (SDF) representation for MOFs, a mathematical 

framework that encodes geometric shapes by measuring the shortest distance from any point in 

space to the nearest surface. SDF provides a highly effective way to describe the intricate pore 

structures of MOFs, but its high dimensionality and large data volume (323 grid points) pose 

significant computational challenges, making it infeasible for conventional DMs to process 

efficiently. To address this issue, the authors incorporated a vector quantized-VAE (VQ-VAE), a 

discrete latent representation variant of VAE, for feature compression and latent space mapping. 

By reducing the input data dimensionality from 323 to 83 before feeding it into the diffusion model 

and subsequently scaling the generated data back up to 323, this compression-decompression 

process significantly reduces the computational load. As a result, MOFFUSION enables the 

efficient processing of high-dimensional feature space containing diverse modalities of data 

including 3D structural data, numeric, categorical, and text data, making large-scale MOF 

generation computationally affordable.

DMs also require large amounts of high-quality training data to cover the diversity of 

materials, typically on the order of tens of thousands of examples.84,94 As introduced by Xie et 
al.84, the Perov-5 dataset consists of 18,928 perovskite materials with 56 elements and 5 atoms per 

unit cell. The Carbon-24 dataset95 contains 10,153 carbon-based materials with 6–24 atoms per 

unit cell, while the MP-20 dataset96 from the Materials Project includes 45,231 materials with up 

to 89 elements and 1–20 atoms per unit cell. These datasets highlight the scale and diversity needed 

for training DMs. Datasets for generative discovery of nanoporous materials are often quite 

limited,97 especially when targeting novel or difficult-to-compute properties. One solution to this 

challenge is to use data augmentation techniques to expand the training dataset98 or to apply 

transfer learning, leveraging existing data from related materials.99–101

2.4 Genetic Algorithms (GA)

GAs are optimization techniques inspired by natural selection and genetic principles. They 

are particularly well-suited for generative materials discovery, where the goal is to explore vast 

design spaces while minimizing the need for sampling and to identify material structures that 

optimize specific properties or performance criteria. As depicted in Figure 5a, the process begins 

with an initial population of randomly generated material configurations, where each configuration, 

or “individual,” represents a potential solution. These individuals are evaluated using a fitness 

function, 𝑓(𝑥𝑖), which quantifies their performance based on desired material properties such as 
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gas adsorption capacity or thermal stability. Individuals with higher fitness scores are 

probabilistically selected to contribute to the next generation, ensuring that the best solutions are 

carried forward.

In the context of porous material design, e.g., MOFs, to generate new individuals, genetic 

operators like crossover and mutation are applied. Crossover, or recombination, combines the 

structural building blocks (“genes”) of two parent configurations to create offspring. For instance, 

a typical crossover involves exchanging structural units between two selected MOFs, creating new 

combinations of inorganic nodes, organic linkers, and functional groups. Mutation introduces 

random changes to the offspring to create diversity and explore new regions of the design 

space.102,103 It occurs with a predefined probability (e.g., 5%) for each gene, where a randomly 

chosen gene (such as the type of metal node, organic linker, or functional group) is altered to a 

different valid option from the dataset. This introduces structural variations that help the algorithm 

explore novel MOF configurations and avoid premature convergence to suboptimal solutions. The 

iterative process of crossover and mutation continues for a fixed number of generations or until a 

material achieving a desired fitness is found. The inherent parallelism of GAs allows them to 

evaluate multiple solutions simultaneously,104,105 significantly speeding up the search process, 

especially when using computationally expensive molecular simulations and DFT calculations to 

evaluate the fitness of the generated candidates.106 GAs are particularly advantageous when the 

design space is vast and not easily navigable by traditional methods. In contrast to DMs, GAs rely 

on simulation-based fitness scoring and do not involve neural network training, which is the major 

contributor to the carbon footprint of DMs. However, since each GA evaluation involves 

simulations that may take hours, whether GAs have a lower carbon footprint than DMs ultimately 

depends on the specific application and computational setup.
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Figure 5. (a) Workflow of GA and (b) An example chromosome and the corresponding hMOF 

structure. Colors help illustrate the correspondence between the genes and the hMOF structural 

features. Adapted from Ref. 107. Licensed under CC BY-NC.

The effectiveness of GAs in discovering superior porous frameworks has been 

demonstrated in various studies. For example, Chung et al.107 used a GA to identify high-

performance MOFs for precombustion CO2 capture. As depicted in Figure 5a, the search space 

consisted of 51,163 unique structures from the hMOF database,108 where each MOF was 

represented by a chromosome of six integers (Figure 5b), encoding key structural units such as 

inorganic nodes, organic linkers, and functional groups. The GA workflow began with an initial 

population of 100 MOFs, selected to ensure diversity. The algorithm then evolved these MOFs 

over multiple generations through tournament selection, crossover, and mutation. Crossover was 

applied with a 65% probability, where a single-point crossover mechanism was used to exchange 

structural units (e.g., inorganic nodes, organic linkers, and functional groups) between two selected 

parent MOFs. A random crossover point was chosen along the chromosome, and the genes beyond 

this point were swapped between the two parent MOFs. This process helped preserve beneficial 

traits while introducing new combinations. Following this, mutation was introduced with a 5% 

probability, where one or more structural units were randomly modified. This step enabled the 

algorithm to explore novel configurations and avoid premature convergence to local optima. In 

each generation, high-performing MOFs were identified based on CO2 working capacity and 

CO2/H2 selectivity, evaluated using GCMC simulations. These high-performing MOFs were then 

recombined and mutated to create new candidates, and the process was repeated for 10 generations. 

Using this approach, Chung et al. identified and experimentally validated NOTT-101/OEt, a MOF 
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with a CO₂ working capacity of 3.8 mol/kg and a CO₂/H₂ selectivity of 60, outperforming 

previously reported MOFs under the same conditions. Additionally, their GA model reduced 

computational effort by over 99% compared to a brute-force screening of the entire database, 

demonstrating the efficiency of AI-driven material discovery.

In another instance, Lee et al.109 employed genetic algorithms to explore over 100 trillion 

potential MOFs for methane gas storage. By utilizing GCMC simulations and Artificial Neural 

Networks (ANN) to assess the working capacity of these MOFs, their algorithm successfully 

identified 964 MOFs with methane working capacities exceeding 200 cm³/cm³, with 96 of them 

surpassing the existing world record of 208 cm³/cm³. Lim et al.110 used a similar approach, 

combining genetic algorithms with GCMC and ANN, to identify two MOFs that outperformed the 

current benchmark for xenon/krypton separation. Moreover, their research enhanced the genetic 

algorithm by considering additional properties such as the cost and selectivity of the frameworks, 

demonstrating its capability not only to identify optimal materials but also to ensure the practical 

applicability of MOFs.

Collins et al.111 developed a GA-based approach, named MOFF-GA, to optimize functional 

groups within MOFs for enhanced CO2 capture. Focusing on experimentally characterized MOFs, 

the algorithm employs tailored crossover and mutation schemes to efficiently explore the vast 

search space of possible functional group combinations. This approach was applied to 141 parent 

MOFs, resulting in 1,035 functionalized derivatives with CO₂ uptake capacities exceeding 3 

mmol/g at 0.15 atm and 298 K evaluated using GCMC simulations, outperforming the original 

MOFs by an average of 3.7 times. Remarkably, the MOFF-GA was effective even when working 

with a small search space of fewer than 1,000 structures.

GAs can be applied to a wide range of material design problems, which makes them 

versatile tools that can be combined with other ML algorithms for better results. For example, 

Jennings et al.103 combined an on-the-fly trained Gaussian Process (GP) regression model with a 

GA. The GP serves as a computationally inexpensive surrogate to predict the energy of candidate 

materials, significantly reducing the need for time-consuming energy calculations using DFT. This 

hybrid approach, termed ML-accelerated GA (MLaGA), incorporates two levels of evaluation: the 

ML-predicted energy for quick screening and DFT calculation for final verification. By allowing 

the GP model to rapidly eliminate less promising candidates, the MLaGA achieved a 50-fold 

reduction in the number of required energy evaluations compared to a traditional GA.

Page 21 of 56 Digital Discovery

D
ig

ita
lD

is
co

ve
ry

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 7

/2
7/

20
25

 7
:0

7:
18

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5DD00221D

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00221d


22

It should be noted that in several of the examples described above, the GA is not really 

generative; instead, the GA was used as an optimization tool on an existing set of structures. 

However, by combining MOF features in new combinations, it is possible to generate new 

structures that have not previously been considered. One drawback of GAs is their slow 

convergence in complex and high-dimensional search spaces.103 Also, since GAs are heuristic, 

they do not guarantee finding the global optimum. Instead, they rely on stochastic processes that 

may converge to local minima in the search space.112,113 This heuristic nature requires careful 

tuning of parameters, such as mutation rate, crossover rate, and population size, to find the right 

balance between exploring new solutions and refining existing ones.114,115 Poorly chosen 

parameters may lead to premature convergence, a loss of diversity, or an inefficient search 

process.116 Additionally, evaluating the fitness of each individual in a population can be 

computationally expensive, especially when dealing with large populations or many generations. 

To address this, many recent applications of GAs in materials design integrate surrogate models 

such as neural networks to predict the performance of generated materials.117–120 This combination 

reduces the need for costly computational simulations to evaluate material performance, thus 

lowering overall resource requirements and speeding up the optimization process.

2.5 Reinforcement Learning (RL)

RL is a machine learning approach that enables an agent to learn optimal strategies for 

decision-making through interactions with an environment. In the context of material design, RL 

can be applied to optimize material properties by sequentially adjusting design parameters based 

on feedback from simulated or experimental evaluations. As illustrated in Figure 6a, the workflow 

involves three key components: the agent, the environment, and the reward signal.121 The agent 

represents the model tasked with proposing material designs. The environment evaluates these 

designs, either through simulations or experiments, and provides feedback to the agent in the form 

of a reward signal. The reward quantifies how well a material meets the desired target properties, 

such as gas adsorption capacity, thermal stability, or mechanical strength. The workflow begins 

with the agent proposing an initial material design, which is evaluated by the environment. Guided 

by a policy, the agent then modifies the material’s design parameters to map the current design 

state to the next action. After each action, the agent receives a reward, which measures the success 

of the modified design in achieving the target properties. Over time, the agent uses this feedback 

to refine its policy, improving its ability to predict which actions are likely to yield better designs. 
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Figure 6. (a) In RL, an agent learns to make decisions by interacting with an environment, 

receiving rewards or penalties, and adjusting its strategy through trial and error to improve 

outcomes. (b) Schematic of the RL framework for generative design of MOFs for direct air capture 

of CO2. The agent (generator) generates a MOF structure, which the environment (predictor) 

evaluates to return a reward. The agent uses this feedback to iteratively generate improved MOF 

structures with desirable properties. Adapted from Ref. 122. Licensed under CC BY 3.0. (c) 

Schematic of the collaborative deep RL system pipeline for optimal digital material discovery, 

using a 3 × 3 design space of 2D soft and stiff material components. Adapted with permission from 

Ref. 123. Copyright 2021 American Chemical Society.

Mathematically, the agent’s goal is to find the optimal policy 𝜋∗that maximizes the 

expected cumulative reward:
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𝜋∗ = arg max
𝜋

𝔼𝜋

∞

𝑡=0
𝛾𝑡𝑟𝑡+1| 𝑠0 = 𝑠

The policy 𝜋, often denoted as 𝜋(𝑎|𝑠), specifies the agent’s behavior, defining the probability of 

taking action 𝑎 in state 𝑠. The expected value of the cumulative reward, donated as 𝔼𝜋, is calculated 

over all possible trajectories (i.e., sequences of states and actions) that are generated by following 

the policy 𝜋. The cumulative reward ∑∞
𝑡=0 𝛾𝑡𝑟𝑡+1 is the discounted sum of rewards over time, 

where the immediate reward 𝑟𝑡+1 is received by the agent after taking action 𝑎𝑡 in state 𝑠𝑡 and 

transitioning to state 𝑠𝑡+1. The discount factor 𝛾 ∈ [0,1], balances short-term and long-term 

rewards, with the agent only considering immediate rewards if 𝛾 = 0 and giving equal weight to 

immediate and future rewards if 𝛾 = 1.

RL treats the discovery process as a series of interdependent decisions, where each step 

builds upon the previous one to optimize the overall outcomes. This makes RL well-suited for 

handling complex, multi-step synthesis or optimization tasks. A key challenge in RL for material 

design is balancing exploration and exploitation. Exploration seeks novel material configurations, 

while exploitation refines known high-performing structures. Too much exploration increases 

computational costs and inefficiency, while excessive exploitation risks missing superior materials. 

Striking this balance is crucial for optimizing both efficiency and discovery.

Park et al.122 used a deep RL model to design MOFs for direct air capture of CO2. Their 

RL model consists of two key components: a generator (agent) that proposes MOF structures and 

a predictor (environment) that evaluates these structures based on their estimated CO2 heat of 

adsorption and CO2/H2O selectivity. The training data was derived from computationally 

generated MOFs, constructed using PORMAKE,109 a tool developed by the authors to assemble 

MOF structures from predefined metal nodes, organic linkers, and topologies. The RL workflow 

begins with a pre-training phase, where the generator learns how to construct chemically valid 

MOFs by analyzing a large dataset of MOFs. The predictor is trained separately from GCMC-

computed target properties. Once pre-trained, the RL process starts, with the generator sequentially 

selecting a topology, metal cluster, and organic linker to propose new MOF structures. These 

structures are then evaluated by the predictor, which estimates their adsorption properties and 

provides a reward signal to refine the generator’s design strategy. To balance the trade-off between 

exploitation and exploration, the RL model employs a dual-generator system: one biased toward 

existing high-performance structures and another encouraging novel MOF exploration. The RL 
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process iterates over multiple rounds, each time refining the generator’s ability to propose MOFs 

that meet the dual objectives of strong CO2 adsorption and high CO2/H2O selectivity—a significant 

challenge due to the strong water affinity of many materials. Their study demonstrated that with 

each round of training, the generated MOFs increasingly met the desired property criteria. The 

RL-optimized MOFs exhibited some of the highest reported values for CO2 heat of adsorption 

(~62 kJ/mol-1) and CO2/H2O selectivity, indicating a strong affinity for CO₂ under atmospheric 

conditions (400 ppm, 1 bar, 298.15 K) for direct air capture (DAC). Further chemical analysis of 

the generated MOFs revealed distinctive features in top-performing structures, such as Mn and 

Eu-based metal clusters in MOFs with high CO2 adsorption, and Cu and Zn-based clusters in MOFs 

with high CO2/H2O selectivity.

Zheng et al.124 applied a policy-gradient RL framework to iteratively distribute hydroxyl 

and epoxide groups on the basal plan of graphene to maximize material toughness. This approach 

successfully addressed the combinatorial complexity of the problem, achieving optimized designs 

within a vast solution space of up to 1016 possibilities. Additionally, RL can incorporate different 

objectives during its learning process, allowing it to optimize multiple properties 

simultaneously.125 For example, Sui et al.123 used a deep RL framework to optimize two 

mechanical properties of complex materials, specifically targeting both stiffness and toughness 

(Figure 6c). The authors demonstrated how RL can balance conflicting design objectives and 

explore vast design spaces efficiently. These studies, although not directly focused on porous 

materials, demonstrate the efficiency and innovation of RL in multi-objective-driven design.

The process of learning through trial and error, which is central to RL, typically requires a 

large number of samples or simulations to find an optimal solution.126–129 This issue is further 

compounded in material design applications, where the state space (i.e., the possible configurations 

of materials) is extremely large123,130 and the relationship between actions (design decisions) and 

rewards (material properties) is highly non-linear.131 For instance, the deep RL framework 

developed by Park et al.122 required extensive computational resources due to the sheer scale of 

data and iterative training. The generator was trained on 1,540,889 MOFs, validated on 385,223, 

and tested on 10,000, running for 50 epochs with a batch size of 128. The predictor, trained 

separately over 100 epochs, relied on ∼33,000 MOFs for CO2 heat of adsorption and ∼24,000 for 

CO2/H2O selectivity, requiring costly GCMC simulations for data generation. Based on our 

group’s recent benchmarks,132 such simulations take on average 3-4 hours per MOF using the 
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CPU-based RASPA2 code. Even with our recently developed gRASPA code,132 which achieves a 

20-fold speedup on a single A100 GPU node, generating these datasets still requires ~2,000 GPU-

hours for CO2 heats of adsorption and ~1,500 GPU-hours for CO2/H2O selectivity. The RL phase 

further increased the burden, with each policy gradient training epoch selecting 8,000 MOFs and 

running over 20 epochs. The repeated evaluations, training cycles, and dependence on high-fidelity 

simulation data made this RL approach computationally expensive.

2.6 Large Language Models (LLMs)

The advance in generative AI best known to the general public is LLMs like GPT133 and 

BERT,134 which have gained significant attention across various fields due to their ability to 

process and generate human-like text. These models are pre-trained on extensive bodies of text, 

often containing billions of words, enabling them to learn complex patterns in language, such as 

grammar, semantics, and context. Central to their function is the concept of a token, which refers 

to a unit of text (e.g., words, prefixes, or punctuation) that the model uses to understand and 

generate language. Longer text is broken down into these smaller tokenized units for processing. 

LLMs operate by using a transformer architecture, which excels at capturing contextual 

relationships in sequential data. A key component of the transformer is the attention mechanism, 

which allows the model to focus on relevant parts of the input when generating output. For example, 

in text generation, the attention mechanism helps the model decide which words in a sentence are 

most relevant for predicting the next word. This mechanism enables the model to weigh the 

relevance of each token dynamically, improving its ability to generate coherent and contextually 

accurate outputs. While the primary applications of LLMs are in natural language processing, their 

versatility has expanded significantly, and they are rapidly finding applications in materials 

research.

Recently, LLMs have been applied to understand and predict material properties, generate 

new material compositions, and suggest synthesis pathways based on literature and databases. 

Their versatility, combined with their integration with other generative models, makes them a 

promising tool for advancing material design. Adapting LLMs for material design involves fine-

tuning them on specialized datasets containing information about suitable material features like 

their chemical compositions and desired properties. One key aspect of fine-tuning LLMs is prompt 

engineering, where the researcher interacts with the LLM through carefully designed prompts to 
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elicit specific and meaningful responses. By crafting prompts that guide the model’s reasoning and 

knowledge retrieval, researchers can optimize LLM outputs for specific tasks, such as synthesis 

planning and material property prediction. Once fine-tuned, LLMs can carry out several important 

tasks within the material design process (Figure 7a).135 For instance, LLMs can search for known 

materials and provide detailed descriptions of their structures and properties.136 In this role, LLMs 

serve as highly sophisticated encyclopedias, offering researchers comprehensive and easily 

accessible information on existing materials.136–138
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Figure 7. (a) Overview of Materials Science (MatSci) LLM requirements for knowledge 

acquisition and science acceleration. Adapted from Ref. 135. Licensed under CC BY 4.0. (b) 

Schematic of the GPT-4 Reticular Chemist, which includes three states: “ReticularChemScope,” 

“ReticularChemNavigator,” and the “ReticularChemExecutor.” Each state uses GPT-4 with 

distinct prompts, operating entirely through natural language, without coding. Adapted with 

permission from Ref. 139. Copyright 2023 Wiley-VCH. (c) Schematic of ChatMOF featuring three 

core components: agent, toolkit, and evaluator. The agent formulates a plan based on a user query, 

selects an appropriate toolkit, and the evaluator provides the final response. Adapted from Ref. 140. 

Licensed under CC BY 4.0. (d) Overview of the task-solving process in ChemCrow, which 

employs an automated, iterative chain-of-thought process to select tools, define inputs, and 

determine solution pathways. Toolsets in ChemCrow include modules for molecules, safety, 

reactions, and general-purpose tasks. Adapted from Ref. 141. Licensed under CC BY 4.0.

A key challenge in human-AI collaborative materials design lies in enabling AI to 

effectively learn and utilize existing human knowledge. LLMs have shown significant potential in 

organizing and interpreting data extracted from the literature. Zheng et al.142 employed prompt 

engineering to guide GPT-3.5-turbo in automating the extraction of MOF synthesis conditions 

from scientific publications, addressing the common issue of information hallucination in LLMs. 

They developed a ChemPrompt Engineering strategy, which integrates principles such as 

minimizing hallucination through carefully designed queries, providing explicit and structured 

instructions, and ensuring standardized output formats for reliable data extraction. To achieve this, 

they constructed a multi-step workflow that enables ChatGPT to parse, filter, and summarize 

synthesis data with high accuracy. Their approach combined direct summarization of preselected 

experimental sections, automated classification of synthesis-related paragraphs, and embedding-

based filtering to enhance processing efficiency. Applying this system, they extracted 26,257 

synthesis parameters for approximately 800 MOFs with an accuracy of 90–99%. The extracted 

dataset was further used to train a machine learning model that achieved over 87% accuracy in 

predicting MOF crystallization. Further, they developed a data-driven MOF chatbot capable of 

answering chemistry-related queries based on literature-derived synthesis conditions and applied 

it to linker design for water harvesting applications.143 These studies demonstrate how LLMs can 

be effectively harnessed for automated knowledge extraction and predictive modeling in chemistry, 
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requiring no coding expertise. This makes them particularly accessible to researchers who may 

lack coding training.

ChatGPT has also been applied to assist in the design and synthesis of porous materials. 

For instance, Zheng et al.139 proposed a framework integrating GPT-4 into chemical 

experimentation to enhance the collaborative dynamic between humans and AI in the synthesis 

and characterization of MOFs. The system leverages GPT-4’s natural language capabilities to 

streamline complex processes and make design guidance accessible to humans. This collaborative 

platform is designed to operate in iterative cycles where researchers execute tasks based on GPT-

4’s suggestions and provide feedback, enabling the model to refine its understanding and 

recommendations over time. The framework comprises three interconnected phases (Figure 7b). 

The first phase, Reticular ChemScope, establishes a detailed research blueprint by breaking the 

project into manageable activities. The second phase, Reticular ChemNavigator, serves as the 

central hub, assessing progress and suggesting three possible actions for the researcher to 

undertake. These suggestions are developed using human feedback, ensuring they align with 

experimental results. Lastly, the Reticular ChemExecutor offers step-by-step procedural guidance 

tailored to the selected task, enabling precise execution. The iterative process enables GPT-4 to 

adapt and learn from both successes and failures, effectively acting as a virtual mentor. 

Jablonka et al.144 demonstrated that GPT-3, originally trained on diverse text data, can be 

fine-tuned for material property prediction. Notable examples involved predicting Henry 

coefficients, heat capacities, and water stability of MOFs, using datasets as small as hundreds of 

samples. GPT-3 achieved these predictions with errors lower than conventional ML models in 

low-data scenarios, which is remarkable.

Another advantage of LLMs in material design is their versatility. LLMs can be fine-tuned 

for a variety of tasks, ranging from generating textual descriptions of known material structures to 

predicting the properties of new materials.145 For example, Kang et al.140 developed ChatMOF, a 

LLM specifically designed for predicting and generating MOFs. They employed ChatMOF as a 

central coordinator, facilitating appropriate responses to user requests through three main 

components – an agent, a toolkit, and an evaluator (Figure 7c). The agent breaks down queries, 

selects the best approach, and selects an appropriate tool from the toolkit. The evaluator then 

determines if the results are sufficient or if further refinement is needed. The toolkit consists of 

four categories: Searcher, retrieving information from existing MOF data; Predictor, using the 
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MOFTransformer146 model to predict desired material properties; Generator, applying a genetic 

algorithm to create new MOFs; and Utilities, handling general tasks like internet queries and 

calculations. ChatMOF achieves high accuracy rates by leveraging specialized tools for specific 

tasks: 96.9% for search tasks, 95.7% for prediction tasks, and 87.5% for structure generation. This 

model represents a significant step toward greater AI autonomy in nanoporous design.

As a more general tool, Bran et al.141 introduced ChemCrow, a chemistry-focused LLM 

agent designed to tackle tasks in organic synthesis, drug discovery, and materials design. By 

integrating 18 expert-developed tools with GPT-4, ChemCrow enhances the LLM’s chemistry 

capabilities (Figure 7d). ChemCrow successfully planned and executed the synthesis of various 

compounds, including an insect repellent and organocatalysts, and aided in discovering a novel 

chromophore. Expert chemists found that ChemCrow outperformed GPT-4 in chemical accuracy, 

logical reasoning, and response completeness, especially when handling complex problems.

Inspired by these advancements, experimental chemists can begin integrating pre-trained 

LLM assistants into their lab workflows for tasks such as literature text mining and synthesis 

planning. For example, Zheng et al.142 used ChatGPT to extract MOF synthesis conditions 

including temperature, solvent, concentration, and time parameters from published papers without 

requiring coding expertise, achieving high accuracy through carefully designed prompts. In 

another study, Zheng et al.139 integrated GPT-4 into the experimental design process to propose 

actionable synthesis steps and provide step-by-step procedural guidance for MOF preparation. 

More advanced use cases may involve combining LLMs with lab management or automation tools 

to suggest experimental designs, plan sequential workflows, or automate documentation, where 

the LLM acts as an accessible interface translating textual instructions into structured experimental 

plans, as demonstrated by the ChemCrow framework.141

Despite their powerful capabilities, LLMs pose challenges related to interpretability. The 

decision-making process within these models is often seen as a “black box,” making it difficult for 

researchers to understand why a particular material structure was suggested by the model.135 This 

lack of transparency can be a hurdle in scientific research, where understanding the rationale 

behind a prediction is often as important as the prediction itself. Furthermore, training and 

deploying LLMs from scratch is extremely expensive, making it prohibitively costly for most 

research groups. A common approach is to leverage pre-trained models such as GPT-4.0. However, 

there are two key points to keep in mind. First, these models are typically trained on publicly 
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available data rather than the full body of scientific literature, which often resides behind publisher 

paywalls. To adapt them for specific materials design tasks, researchers need to input relevant 

datasets and conduct meticulous prompt engineering. Second, some these models are not free and 

operate on a token-based pricing system, meaning that for research topics requiring extensive 

materials data or involving multiple complex prompts, the associated costs can become substantial. 

It is also important to note that when using LLMs for literature-based data mining, one must 

consider that most published studies predominantly report positive results while omitting negative 

or less favorable results. This imbalance introduces a “survivorship bias,” potentially skewing the 

model’s understanding of structure-property relationships.147 As a result, the model may 

overestimate the effectiveness of certain design strategies while overlooking potentially valuable 

insights hidden in unreported or unpublished data. Addressing this issue requires careful curation 

of training datasets, including efforts to incorporate negative results from supplementary materials, 

preprints, or experimental databases to improve model robustness and reliability.

3. Discussion

3.1 Data Requirements of Generative AI Algorithms

The effectiveness of generative AI algorithms in material design is highly dependent on 

their data requirements. The previously introduced models, excluding GAs and LLMs, generally 

require large volumes of high-quality data to achieve optimal performance. This reliance on 

extensive training data poses a challenge for porous material design, where data availability is 

often limited, especially for applications beyond adsorption, like catalysis. In contrast, GAs are 

more flexible and can work well with a smaller sample size. However, their performance can be 

compromised if the initial population lacks depth or variety. For instance, if the dataset includes 

only a narrow range of features or insufficiently diverse samples, it may fail to represent the 

broader design space effectively. LLMs benefit from large textual datasets but still need fine-

tuning using prompt engineering based on specialized material data to achieve good results.148

Some approaches have been adopted to mitigate data limitations. Data augmentation, for 

example, involves generating new material samples by applying functionalization to existing 

samples72 or by permuting and combining structural building blocks and topologies to create a vast 

number of new structures. For instance, the number of possible MOF structures can reach up to 

247 trillion.109 This enhances data diversity and improves the generative capability of the models. 
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Similarly, transfer learning leverages pre-trained models trained on large, general-purpose datasets, 

and adjusting them for specific tasks can potentially reduce the need for extensive data. 

Accelerating the computation of material properties is another promising direction. This can be 

achieved by developing faster and more accurate force field-based methods (including machine-

learned interatomic potentials) or leveraging machine learning models (surrogate models) for 

direct and rapid property prediction.149,150 

3.2 User-Friendliness and Scalability

The user-friendliness of generative AI methods varies depending on how they are 

implemented and the level of technical expertise required. Diffusion models, VAEs, and GANs 

are accessible to many users, as they typically involve working with pre-written scripts or 

platforms which require only basic programming skills. Among these, GANs may appear more 

approachable, as many pre-trained models are available, and generating outputs can be as simple 

as modifying parameters. GAs are intuitive to use due to their heuristic nature and relatively simple 

setup, making them accessible to users with limited machine learning experience. RL, on the other 

hand, typically presents a steeper learning curve, as designing reward functions and configuring 

interactive environments can be complex. While pre-existing frameworks can simplify RL 

implementation, effective use often demands a deeper understanding of training dynamics and 

policy optimization. In comparison, LLMs are becoming more user-friendly with advancements 

in tools and interfaces, such as Hugging Face’s Transformers library,151 though effective fine-

tuning and deployment of LLMs often still demands familiarity with model architecture, data 

preprocessing, and prompt engineering.

Scalability is another critical factor in applying these algorithms effectively. Diffusion 

models, while able to generate chemically viable samples, can require significant computational 

resources when handling large datasets, with the training process taking multiple GPU days.93 

GANs are also resource-intensive, particularly during training, although they become more 

efficient for generating samples once trained. For instance, Dan et al. introduced MatGAN, which 

was trained on more than 380,000 inorganic materials. Once trained, MatGAN reached a novelty 

of 92.5% and a validity of 84.5% when generating more than 2 million samples, demonstrating the 

model’s efficiency in producing viable materials following extensive training.65 GAs are 

inherently scalable due to their parallel nature, allowing the evaluation of multiple candidate 
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solutions simultaneously. However, their performance may decrease when working on very large 

populations or many generations, as the computational cost can become prohibitive. RL can 

optimize multiple objectives through iterative learning, but the complexity of environments often 

necessitates considerable amounts of agent interactions with the environment and advanced 

hardware.152 VAEs are somewhat more scalable compared to GANs, as they can generate new 

samples even with limited data, though they still benefit from larger datasets for improved 

performance. LLMs, while highly scalable and able to process large amounts of text data, demand 

substantial computational resources for training and deployment. As these models grow, the need 

for resources also increases, which can limit their use for many research groups.

A comparative summary of the strengths and limitations of these six generative AI 

approaches is provided in Table 2 to guide their selection for different material design tasks.

3.3 Guidance for Future Material Design

Designing nanoporous materials using generative AI requires a systematic approach that 

begins with ensuring the quality and representativeness of the training data. High-quality datasets 

that capture the structural diversity and property relationships of porous materials are crucial. 

Researchers can rely on domain-specific databases, such as the CoRE MOF database73 for 

structures and MOFX-DB83 for adsorption data, or develop custom datasets tailored to their 

objectives. To address limitations in data availability, techniques introduced above like data 

augmentation, which introduce noise or transformations, and transfer learning, can help diversify 

datasets and improve model robustness.

Building on this foundation, the choice of a suitable generative AI algorithm is critical and 

should align with the specific design task. For instance, DMs are effective for generating high-

resolution structures with complex pore architectures, such as MOFs designed for CO2 capture. 

GAs are well-suited for early-stage exploration of vast design spaces. RL is particularly 

advantageous for sequential design tasks, as it iteratively refines designs based on feedback. LLMs 

can streamline literature review, propose initial material structures, and guide synthesis planning 

based on textual inputs.

As described in the corresponding sections above, different generative models exhibit 

varying strengths in generating materials with defined target properties. (This is sometimes 

referred to as conditional design or inverse design; in this review, we have simply referred to it as 
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design or material design.) A short summary is provided in Table 2. VAEs are well suited for 

conditional generation due to their continuous latent space, enabling property optimization through 

latent space navigation.72 GANs can incorporate property conditions through conditional GAN 

architectures, although training stability remains a challenge.55 DMs can implement conditioning 

to guide generation toward desired properties but often require large datasets and significant 

computational resources.80,82 Reinforcement learning inherently supports conditional design by 

optimizing reward functions defined by target properties, while genetic algorithms impose 

conditions through fitness functions, acting more as optimization rather than true generative 

conditioning. Large language models can provide conditional outputs via prompt engineering,142 

but their application in directly generating material structures conditioned on quantitative 

properties is still emerging. Improving conditional generation capabilities across these models will 

accelerate the effective design of materials with tailored functionalities.

To further enhance the material design process, hybrid and ensemble approaches can be 

adopted. For example, the MOFFUSION model,81 introduced in Section 2.3, combines the 

generative power of DMs with the dimensionality reduction and reconstruction capabilities of VQ-

VAE, making it computationally feasible for DMs to process high-dimensional data. Likewise, 

LLMs have recently been explored as powerful tools for the early stages of material design, where 

they can generate initial material concepts by drawing on patterns from large scientific literature 

and databases.153 Studies have demonstrated that these models can suggest candidate compositions 

and synthesis routes,154 as well as assist in property prediction.155 Building on this emerging 

capability, such initial outputs may be further refined using downstream algorithms like genetic 

algorithms or diffusion models. This combination can leverage the unique strengths of each 

algorithm to enable innovative solutions. Additionally, LLMs can be trained as AI assistants 

capable of making decisions, automating the selection of suitable models, and mining datasets 

tailored to specific applications.140 These hybrid strategies allow researchers to address complex 

design challenges more effectively.

Another important limitation of current generative AI models for MOFs and COFs is their 

restricted ability to generate new topologies. Most existing approaches use topologies from the 

training dataset, focusing primarily on varying building blocks or functional groups. While this 

strategy enables the generation of chemically valid and potentially synthesizable structures, it 

limits the discovery of frameworks with novel topologies, which may become a bottleneck in 
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advancing reticular material design. Future improvements could focus on developing models that 

integrate topology generation as part of the design process. However, given that mathematicians 

have identified thousands of topologies, a simpler strategy might incorporate these topologies, 

which are known mathematically but are new to MOFs.

In addition, a critical task for generative AI methods is careful selection of appropriate 

descriptors to distinguish one material from another. Defining relevant evaluation metrics for 

specific applications to ensure accurate and meaningful results is also critical. For example, in 

adsorption separations, there is often a tradeoff between selectivity, working capacity, and other 

properties that should be considered. Finally, establishing an iterative feedback loop between AI 

predictions and experimental or computational validations is essential for refining models and 

ensuring reliability. Outputs from generative models can be validated using computational 

methods such as DFT, MD, or GCMC simulations. In addition, integrating experimental 

workflows allows researchers to verify the performance of AI-generated materials, enabling 

continuous improvement of the models over time based on real-world data. This iterative 

refinement process bridges the gap between computational predictions and practical 

implementation. Currently, experimental validation rates for AI-generated materials remain low, 

due to synthesis challenges and stability issues. However, there are successful cases, such as the 

synthesis of MOF NOTT-101/OEt reported by Chung et al.,107 that demonstrate the promising 

future of AI-enabled materials discovery and its potential to accelerate the design-to-synthesis 

process. Improving the translation of generative AI outputs into experimentally accessible 

synthesis procedures and validated nanoporous materials remains a critical task, and it presents an 

exciting opportunity to integrate AI design with automated synthesis and high-throughput 

experimental workflows in the future.

4. Conclusions and Perspective

In this review, we provided an overview of six promising generative AI approaches for 

designing new porous materials: GANs, VAEs, DMs, GAs, RL, and LLMs. We highlighted the 

unique advantages and challenges of each. DMs and GANs are excellent for generating chemically 

viable samples and diverse outputs, making them suitable for complex design tasks. GAs, with 

their heuristic nature, are well-suited for exploring broad design spaces and optimizing specific 

material properties, even with limited initial data. VAEs are effective for exploring and 
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interpolating between different material designs. RL is particularly useful for multi-step processes 

or dynamic design objectives by balancing the trade-offs between different properties and 

optimizing synthesis pathways. LLMs offer versatility in generating new materials based on 

textual input and are becoming very user-friendly. The success of these generative AI approaches 

depends heavily on the quality of training data, the expertise applied to fine-tuning and 

implementation, as well as the specific nature of the design task.

Generative AI is shaping new trends in material design, revolutionizing the way we design 

and discover new materials like zeolites and MOFs. Looking forward, several promising research 

directions could significantly advance the field of generative AI in material design. One important 

focus is to improve the interpretability of generative AI models, particularly for LLMs and deep 

learning based methods. Developing frameworks to explain the reasoning behind generated 

suggestions will enhance user experience and increase trust in automated design processes. 

Another exciting direction is integrating generative AI models with experimental workflows in 

real time, enabling rapid feedback between computational predictions and laboratory results to 

accelerate material discovery. As these methods become more powerful and user-friendly, they 

are poised to become a transformative tool to accelerate the discovery and optimization of the next 

generation of nanoporous materials.
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1

Table 1. Summary of reviewed studies on generative AI for porous material design. The table highlights key aspects of each study, 

including the system studied, application, generative AI method, training dataset size, features used for AI, performance metrics, 

validation methods, key findings, and limitations or remarks.
Ref. 
No.

Year Generative AI 
Method

System 
Studied

Application Training 
Dataset Size

Features used for 
AI

Performance 
Metrics

Validation 
Methods

Key Findings Limitations/ Remarks

Ref. 
55

2020 ZeoGAN 
(WGAN-GP 
variant)

Pure 
silica 
zeolites

Methane 
adsorption

31,713 
zeolites

Energy grids 
(methane potential 
energy), material 
grids (Si and O 
positions)

Methane heat of 
adsorption: 18-
22 kJ/mol

Molecular 
simulations 
(classical);  
comparison 
with 
IZA/PCOD 
databases

Demonstrated 
design of 
zeolites with 
specific methane 
adsorption 
properties; 
generated 121 
new crystalline 
materials

Limited to pure silica 
zeolites; requires 
significant 
computational 
resources and cleanup 
steps for connectivity

Ref. 
72

2021 Supramolecular 
Variational 
Encoder 
(SmVAE)

MOFs Separation of 
carbon dioxide 
from natural 
gas

45,000 MOFs 
with property 
data, ~2 
million MOFs 
without 
property data

Representation of 
MOFs in RFcode 
(composed of 
edges, vertices, 
topologies)

CO2 uptake, 
CH4 uptake, 
CO2/CH4 
selectivity for 
natural gas 
separation; CO2 
uptake, N2 
uptake CO2/N2 
selectivity for 
flue gas 
separation.

Comparison of 
top performing 
MOFs with 
well-known 
MOFs and 
zeolites 
reported in 
previous 
literature

Demonstrated 
effectiveness of 
automated 
design process 
of MOFs using 
SmVAE; 
identified top-
performing 
MOF with CO2 
capacity of 7.55 
mol/kg and a 
CO2/CH4 
selectivity of 
16.0.

Hard to compare 
performance of top 
materials with 
literature, since 
experimental 
measurements are done 
at different conditions

Ref. 
69

2023 Cage-VAE Porous 
Organic 
Cages 
(POCs)

General 
application

1.2 million 
structures 
(after data 
augmentation)

Tri-topic precursor 
(BB1) skeletons, 
di-topic precursor 
(BB2) skeletons, 
reaction type

Validity, 
novelty, 
uniqueness, 
precursor 
validity, 
number of 
reaction sites, 
symmetry

MD 
simulations for 
stability 
validation; 
PCA analysis 
of latent space; 
manual 
inspection for 
shape-
persistency

Successfully 
generated novel 
shape-persistent 
POCs with the 
Tri4Di6 topology 
using latent 
space traversal

Limitations in 
predicting shape 
persistence accurately; 
limitations in exploring 
diverse reaction types 
without model 
adjustments

Ref. 
82

2024 DiffLinker 
(diffusion 
model)

MOFs CO2 capture 78,238 MOFs 
from the 
hMOF dataset; 

Molecular 
fragments from 

CO2 adsorption 
capacity 
threshold (high 

Interatomic 
Distance 
Check; Pre-

Identified six 
AI-generated 
MOFs with CO2 

Generated linkers 
occasionally failed 
valency checks, 
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2

12,305 linkers 
after filtering 

MOF linkers in 
the hMOF dataset

performing 
if >2 mmol/g at 
0.1 bar); 
validity, 
synthesizability 
(SAscore, 
SCscore) 
uniqueness,  
internal 
diversity for 
MOF linker 
evaluation

simulation 
check; 
Structural 
validation 
using MD 
simulations; 
Property 
validation 
using GCMC 
simulations

adsorption 
capacities >2 
mmol/g at 0.1 
bar, 
outperforming 
96.9% of MOFs 
in the hMOF 
dataset; 
combines 
generative 
modeling, AI 
prediction, and 
molecular 
simulations to 
screen 120,000 
MOFs in under 
12 hours using 
distributed 
computing.

requiring additional 
filtering; steps become 
more computationally 
intensive

Ref. 
80

2024 ZeoDiff (based 
on DDPM 
workflow)

Pure 
silica 
zeolites

Methane 
adsorption

63,246 
structures 
from the IZA 
and PCOD 
databases; 
structures 
were 
randomly split 
into equal 
training and 
validation sets 
of 31,713 each

Three-dimensional 
grids composed of 
energy, silicon, 
and oxygen 
channels

Structural 
validity; 
geometric 
uniqueness 
(102 
geometrically 
unique 
structures)

Chemical 
properties: void 
fraction (target 
values 0.05, 
0.1, 0.15, 0.2, 
0.25), Henry 
coefficient, heat 
of adsorption 
(15, 20, 25 
kJ/mol)

Post-
processing for 
correct Si/O 
ratio and 
accurate 
connectivity; 
Chemical 
property 
distribution 
analysis; 
Comparison 
with ZeoGAN 
model; Test of 
conditional 
generation with 
user-desired 
properties

Generates valid 
zeolite structures 
2000 times more 
effectively than 
GAN; 
Successfully 
generated novel 
zeolite 
structures, 
including those 
with user-
desired 
properties

Model efficiency is 
limited by the slow 
sampling speed of 
diffusion models; 
challenges with 
generating Henry 
coefficient-optimized 
structures; 
Applicability to other 
porous materials might 
require increased data 
dimensionality

Ref. 
107

2016 Genetic 
Algorithm

MOFs Precombustion 
carbon capture

51,163 MOFs 
from 
WLLFHS 
database

Chromosome 
representation of 
MOFs (using 6 
integers for 6 
features)

CO2 working 
capacity; 
CO2/H2 
selectivity; 
adsorbent 

Test of GA 
robustness by 
identifying 
hMOFs with 
highest 
gravimetric 

Identified a list 
of 50 top-
performing 
MOFs; 
Synthesized 
MOF NOTT-

Limited identification 
of high-performing 
MOFs through 
structure-property 
relationships from GA; 
Future work could 
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3

performance 
score (APS)

and volumetric 
surface areas 
and methane 
working 
capacity; 

experimental 
synthesis and 
testing of top-
performing 
MOFs; 

GCMC 
simulations;

Performance 
comparison of 
newly 
generated 
MOFs with 
previously 
identified 
MOFs

101/OEt, which 
achieved a CO2 
working 
capacity of 3.8 
mol/kg (highest 
ever under 
studied 
conditions at the 
time) and 
CO2/H2 
selectivity of 60; 
GA reduced 
computational 
time by over 
99% compared 
to brute-force 
search

extend the GA to more 
complex applications 
and larger databases

Ref. 
81

2025 MOFFUSION – 
Composed of 
vector 
quantized-
variational 
autoencoder 
(VQ-VAE), 
diffusion model, 
and a MOF 
constructor

MOFs General 
application

Dataset of 
247,742 
hypothetical 
MOFs 
(hMOFs).

Total database 
contained 605 
different 
topologies, 
432 metal 
nodes, 51 
organic nodes, 
and 220 
organic edges

Signed Distance 
Function (SDF) 
for MOF 
representation

Hydrogen 
Working 
Capacity (WC) 
– Target 
Values: 5, 15, 
25, and 35 g/L

Largest Cavity 
Diameter 
(LCD) - Target 
Values: 5, 15, 
25, and 35 Å

Void Fraction: 
0.6

Surface Area: 
5000 m2/g

MOF 
generation 
comparison 
with previous 
models 
SMVAE and 
MOFDiff.

Validation of 
hydrogen WC 
through 
GCMC 
simulations

Demonstrated 
the effectiveness 
of using SDF for 
MOF 
representation. 
MOFFUSION 
showed a 
structural 
validity of 
81.7%, 
outperforming 
SMVAE and 
MOFDiff 
models. Shows 
MOFFUSION’s 
ability to 
process diverse 
input data 
formats.

MOFFUSION faces 
challenges with 
extrapolation; 
struggles to generate 
structures with the 
desired target property 
when there is limited 
data. 
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4

Ref. 
109

2021 Multispecies 
genetic 
algorithm with 
fitness 
approximation 
(MSGA-FA), 
combined with 
artificial neural 
network for 
property 
prediction 
(MOF-NET)

MOFs Methane 
Storage

Over 100 
trillion 
hypothetical 
MOFs

Topology, 
building block 
information 
(consists of edge 
building blocks 
and node building 
blocks)

Methane 
working 
capacity (High 
performing 
working 
capacity > 180 
cm3 cm-3)

GCMC 
simulations 
through in-
house GPU 
code and 
RASPA 
software

Successfully 
identified 964 
MOFs with 
methane 
working 
capacities 
exceeding 200 
cm³/cm³, with 
96 of them 
surpassing the 
existing world 
record of 208 
cm³/cm³;

Demonstrated 
the ability of a 
systematic 
approach 
(evolutionary 
algorithm + ML 
+ MOF 
constructor) for 
efficient 
screening of 
MOFs

Computational 
resources required for 
iterative GA cycles; 
further exploration 
needed to understand 
correlation between 
building blocks and 
MOF performance.

Ref. 
110

2021 Genetic 
Algorithm (GA) 
combined with 
machine learning 
model (MOF-
NET) and a 
flexible cost 
function

MOFs Xenon/krypton 
(Xe/Kr) 
separation from 
used nuclear 
fuel

245 618 
MOFs were 
screened

Used PORMAKE 
to generate 
hypothetical 
MOFs. Consists of 
node building 
block (NBB), edge 
building block 
(EBB), topology

Xe/Kr 
selectivity; 
xenon and 
krypton Henry 
coefficients

Molecular 
simulations to 
see the impact 
of framework 
flexibility; 
RASPA 
simulations; 
polymorphic 
simulations.

Discovered two 
viable MOFs 
with record-
breaking Xe/Kr 
selectivity; 
demonstrated 
their model can 
also incorporate 
fine-tuned 
targeting of 
user-desired 
properties

High computational 
cost due to iterative 
GA cycles; prediction 
capability of machine 
learning model 
decreases with higher 
selectivity values.

Ref. 
111

2016 MOF 
functionalization 
GA (MOFF-GA)

MOFs Postcombustion 
CO2 capture

1.64 trillion 
structures

Chromosome 
representation of 
MOFs using 
parent MOF and 

CO2 uptake 
capacity (> 
3mmol/g at 
0.15 atm and 

Validation of 
MOFF-GA on 
a set of 48 
experimentally 

Discovered an 
average of 3.7-
fold increase in 
CO2 uptake for 

Some structures may 
be difficult or 
impossible to 
synthesize
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5

Functional Group 
Code (FGC)

298 K); surface 
area; parasitic 
energy

characterized 
MOFs; 
evaluation of 
CO2 uptake 
with GCMC 
simulations

141 optimized 
MOFs; 
demonstrated 
effectiveness in 
finding top-
performing 
structures with 
minimal 
sampling

Ref. 
122

2024 Deep 
reinforcement 
learning

MOFs Direct air 
capture (DAC) 
of CO2

646,907 
MOFs used 
for generator 
pre-training; 
33,000 MOFs 
used for 
predictor CO2 
heat of 
adsorption 
training; 
24,000 MOFs 
used for 
predictor 
CO2/H2O 
selectivity 
training

Combination of 
organic linkers 
(using SELFIES 
representation), 
metal clusters, and 
topologies

CO2 heat of 
adsorption (>30 
kJ/mol); 
CO2/H2O 
selectivity (>1); 
validity, 
scaffold, and 
uniqueness of 
generated 
MOFs

Note: integrated 
two predictive 
models, one 
optimizing CO2 
heat of 
adsorption, the 
other CO2/H2O 
selectivity

Molecular 
simulations for 
generated 
MOF 
validation; 
structural 
feasibility tests 
through 
synthetic 
accessibility 
score and 
topological 
RMSD

Successfully 
designed 
structures with 
high CO2 
affinity (heat of 
adsorption > 40 
kJ/mol) and 
CO2/H2O 
selectivity (>1); 
revealed 
distinctive 
features in top-
performing 
structures

Relies on large training 
dataset, which requires 
a tradeoff between 
computational cost and 
predictive accuracy; 
limited experimental 
validation of results

Ref. 
142

2023 ChatGPT-based 
workflow with 
ChemPrompt 
engineering

MOFs Use of LLMs as 
chemical 
research 
assistant 
through text 
mining and data 
analysis

228 MOF 
peer-reviewed 
papers (to 
extract 26,257 
distinct 
synthesis 
parameters 
pertaining to 
~800 MOFs)

18,248 individual 
text segments 
from 228 research 
articles; each text 
segment was 
converted into 
1536-dimensional 
text embedding

Precision 
(>95%), Recall 
(>90%), F1 
scores (>92%) 
for text mining; 
Accuracy 
(87%) and F1 
score (92%) in 
determining 
MOF 
crystalline state 
based on 
synthesis 
conditions

Manual 
verification of 
results; use of 
training/test 
sets for model 
predictability; 
comparison of 
predicted 
crystalline 
states with 
experimental 
results

Introduces an 
AI-driven 
workflow using 
ChatGPT to 
efficiently mine, 
analyze, and 
present MOF 
synthesis data; 
successfully 
predicts MOF 
experimental 
crystallization 
outcomes; 
introduces a 
data-driven 
MOF chatbot

Difficulties in 
accurately determining 
volumes/concentration 
of chemicals; limited 
by factors such as 
token count and 
paragraph 
segmentation
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6

Ref. 
139

2023 GPT-4-based 
Reticular 
Chemist

MOFs Guided 
discovery and 
synthesis of 
MOFs

Not 
Applicable

Leverages features 
like MOF 
structures, 
synthesis 
parameters, 
properties, and 
literature data to 
guide prompt 
engineering and 
in-context learning 
for GPT-4

Accuracy, 
validity, 
precision of the 
GPT-4 answer/ 
suggestions

Experimental 
validation 
(NMR, XRD, 
etc.)

Demonstrates 
that iterative 
human-AI 
collaboration 
can accelerate 
material 
discovery and 
optimization. 
Successfully 
discovered and 
synthesized four 
new isoreticular 
MOFs (MOF-
521 variants).

Performance is reliant 
on human feedback for 
learning; challenges 
with advanced 
analytical tasks, such 
as detailed topological 
analysis of MOF 
structures, are beyond 
GPT-4’s capabilities

Ref. 
140

2024 GPT-based 
ChatMOF 
system (GPT-4, 
GPT-3.5-turbo, 
and GPT-3.5-
turbo-16k)

MOFs Search, 
prediction, and 
generation of 
MOFs with 
user-desired 
properties

MOFs from 
CoRE MOF 
and QMOF 
databases

ChatMOF uses 4 
categories of tools. 
Searcher: Uses 
MOFs from CoRE 
MOF and QMOF. 
Predictor: 
Utilizes 
MOFTransformer 
with features like 
bonds, atoms, 
surface area, and 
topology. 
Generator: 
Applies a genetic 
algorithm based 
on topology and 
building blocks. 
Utilities: 
Leverages 
LangChain for file 
search, internet 
search, 
calculations, etc.

Accuracy: 
96.9% (search) 
95.7% 
(prediction), 
87.5% 
(generation 
tasks); RASPA 
simulations for 
generated 
structures

Computational 
simulations; 
manual 
verification of 
results; 
accuracy 
analysis

Demonstrated 
the versatility of 
LLMs in 
predicting, 
generating, and 
searching for 
MOF structures 
based on user 
input

Constrained by token 
and computational 
limits in LLMs; 
scarcity of specialized 
data; need for 
experimental 
validation of the 
generated MOFs
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7

Table 2. Comparison of the strengths and limitations of the generative AI methods utilized for nanoporous materials design.

Generative AI Method Strengths Limitations / Challenges

Generative Adversarial 
Networks (GANs)

• Generates realistic, high-quality structures
• Effective at modeling complex data distributions
• Conditional GANs can target specific properties

• Training instability and potential mode collapse
• Difficulty capturing structural diversity in complex 

materials like MOFs and COFs
• Requires large datasets and careful hyperparameter 

tuning

Variational Autoencoders 
(VAEs)

• Smooth and continuous latent space for 
interpolation and optimization

• Stable and efficient training

• May fail to generate valid or realistic structures
• Limited disentanglement in latent representations

Diffusion Models (DMs)

• Effective at learning complex distributions without 
mode collapse

• Generates diverse and complex structures like 
MOFs

• Computationally expensive due to iterative 
denoising

• Requires large high-quality training datasets

Genetic Algorithms (GAs)

• No requirement for gradient information
• Effective at exploring vast and discrete design 

spaces
• Simple concept and relatively easy to implement

• Convergence can be slow, especially in high-
dimensional spaces

• May converge to locally optimal material structures 
rather than the global optimum

• Computationally expensive when combined with 
simulation-based fitness evaluations

Reinforcement Learning 
(RL)

• Enables sequential decision-making for goal-
directed design

• Can optimize multiple objectives and incorporate 
feedback

• Flexible for integration with experimental 
workflows

• Typically requires a large number of samples and 
evaluations

• Designing effective reward functions can be 
challenging

Large Language Models 
(LLMs)

• Versatile in tasks such as literature mining, 
property prediction, and structure generation

• User-friendly via natural language prompts
• Can integrate with other AI models as AI agent or 

assistant

• Limited interpretability (“black box” outputs)
• Training from scratch is resource-intensive
• Prompt engineering and fine-tuning for specialized 

tasks can be challenging
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