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Computer vision is a useful reaction monitoring and characterisation tool for scientists seeking to

accelerate discovery processes using automation and machine learning (ML). Here we report a non-

invasive laser-based method that combines computer vision and deep learning models to classify the

solubility of different polymeric compounds across a range of solvents. Classifications were conducted

using two to four solubility classes (soluble, soluble-colloidal, partially soluble, and insoluble), achieving

high test accuracy rates ranging from 94.1% (2 classes), to 89.5% (4 classes). Using results from our

solubility screening method, we also determined the Hansen Solubility Parameters (HSP) of the polymers

using an optimisation algorithm. The calculated percentage Euclidean distance between the HSP values

obtained from our dataset and the literature HSP values for the polymers, ranged from 11–32%. Finally,

we developed the feature-wise linear modulation (FiLM) conditioned Convolutional Neural Network

(CNN) regression model to estimate the size of polymeric nanoparticles between 20–440 nm and

achieved a Mean Absolute Error (MAE) of 9.53 nm.
1. Introduction

Society needs the capability to discover new materials to tackle
challenges including climate change, water scarcity, plastic
waste, and disease. To accelerate this discovery process, scien-
tists have turned to automation and high-throughput experi-
mentation. This has in turn created a demand for quick and
ideally non-invasive characterisation and data analysis
methods, as the bottleneck shis from conducting experiments
to evaluating the large amounts of data produced. Articial
Intelligence (AI) systems enable effective learning of critical
model features, potentially achieving a prociency that parallels
or surpasses conventional theories and methodologies.1 In
recent years, machine learning (ML) has become a valuable tool
for materials discovery and in chemistry research.2,3 ML has
been applied in areas such as melting point prediction,4,5 elec-
trical and thermal conductivity prediction,6,7 crystal structure
representation,8,9 particle size prediction,10 and spectroscopy
data analysis.11 Additionally, Bayesian Optimisation (BO) and
other optimisation algorithms have helped to accelerate
chemical discovery by exploring large chemical spaces effi-
ciently, thus lowering experimental costs, and discovering
optimal materials with a limited amount of data.12 While ML
excels in pattern recognition, particularly in classication tasks
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such as image analysis, it oen falters in interpretive tasks that
require a clear understanding of underlying mechanisms. This
limitation constrains its use, although progress in areas such as
transfer learning, distributional adaptation, and attention
mechanisms may enhance the efficiency of ML models in the
future, while also making models more robust to uctuations in
real-world data, allowing them focus on the most pertinent
information.13

Computer vision is a rapidly advancing eld of AI that
leverages image processing, pattern recognition, ML and deep
learning (DL) to enable machines to analyse, interpret, and
extract meaningful information from visual data. By using deep
learning models, such as Convolutional Neural Networks
(CNNs)14 and Vision Transformers,15 computer vision systems
can extract a wide range of characteristics from unregulated
inputs16 and can enhance precision and adaptability.17 This
ability to capture and analyse an extensive set of features in
a non-invasive manner makes computer vision useful for
chemistry applications. Current applications of computer vision
in chemistry include the simultaneous tracking of multiple
physical outputs (e.g., liquid levels, solid formation, residue
presence, and colour);18 real-time monitoring of catalyst
degradation kinetics and product formation using colouri-
metric data;19 and viscosity estimation using semantic
segmentation masks,20 or a 3D Convolutional Neural Network
(3D-CNN).21 In addition, several computer vision methods have
been developed for solubility screening of small molecules
including the average brightness CVmethod used for HeinSight
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Fig. 1 Schematic representation of the laser scattering workflow: (a) experimental setup – illustration of the lab hardware used for the laser
scattering experiments, (b) image collection – representative images collected for solubility classification (top) and particle size estimation
(bottom); scale bar= 1 cm, (c) model–CNNmodels are used in the study, (d) method– thematerials characterisation information obtained from
the model.
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turbidity,22 mask R-CNN and image segmentation,23 and deep
neural networks (DNNs).24

We present here a laser-based platform that uses computer
vision to characterise polymer solubility and other related
properties (Fig. 1). ML techniques are still in the early stages of
application in polymer science, whereas their development is
more advanced in the elds of organic and inorganic mate-
rials.25 Polymers present specic challenges for ML models,
including the complex nature of the polymer structure—all
polymers are mixtures of different molar mass molecules—as
well as challenges related to sampling; for example, polymer
solutions can become viscous and hard for liquid handlers to
deal with.26 Macromolecules exhibit different dissolution
behaviour compared to small molecules.27 For example, poly-
mers chains exist as coils in solutions, and these coils are large
enough to scatter a laser beam. Here, this allowed us to rene
polymer solubility from two binary classes (soluble, insoluble)
into four classes (soluble, soluble-colloidal, partially soluble,
and insoluble) with an accuracy of 89.5%. Following these
classications, we used these solubility data along with an
optimisation algorithm to determine the polymer Hansen
Solubility Parameters (HSP), a widely usedmethod for assessing
solubility.28 Finally, to demonstrate the versatility of this plat-
form for characterising polymeric materials, we have created
a regression model that uses the light scattering properties of
polymer nanoparticles to estimate particle size between 20–
440 nm and achieved a Mean Absolute Error (MAE) of 9.53 nm.
2. Methods
2.1 Experimental setup

A Logitech C930-E full HD webcam was used to capture images,
with the focus set to 105, brightness adjusted to 0.55, a frame
Digital Discovery
resolution of 1920 × 1080 pixels (W × H), full list of settings
(Table S1), and a distance between the sample and the camera
of 5 cm. The laser source, CPS635 – Collimated Laser Diode
Module (635 nm, 4.5 mW, B 11 mm), was mounted using a 3R
class laser mounting bracket purchased from Thorlabs. We
selected the 635 nmwavelength due to its reduced susceptibility
to scattering in the presence of solvent impurities, ensuring
clearer and more consistent imaging results.29,30 Two PF10-03-
G01 – B 100 Protected Aluminium Mirrors were used to direct
the laser beam. The beam path was further controlled using two
ID12/M –Mounted Standard Irises with aB 12.0 mmmaximum
aperture, TR75/M. To achieve a wider beam size and to further
minimize the impact of solvent impurities on the sample, an
LK1684L1-A – f = −12.69 mm, H = 10 mm, L = 12 mm, N-BK7
Plano-Convex Cylindrical Lens, ARC: 350–700 nm, was used
(Fig. 1a). The sample holder, custom-designed, accommodated
an 8 mL Chemspeed vial. A technical drawing is provided in
Fig. S1. A TPS13 – 1200 × 600 (305 mm × 152 mm) Straight Laser
Safety Screen was used as a beam stop, all within a custom black
hardboard enclosure measuring 525 mm × 375 mm × 300 mm
(L × W × H).

Experimental setup for particle size estimation: as above, but
without the plano-convex lens, this was removed due to the
small size of the some of the particles measured.
2.2 Sample preparation for polymer solubility classication

The dataset used to train our classication model comprised 9
different solid polymers, 24 different solvents (Table S2) and
solvent blends, and seven different polymer concentrations (0.1,
0.3, 0.5, 0.7, 1, 5, and 10% w/v), quantities used to prepare each
sample concentration are shown in (Table S3), resulting in
a total dataset of 911 images (note: not all solvents or their
© 2025 The Author(s). Published by the Royal Society of Chemistry
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blends were tested at all concentrations; see Table S4). All
polymer samples were manually prepared in the laboratory, and
solvents were ltered with a 0.2 mm PTFE lter before use. To
enhance the robustness of our model, 167 out of 911 images in
the dataset were captured without the plano-convex lens,
providing additional variation compared to the lens-assisted
images. To ensure dataset integrity, data cleaning was con-
ducted by removing samples that exhibited image features that
prevented their class from being identied (e.g., excessive
scattering and image artifacts), resulting in the exclusion of 30
images and low-concentration samples before model training
(Fig. S2) An additional test dataset was prepared using liquid-
form polymers, specically polydimethylsiloxane (PDMS) and
polyethylene glycol, Mw = 600 g mol−1 (PEG600) at ve
concentrations 0.1, 0.5, 1, 3, and 5% w/v, and 3 solvents per
polymer (PDMS: dichloromethane, ethanol and heptane,
PEG600: water, acetone and heptane) and images collect pre-
and post-vortex giving a dataset of 60 images. This test dataset
was not included in the main training dataset but was used
exclusively to evaluate model performance in distinguishing
effect of pre-vortex and post-vortex samples of these liquid
polymer–solvent combinations. Details of the polymers and
molecular weight (Mw) are given in SI Section S1.1.

2.3 Sample preparation for Hansen solubility parameter
determination

The dataset for Hansen Solubility Parameter (HSP) optimisation
was collected using 16 solvents that were selected as being well-
distributed over the HSP space, as well as being commercially
available and inexpensive (as detailed in Table S2). The distri-
bution of solvents in three-dimensional system is provided in
Fig. S3. Four common industrially relevant polymers were
chosen, polystyrene (PS, Mw = 192 000 g mol−1), polymethyl
methacrylate (PMMA, Mw = 15 000 g mol−1), poly-
vinylpyrrolidone (PVP, Mw = 55 000 g mol−1) and poly-
caprolactone (PCL,Mw = 80 000 g mol−1) and samples prepared
in all 16 solvents at a concentration of 5% w/v (0.250 g in 4.750
mL) and le for 2 h before being analysed on the laser platform.
To determine the HSP of polymers, datasets were created based
on the 2-class classications of soluble and insoluble
substances derived from our solubility screening method. For
the purposes of HSP estimation, soluble and soluble-colloidal
classications were both treated as soluble, labelled as 1, and
partially soluble and insoluble classes are treated as insoluble,
and labelled as 0 in the dataset.

2.4 Sample preparation for particle size determination

Commercial PS size standards were purchased with dened
particle sizes of 20, 30, 50, 60, 80, 100, 150, 200, 240, 300, 350,
and 400 nm. The concentrations of these size standards were
adjusted to 0.01, 0.03, 0.05, 0.06, 0.07, 0.10, 0.13, 0.15, 0.20, and
0.40% v/v, respectively, in 5mL aqueous solutions. A total of 120
samples were prepared manually in the laboratory, quantities
used to prepare each sample concentration are shown in Table
S3 and DLS analysis was conducted on each of them (Table S5).
For all samples the particle size determined by DLS at 0.40% v/v
© 2025 The Author(s). Published by the Royal Society of Chemistry
was used as the ground truth. The same procedure was applied
to PMMA particles with sizes of 100 nm and 200 nm, silica
particles with a size of 100 nm, and poly(dimethylacrylamide)-b-
poly(diacetone acrylamide) (PDMAm-b-PDAAm) particles
(Fig. S4) measuring 89 nm at a concentration of 0.40% v/v.
These samples were used as a separate test set to evaluate the
regression model's ability to predict the particle sizes of
different substances based on the polystyrene model.

2.5 Model development for solubility classication

Our solubility classication models are deep convolutional
neural networks. We trained and evaluated several deep con-
volutional neural networks for the solubility classication task.
We considered three similar sized models by parameter count,
namely: ResNet18,31 EfficientNet_b0,32 and ConvNeXt Tiny.33

The nal feature maps were average pooled into a single vector.
The nal layer of all models was a linear layer that predicts four
classes. We use ImageNet pretrained weights. While the images
from the solubility dataset differ signicantly from the Imag-
eNet dataset, we found that using pretrained weights nonethe-
less contributed to greater stability in metrics during training
and validation. For each model, we used ImageNet pretrained
weights and replaced the nal linear layer with a four-output
linear layer. We trained each model via gradient descent,
using the Cross Entropy loss, the AdamW34 optimizer, and
a OneCycle35 learning rate scheduler. Due to class imbalance,
we used a weighted sampler to ensure that there was an
approximately equal number of samples for each class in
a training batch. Models were evaluated with 6-fold Stratied
Group cross validation. We used stratication to ensure the
ratio between the number of samples in each class was
approximately the same between all folds. As multiple images
exist for a given polymer solvent combination, we created
a solvent and polymer identier and used this as a group
attribute. This ensures that images of the same solvent polymer
combination are not split across training and test folds and
allows us to more accurately assess the ability of the model to
classify unseen polymer solvent combinations. We further split
the training folds into train and validation sets at a 4 : 1 ratio,
again using a Stratied Group split. Validation sets were used
for selecting the best checkpoints over training as well as for
hyperparameter optimization. We provide a detailed overview of
the full training pipeline and hyperparameters in Table S6.

2.6 Model development for particle size prediction

For particle size prediction, we propose Polymer Particle Size
Network (PPSNet). It consists of three convolutional blocks,
followed by a fully connected network with one regression
output. Each convolutional block comprises a convolution
layer, ReLU activation, and max pooling. The amount of light
scattering depends on both particle size and on concentration.
To help the model disambiguate between these two factors, we
also provided it with concentration information. This was
implemented with feature-wise linear modulation (FiLM)
layers,36 which is a simple method for conditioning the internal
representations of neural networks on other inputs. In our case,
Digital Discovery
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we used aMulti-Layer Perceptron (MLP) to rst encode themin–
max scaled concentration into a higher dimensional space and
used this encoding as the condition input to the FiLM layer. Our
motivation for adopting an MLP is to allow conditioning to be
based on a non-linear function of concentration and has the
potential to allow more expressive behaviour than a simple
linear projection. We compared both ReLU and sine activation
for the MLP. Sine activations can facilitate the learning of high
frequency functions over low dimensional inputs,37while ReLUs
have a spectral bias to low frequency functions. In the case of
the sine activated MLP, we took inspiration from Sitzmann
et al.,38 applying a scalar multiplier, omega, to the pre-
activations of the hidden layer and is a hyperparameter we
tuned. As the amount of light scattering is dependent on
particle size, a reasonable hypothesis is that particle size can be
predicted from average pixel intensity. To warrant the use of
a CNN over simpler and more convenient models, we compared
performance against a polynomial regression baseline. As
input, we converted the RGB image to LAB and use the average L
value as an image feature. Additionally, we provided the
concentration value as is the case in the CNNmodel. We trained
each model with mean squared error loss. We evaluated each
model with 5-fold group cross validation. As with the solubility
dataset, multiple images of the same sample exist within the
Fig. 2 Solubility classification model overview. (a) Illustration of four clas
by Grad-CAM visualizations that explain the areas in the image that h
insoluble (scale bar= 1 cm); (b) confusionmatrix shows the classification d
using the ResNet18 model.

Digital Discovery
dataset. Accordingly, we created a unique identier based on
particle size and concentration and use this as a group attribute
to ensure these images are not spread over training and testing
folds and allows us to better quantify the model's ability to
generalize to unseen particle size and concentration combina-
tions, details can be found in SI (Table S7).
3. Results and discussion
3.1 Polymer solubility classication

A total of 911 polymer–solvent samples were prepared and
imaged using our automated laser platform to develop the
training dataset for our polymer solubility classication. Before
imaging, samples were classied visually as either soluble or
insoluble based on the presence of residual undissolved poly-
mer. When these samples were imaged using the laser platform,
additional information was obtained that was undetectable to
the human eye (Fig. 2a). When assessing the dataset, it became
clear that the samples could be grouped into four distinct
classes (Fig. 2 and S5). The rst class, which we labelled as
soluble, displays a homogenous solution that exhibits minimal
laser scattering. For the second class, samples initially classied
as soluble based on visual observation exhibited a distinct solid
red band in the laser imaging, corresponding to the region
ses using natural light (daylight) and laser-scattering images, supported
ave key importance: soluble, soluble-colloidal, partially soluble, and
istribution of 2-class, 3-class, and 4-class predictions versus true labels

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Classification differences observed using natural light and
laser light sources; the laser source is more discriminatory

Solubility Natural light Laser

Soluble 442 87
Insoluble 469 351
Soluble-colloidal 0 355
Partial soluble 0 118
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where the laser light passes through the solution; we labelled
this class as soluble-colloidal since this band arises from scat-
tering of the laser by polymer coils in solution. When
comparing polymers in these rst two classes, the size of poly-
mer coils, as determined by DLS (Fig. S6) in the soluble-colloidal
class were greater than those in the soluble class (soluble sizes <
∼10 nm, whereas soluble-colloidal sizes > ∼10 nm). Given that
scattering intensity is known to be proportional to r6(I f r6),39

where r is the radius of the scattering particle, it was clear that
this difference in polymer coil size was the reason for the red-
band in the soluble-colloidal class. The third class, though
appearing insoluble by visual inspection, was reclassied as
partially soluble based on laser imaging, which revealed the
presence of both soluble and insoluble polymer. For this class,
we separated the liquid and solid portions of the solution and
performed gel permeation chromatography (GPC) measure-
ments on each phase. The results revealed that the initial
polymer distribution split into two fractions: the liquid portion
contained polymers with lower molecular weight, while the
solid portion contained polymers with higher molecular weight
(Fig. S7), thus allowing us to conrm that the true class was
partially soluble. The nal class was identied as insoluble,
with scattering attributed solely to the presence of undissolved
polymer. Additionally, Fig. 2 highlights the visual differences of
samples across each class under both laser and normal light
conditions. An advantage of using laser illumination instead of
natural light is its ability to increase the number of classica-
tion categories, allowing differentiation of up to four classes.
Table 1 presents the data distribution under daylight conditions
and demonstrates how the classication changes with laser
illumination.

To classify the images in our dataset, we used a Convolutional
Neural Network (CNN) architecture. CNNs. We evaluated the
performance of three different publicly available CNN models
(ConvNeXt Tiny, EfficientNet_b0, and ResNet18). We selected
Table 2 Solubility classification models performance on 3 different clas

# of classes Model Precision � std

2 classes ResNet18 0.943 � 0.021
EfficientNet_b0 0.935 � 0.026
ConvNeXt Tiny 0.936 � 0.022

3 classes ResNet18 0.907 � 0.026
EfficientNet_b0 0.890 � 0.045
ConvNeXt Tiny 0.901 � 0.029

4 classes ResNet18 0.860 � 0.046
EfficientNet_b0 0.843 � 0.070
ConvNeXt Tiny 0.862 � 0.058

© 2025 The Author(s). Published by the Royal Society of Chemistry
these models because they are already pre-trained on large
diverse object datasets and were then further trained with our
dataset. Each model was trained and evaluated with 6-fold group
cross validation where the polymer was used as the group attri-
bute; that is, test folds contained polymer–solvent combinations
not seen in the train folds. This allowed us to assess the model's
ability to generalize to unseen polymers. We additionally split the
training folds into a training and validation set with a 4 : 1 ratio.
We used the validation set for checkpointing and hyperparameter
tuning. Results were averaged over all test folds using the best
checkpoints (based on validation loss). For the three models
tested, ResNet18 achieved a consistently superior performance
for all classication tasks achieving 94.1% accuracy for a two-
class (soluble, insoluble) task. As the number of classes
increased to three (soluble, partially soluble and insoluble) and
four (soluble, soluble colloidal, partially soluble and insoluble),
the accuracies fell to 93.5% and 89.5%, respectively. It is worth
noting that the other models achieved accuracy that was also very
close to ResNet18, (93.9% and 93.7% in the two-class task for
EfficientNet_b0 and ConvNeXt Tiny, respectively) but ResNet18
was selected as the dedicated CNN model because it had the
highest overall accuracy (Table 2). The confusionmatrix indicates
that model's performance decreases as the number of classica-
tion categories increases, with the partially soluble class being the
hardest to predict (Fig. 2b). We used Grad-CAM to elucidate the
features highlighted by our CNN model and to explain the
rationale behind its predictions, these showed that the model
primarily concentrates on the central and lower areas of the
images to make the classication (Fig. 2a).

For liquid polymer samples, the initial classication based
on visual estimation as soluble or insoluble was oen incon-
sistent with the laser imaging results, particularly for samples
with concentrations below 1% w/v. In these samples, the
distinct liquid layers were not apparent, neither by eye nor by
laser, leading to the incorrect classication of the samples as
soluble (Fig. S8). To evaluated whether the model's performance
for liquid–liquid polymer–solvent combinations could be
improved by vortexing the samples prior to image collection,
a separate test set was prepared using PEG600 and PDMS
polymer samples and included both pre-vortex and post-vortex
images (Fig. S9). As part of the procedure, all samples were
vortexed prior to imaging, with visual classication rened
based on whether an emulsion was observed. The soluble class
exhibited minimal scattering, while the insoluble class
sification number – 2, 3 and 4 classes

Recall � std Accuracy � std F1 score � std

0.934 � 0.024 0.941 � 0.021 0.938 � 0.022
0.935 � 0.022 0.939 � 0.026 0.935 � 0.024
0.931 � 0.022 0.937 � 0.018 0.933 � 0.022
0.924 � 0.040 0.935 � 0.022 0.915 � 0.030
0.922 � 0.052 0.931 � 0.020 0.905 � 0.045
0.925 � 0.036 0.933 � 0.014 0.913 � 0.028
0.882 � 0.056 0.895 � 0.035 0.870 � 0.042
0.887 � 0.070 0.892 � 0.046 0.854 � 0.078
0.883 � 0.055 0.893 � 0.045 0.871 � 0.046
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displayed scattering due to emulsions formed during vortex. We
used the best weights from the ResNet18 model to evaluate the
solubility of our liquid polymer samples. The model's accuracy
was assessed on two sets of 30 images: pre-vortex and post-
vortex. For pre-vortex images, the overall accuracy was 63.3%,
while for post-vortex images, it improved to 73.3%. Notably, the
model's accuracy was concentration-dependent; for example, at
a low concentration of 0.1% w/v, the accuracy was only 50%,
whereas for higher concentrations of 1, 3, and 5% w/v, the
accuracy improved signicantly to 83.3% for post-vortex images
(Table S8). Based on these results, we recommend for liquid
polymers to use a minimum sample concentration of 1% w/v
and to vortex the samples before image collection to improve
model performance.
3.2 Hansen solubility parameter determination

Aer developing our solubility classication model, we explored
whether these results could be used to estimate the Hansen
Solubility Parameters (HSPs) of the polymers. The model opti-
mises solvent placement within a three-dimensional solubility
sphere dened by dispersion forces (dD), polarity (dP), and
hydrogen bonding (dH) parameters.40 It uses a tness function to
minimise the Relative Energy Difference (RED), penalises
solvents for incorrect positioning relative to the sphere, incor-
porates a size factor to regulate sphere size, and sets parameter
bounds based on the mean HSP values of good solvents more
details on the model development are provided in see SI section
S2.2.41–43 While HSPs can be predicted theoretically, for large
macromolecules, such as polymers, experimental determination
is preferred.44 Moreover, in high-throughput experimentation
settings, the composition of the polymer, which is needed for
HSP prediction, may not be known without additional analysis
(e.g., in copolymerisation of more than one monomer). Typically,
experimental methods determine the HSPs of polymers by
assessing their solubility in solvents with known HSP values,
enabling the estimation of the polymer's position within the
solubility sphere.28 Given that our solubility model inherently
classies samples in this format, we took solubility data directly
from this model to determine polymer HSP values. We used
a solubility classication model to determine polymer HSP
values. This model was trained on a dataset of solubility data, but
with a key restriction—for each polymer being tested, its corre-
sponding images at 5% w/v were excluded from both the training
and validation sets. Instead, these images were reserved
Table 3 Hansen solubility parameter optimisation model overview. Th
values of four different polymers: PMMA, PS, PCL, and PVP. ED = Euclid

Polymer Concentration (% w/v)

Hansen parameters
(MPa1/2)

dD dP dH

PMMA 5 18.6 10.5 5.1
PS 5 18.5 4.5 2.9
PVP 5 17.5 8 15
PCL 5 17.7 5 8.4

Digital Discovery
exclusively for testing. For example, in the case of PVP, all PVP-
related images were omitted from training and validation,
ensuring that the model had not seen them before testing. This
same approach was applied consistently to the four different
polymers to ensure an unbiased evaluation of their solubility
classication. Experimentally determined HSP values are sensi-
tive to the solvents selected for the experiment, therefore we
selected 16 solvents (Table S2) that are well-distributed across
three-dimensional HSP space to capture a comprehensive range
of polymer–solvent interactions. We xed the solvents for all
polymers to minimize biases in solvent selection, and enhancing
the generalizability of the HSP values derived from the dataset. In
addition, we chose to use fewer solvents than normally used for
HSP determination (16 vs. ca. 40 solvents), as we wanted to reduce
the experimental cost and sample requirements.

First, we used a known dataset of polyether sulfone from the
literature to evaluate the performance of different HSP opti-
misers reported in the literature (Table S9).41–43 We determined
the genetic optimiser to be one of the optimal as it provided the
lowest percentage Euclidean distance of the optimisers tested at
1.2% similar values (18.84, 11.22 and 7.95 MPa1/2 for dD, dP and
dH, respectively) to the known HSP values (19, 11 and 8 MPa1/2

for dD, dP and dH, respectively) for the polyether sulfone
according to the Hansen solubility website.45 We then applied
our optimization algorithm to datasets collected using our
solubility classication model for PS, PMMA, PVP and PCL. For
datasets consisting of 16 single solvents, the optimizer achieved
the following Euclidean distance (ED) and percentage
Euclidean distance (PED) between the literature HSP values and
the HSP values obtained from our optimizer: PMMA (ED = 2.4,
PED = 11%), PS (ED = 2.9, PED = 15%), PVP (ED = 5.3, PED =

22%), and PCL (ED = 6.5, PED = 32%) in Table 3, solubility
spheres can be seen in Fig S10. As expected, the HSP values
obtained from the genetic optimiser were slightly different from
those reported in the literature. We attribute this variation to
differences in the selection and number of solvents used in the
datasets. As previously reported, the accuracy of HSP estimation
strongly depends on the variety and quality of the solvent
dataset; insufficient or unbalanced datasets can signicantly
limit the predictive power of the model.46
3.3 Particle size estimation

Finally, to broaden applicability of our platform for polymer
characterisation, we evaluated it for polymeric nanoparticle size
e Hansen solubility parameters (HSP) for both original and optimized
ean Distance and PED = Percentage of Euclidean Distance

Laser estimation parameter prediction
(MPa1/2)

ED PED (%)dD dP dH R0

17.4 10.4 3.1 9.2 2.4 11
18.1 3.9 5.7 4.5 2.9 15
20.0 12.6 14.1 13.4 5.3 22
18.3 10.5 5.0 9.6 6.5 32

© 2025 The Author(s). Published by the Royal Society of Chemistry
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estimation, which is important for multiple applications. As
mentioned previously for our solubility model, the intensity of
scattered light is proportional to the scatterer size (I f r6). We
surmised that these data could be used to estimate the size of
polymeric nanoparticles. To evaluate this hypothesis, polystyrene
Fig. 3 Particle size estimation model overview. (a) Images of a subset
increasing particle size and concentration. (b) Predicted particle size vs.
error as a function of particle size for test data.

© 2025 The Author(s). Published by the Royal Society of Chemistry
size standards (20–400 nm) were prepared over a range of
concentrations (0.01–0.4% v/v) and imaged to provide the
training data for our model (Fig. 3a and S11). Low size dispersity
standards (PDI < 0.3) were used to build our initial model to
ensure the greatest accuracy of prediction due to the heavy
of the dataset (concentrations = 0.05, 0.13, 0.40 % v/v) ordered by
ground truth particle size for test data. (c) Mean absolute percentage
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skewing of intensity-based measurements towards larger parti-
cles. Among the 120 samples analysed, most exhibited PDIs
below 0.3, although a small subset had PDIs exceeding this
threshold. These samples, which mostly exhibited higher PDI,
had low concentrations, leading us to consider that this
discrepancy arose from the limitations of DLS measurements,
where low concentration samples pose challenges due to the
inherently low signal-to-noise ratio (Table S5).47 Additionally, we
collected ve images per sample to enhance the model's
robustness against minor variations in scattering.

In Table 4, we report particle size prediction results for
PPSNet, compared against an equivalent CNN with no concen-
tration conditioning, an EfficientNet B0 with FiLM concentra-
tion conditioning, and a polynomial regression model using
average image brightness and concentration as input. All
models were trained with particle size images labelled using
DLS measurements from high-concentration (0.4% v/v)
samples. Results are averaged over 5 test folds. We show that
PPSNet performs the best out of all models, with a MAE of 9.53
± 4.27 nm and an R2 of 0.99± 0.01. When comparing PPSNet to
an equivalent CNN, but without concentration conditioning we
observe an increase in prediction error (mean absolute error
(MAE) of 9.53 nm vs. 22.25 nm) (Tables 4 and S10). This
supports our hypothesis that incorporating concentration
information is useful in building a particle size estimation
model that is robust to different concentrations of polymers in
solution. Interestingly, even without concentration informa-
tion, the CNN performed relatively well and could nd appli-
cations in scenarios where a higher prediction error is tolerable,
and where no concentration information is available. Further-
more, we evaluated an Efficient Net B0 model with FiLM layers
aer each convolution block to test whether a larger model can
reduce prediction error. Despite having signicantly more
Table 4 Particle size estimation FiLM layer regression models'
performance comparison with MAE, Root Mean Square Error (RMSE)
and R2

Method

MAE (nm) RMSE (nm) R2

(Mean � std) (Mean � std) (Mean � std)

PPSNet – MLP (ReLU) 9.53 � 4.27 15.60 � 7.58 0.99 � 0.01
EfficientNet – MLP (sine) 11.60 � 3.07 20.13 � 5.95 0.98 � 0.01
PPSNet (no conditioning) 22.25 � 3.97 32.01 � 6.95 0.93 � 0.04
Polynomial regression 32.55 � 6.67 47.81 � 9.58 0.87 � 0.03

Table 5 Predicted particle sizes with regression model and actual parti
trations are 0.4 (% v/v)

Polymer Actual size (DLS – Av), nm Polyd

Silica 153 0.03
PDMAm130-b-PDAAm50 90 0.06
PDMAm130-b-PDAAm100 129 0.02
PDMAm130-b-PDAAm150 185 0.01
PMMA 127 0.04
PS 110 0.03

Digital Discovery
parameters than PPSNet, we nd that performance is worse
(MAE of 11.60 ± 3.07 nm). This can likely be attributed to
overtting, as the dataset is relatively small, and could be
improved by collecting more data. Nonetheless, the ability of
PPSNet to accurately estimate particle size despite its small size
is appealing due to its lower computational overhead.

In contrast to PPSNet and other CNNmodels, the polynomial
regression model performed relatively poorly with an MAE of
32.55 ± 6.67 nm, verifying that the adoption of more complex
neural network-based architectures is warranted for this task.
The failure of the polynomial regression model can be attrib-
uted to the fact that the function of image brightness from
particle size and concentration is not injective as different
particle sizes can be mapped to the same image brightness
(Fig. S12). Therefore, it is not possible to nd a function that
maps image brightness to particle size. This non-injective
behaviour is expected based on Mie scattering theory. In
contrast, CNNs can automatically extract useful features from
visual data, beyond just image brightness, which we speculate
allows them to circumvent this problem. The model's predic-
tions closely align with the ground truth particle sizes, with an
observable trend of increasing absolute prediction error for
larger particle sizes. We speculate this is due to a positive
skewness (Fisher–Pearson skewness coefficient = 0.61) in the
particle size distribution (Fig. 3b). Despite this, the average
percentage error remains consistently low at around 5%,
demonstrating that the model maintains high relative accuracy
across the range of particle sizes (Fig. 3c).

Next, we tested our model's performance with different
nanoparticles. Silica and PMMA size standards were purchased
and poly(dimethylacrylamide)–poly(diacetone acrylamide)
(PDMAm-b-PDAAm) spherical nanoparticles were synthesised
and characterised via DLS.48 Images were collected on our laser
platform and passed to our model for particle size estimation
(Fig. S13). For all nanoparticle systems, our model consistently
underestimated the nanoparticle size (Table 5). This is not
surprising, because themodel was trained on PS samples only. In
Mie theory, scattering intensity proportional to both particle size
and the refractive index difference between the scatterer and
solvent (Fig. S14). All nanoparticles we tested had lower refractive
indexes than the PS standards (refractive index = 1.59) used to
create our model. We attribute this as the key reason for the
underestimation of the particle size. One possible approach to
addressing this is to condition the model on both concentration
and refractive index. It is trivial to extend the FiLM approach to
cle sizes, refractive indexes of polymers and silica, solutions concen-

ispersity index Predicted size (Av), nm Refractive index

34 1.45
53 1.47
91 1.47
143 1.47
45 1.49
108 1.59

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00219b


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
A

ug
us

t 2
02

5.
 D

ow
nl

oa
de

d 
on

 8
/2

8/
20

25
 1

:1
4:

52
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
multiple inputs; however, our dataset has no variance in refrac-
tive index and thus would require data collection for polymeric
nanoparticles with different refractive indexes to assess this
claim. Nonetheless, this is an interesting area for future devel-
opment and has the potential to improve the generalizability of
the model and open it up to a wider range of use cases.

The molecular weight determination of the polymers using
gel permeation chromatography (GPC) is oen reported as a PS-
equivalent molecular weight, but because of differences in
hydrodynamic behaviour and Mark–Houwink parameters,
these values can differ signicantly from true values.49 As our
particle size estimationmodel was also trained on PS standards,
it may be possible to adopt a similar approach to that used in
GPC and report them as ‘PS-equivalent particle sizes’.

We acknowledge that our method is unable to achieve the
accuracy needed to calculate absolute particle size, poly-
dispersity index or size distribution at the current state of the
art, but it is not intended to replace DLS instruments. Rather,
our main goal is to advance this technique as a non-invasive
tool in systems that require quick estimation, using a simple
low-cost setup within automation-driven laboratory environ-
ments.50 Moreover, for industrial applications where the diver-
sity of materials studied is low, it should be possible to build
models trained on specic materials, when greater accuracy is
required.
3.4 Limitations

The goal of this study was to explore the use of light scattering as
a non-invasive tool to study polymer solubility and particle size.
The underlying principle is light scattering, and therefore any
parameter known to affect light scattering will also inuence the
accuracy of the predictions. Factors include refractive index (of
both solvent and polymer), light polarization, absorption effects,
and light wavelength. The type of scattering by the sample—Mie
or Rayleigh scattering—is also important, particularly for the
particle size estimation model. However, these are not the only
factors that affect our model's performance, and we have tried to
outline some of the key limitations below.

Hardware: the laser power, wavelength, camera selection,
and experimental setup will inuence the scattering intensity
and/or the image brightness, thereby affecting the model's
sensitivity and detection limits.

Samples:
� Scattering intensity: this depends on both sample

concentration and polymer molecular weight/particle size,
affecting detection limits and sensitivity (Fig. S15a and b). For
the solubility classication, we found that using a concentra-
tion of $1% w/v improves the accuracy of the model, particu-
larly for liquid-form polymers.

� Sample properties: ne powders produce extensive scat-
tering and, potentially, confusion between colloidal and insol-
uble images (Fig. S15c and d). Liquid samples may be difficult to
detect (Fig. S8), and when the density of the polymer is lower
than the solvent, then the insoluble sample is located at the top
of the vial rather than at the bottom (Fig. S15e).
© 2025 The Author(s). Published by the Royal Society of Chemistry
� Polymer solubility: as polymers are large macromolecules,
they can take a long time to solubilise/dissolve, so the time
between sample preparation and data collection could have an
impact on the results obtained. In this study we kept this time
xed at 2 hours, but it is also possible to collect at the data at
different time points aer mixing to understand the kinetic
solubility behaviour of a particular system.

� Dissolution behaviour: gel formation at the bottom of the
vial or bubble accumulation at the top present classication
challenges (Fig. S15f).

� Sample colour: the impact of sample colour remains
unknown, as all tested samples to date have been colourless.
However, it is anticipated that colour may impose a maximum
concentration limit.

Models:
� Solubility classication model: composition of training

dataset could be improved by having more samples for the
partially soluble class due to the diversity of samples in this
class. Rare-case images, such as gelation and bubbles, should
be increased as well as the samples currently predicted incor-
rectly by the model (Fig. S16, Tables S11 and S12). Furthermore,
the scalability of this model to different vials size is also
currently unexplored.

� HSP: though we wanted to keep the number of solvents
used to less than 20 for practicality reasons, solvent selection
could be investigated to improve accuracy of the HSP values
determined.

� Particle size estimation: PPSNet was trained on particle
sizes between 20 nm and 440 nm and it is unclear whether it will
be able to extrapolate beyond this range. While it may be
possible to address extrapolative generalization through careful
regularization, ultimately, it may be necessary to collect more
data if predicting a wider range of particle sizes is required. The
training dataset was also limited by the PS particle size stan-
dards that were commercially available, collecting more data for
samples in the 200–440 nm range, may also help to improve the
performance of the model.

4. Conclusions

This study demonstrates the effective application of computer
vision for classifying polymer solubility and particle size. We
categorized polymer solubility and used these classications in
conjunction with a Genetic optimizer to determine the Hansen
Solubility Parameters (HSP) for polymers. The approach facili-
tates the development of intelligent, user-friendly, and time-
efficient systems for analysing polymer–solvent interactions.
Despite the relatively small datasets, our robust system achieves
accurate classications and predictions with minimal manual
input, underscoring the potential of machine learning to
perform complex analytical tasks efficiently while reducing
cognitive load for researchers. In future work, our particle size
estimation method, based on a regression model for a partic-
ular polymer with low polydispersity indices, demonstrates
a low prediction error, which provides a promising foundation
for further research. We will also explore the implementation of
these methods in fully automated robotic systems to enhance
Digital Discovery
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efficiency and scalability. For example, because the approach is
totally non-invasive, involving no sub-sampling, it could be
easily retrotted into existing automation workows.
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