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Cite this: Digital Discovery, 2025, 4,
2954

Received 21st May 2025
Accepted 29th August 2025

DOI: 10.1039/d5dd00216h

rsc.li/digitaldiscovery

2954 | Digital Discovery, 2025, 4, 29
ty and interpretable machine
learning to reveal the reaction coordinate of C–N
coupling with a supramolecular Cu-calix[8]arene
catalyst

R. A. Talmazan, a J. Gamper, b I. Castillo, c T. S. Hofer *b

and M. Podewitz *a

Supramolecular 3d transition-metal catalysts are large, flexible systems with intricate interactions, resulting

in complex reaction coordinates. To capture their dynamic nature, we developed a broadly applicable,

high-throughput workflow, that leverages quantum mechanics/molecular mechanics molecular

dynamics (QM/MM MD) in explicit solvent, to investigate a Cu(I)-calix[8]arene-catalysed C–N coupling

reaction. The system complexity and high amount of data generated from sampling the reaction requires

automated analyses. To identify and quantify the reaction coordinate from noisy simulation trajectories,

we applied interpretable machine learning techniques (Lasso, Random Forest, Logistic Regression) in

a consensus model, alongside dimensionality reduction methods (PCA, LDA, tICA). By employing

a Granger Causality model, we move beyond the traditional view of a reaction coordinate, by defining it

instead as a sequence of molecular motions leading up to the reaction.
Introduction

Nature has perfected the principle of catalysis in enzymes,
where a precise control of the environment surrounding the
catalytic centre and substrate lowers the energy barrier.1 In an
effort to mimic the tight control over the environment, the eld
of supramolecular catalysis chemistry has emerged.2–6 For
example, the use of a macrocycle, such as calix[n]arene, allows
the substitution of precious metals with more abundant coun-
terparts, while maintaining high catalytic performance.7,8

Complimentary to experimental advances, computational
chemistry has played a key role in the design and under-
standing of catalytic systems, by elucidating reaction
mechanisms.9–12 Despite considerable efforts, quantum chem-
istry is limited in its predictive abilities.13 As the systems grow in
complexity, there is a need to improve the chemical model that
describes the catalytic system in its environment.14 Oen, the
errors introduced by a too simplistic chemical model exceed
those arising from the use of an approximate theoretical
methodology such as Density Functional Theory (DFT).13,15

Consequently, the goal is to create a “digital twin” of the
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reaction ask that is an in silico model, which fully replicates
experimental conditions: a catalyst in explicit solvent, at nite
temperature and pressure. As a description with full ab initio
quantum chemistry is not feasible, a tailoredmultiscale strategy
is required, accounting for conformational exibility, explicit
solvation, and the dynamic nature of reactions.

Although many computational mechanistic studies are still
performed on a single structure, conformer searches recently
gained popularity14,16,17 thanks to easily accessible tools,18,19

facilitating a transition to structure ensembles, which provide
a more complete picture of the reactivity.14,17 The standard
implicit solvation model can favour unrealistic, very compact
structures with many intramolecular hydrogen bonds.7,19

Ideally, a more realistic model would account for explicit
solvent molecules either through a full condensed phase
calculation or through a microsolvation approach.20,21

Molecular dynamics simulations can describe the dynamic
nature of the catalysts bringing its description closer to oper-
ando conditions, which can reveal new insights into the reaction
mechanism.22–25 While this treatment increases computational
demands, by relying on multiscale methods, this hurdle can be
greatly diminished. Quantum mechanics/molecular mechanics
(QM/MM) models describe the catalytic centre and substrates at
a QM level, while the surrounding environment is treated with
MM.26–28 A transition to QM/MM molecular dynamics (MD) in
explicit solvent allows for sampling timescales magnitudes
higher than in a pure QM approach. Due to thermal uctua-
tions, repeated sampling is a requirement for statistically
© 2025 The Author(s). Published by the Royal Society of Chemistry
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relevant information regarding energy barriers and structural
information.

While the setup of such multiscale methods is a challenge in
itself, a vast amount of data is generated from the simulations.
Chemical knowledge can be extracted from these data, for
example in the form of the reaction coordinate i.e., the move-
ments of atoms which take place as the chemical reaction
proceeds. Knowledge of the reaction coordinate allows for
further reduction in computational costs, by enabling the use of
enhanced sampling methods geared towards overcoming large
energy barriers, such as those observed in chemical reactions.29

The identication of the reaction coordinate from simulation
data can be performed in a variety of ways.30 While machine
learning (ML) approaches can be used to evaluate the data and
extract condensed results from simulations, such as the com-
mittor function,24,31 complex neural network approaches
generally are not directly interpretable.32 Whether through the
use of convolutional neural networks or graph neural
networks,33,34 a subsequent analysis is still needed to render the
reaction coordinate interpretable. Instead, interpretable, or
explainable, machine learning techniques, such as Decision
Trees, Random Forests or Logistic Regression, as well as path
sampling-based methods, such as predictive power analysis,35,36

offer good performance in extracting relevant information from
large datasets and presenting them in easily understandable
ways. In addition, dimensionality reduction techniques, such as
Principal Component Analysis37 (PCA) or time-lagged Indepen-
dent Component Analysis38 (tICA) effectively detect combined
coordinates from the trajectories, revealing the key motions of
a system. Furthermore, methods such as k-nearest neighbour
and t-distributed stochastic neighbour embedding have shown
some promise in dealing with complex datasets.39–41 Yet these
dimensionality reduction techniques have almost exclusively
been applied to biomolecules42–44 with few exceptions.45,46 A
combination of aforementioned methods offers great promise
to detect a cumulative reaction coordinate from a multitude of
independent trajectories, providing chemical insight into the
mechanism and reactivity of the system. However, to the best of
our knowledge these combined methods have not been applied
to study reaction mechanisms in explicit solvent, let alone large
supramolecular transition-metal catalysts.

Another aspect that has until now been neglected in chem-
istry is causality. While the concept is widespread across various
scientic domains47 – ranging from economics48–52 and climate
research53–57 to biology58,59 and medical studies60–62 – it remains
surprisingly absent in the eld of chemistry. Although a handful
of precedents in biomolecular simulations exists,63–65 it has not
been explored to study chemical reactions, not to mention
transition-metal catalysis. As MD simulation trajectories are
essentially discrete time series, containing the various degrees
of freedom of the system, causality can be statistically inferred
from the analysis of these trajectories. Consequently, the reac-
tion coordinate can be decomposed into a sequence of motions
leading up to the reaction, exposing the intricate interplay of
functional groups of the system, offering an unprecedented
view of reactivity.
© 2025 The Author(s). Published by the Royal Society of Chemistry
A supramolecular catalyst that has shown remarkable cata-
lytic efficacy for C–N coupling is the Cu(I)-1,5-(2,9-dimethyl-1,10-
phenanthroyl)-2,3,4,6,7,8-hexamethyl-p-tert-butylcalix[8]arene,
short noted as [Cu(C8PhenMe6)I].7 The macrocyclic ligand,
sketched in Fig. 1, allows for usage of earth abundant metals,
here Cu, which is an essential step towards more sustainable
chemical processes.66–71 The investigated system necessitates
explicit solvation for accurate results, as implicit solvation
models lead to a collapse of the macrocyclic cage, which
compromises catalytic activity (see also Fig. S14–S15, Table S5 in
the SI).7 To account for the conformational exibility of the
supramolecular cage7,72 and the dynamic nature of the system as
a whole, a dynamic, ensemble-based approach is required to
study the reaction. While the mechanism of this catalyst was
established to be a sequence of oxidative addition/reductive
elimination,7 the dynamic effects of the system, in particular
the contribution of the cage, are unknown. From previous
studies, we know that explicit solvent molecules are crucial to
maintain the shape and functionality of the cavity, however, we
see no experimental or theoretical evidence of their participa-
tion in the reaction itself.7,72

We developed a multiscale QM/MM MD approach to
understand the bond formation dynamics of the C–N coupling
step with the Cu-calix[8]arene catalyst in explicit chloroform. By
relying on the GFN2-xTB73 method to describe the QM part, we
achieved massive sampling, resulting in 152 individual unbi-
ased reaction trajectories. To extract chemically relevant infor-
mation from these data, we employed supervised and
unsupervised interpretable machine learning dimensionality
reduction models, in order to identify the cumulative reaction
coordinate and to detect critical movements in the structure. A
consensus approach combining individual machine learning
techniques improved the performance. The statistical Granger
Causality analysis model74,75 was employed to decompose the
reaction coordinate into a sequence of individual consecutive
movements. Finally, Random Forest models and Decision Rules
allowed us to quantify the reaction coordinate. This work serves
as a broadly applicable template for any mechanistic investi-
gation, revealing and quantifying complex reaction coordinates,
along with causal effects derived from the individual move-
ments leading up to the reaction.

Results

We set-up a QM/MM model [Cu(C8PhenMe6)I] catalyst, where
the reaction centre is modelled by QM and the macrocyclic
ligand, as well as the solvent, by MM (see methods and SI Fig. S1
and Table S1 for details). We obtained 152 unbiased QM/MM
MD reaction trajectories for the C–N coupling step O7 with
a total of over 3 ns of simulation time. Out of these, 142 reacted
spontaneously within 20 ps of simulation time without the need
to bias. From these trajectories we evaluated the reaction energy
and labelled the structural data accordingly as educt, transition
state, or product – resulting in three ensembles. We then used
this information to identify the reaction coordinate, identify
a sequence of movements leading to the reaction, and quantify
it.
Digital Discovery, 2025, 4, 2954–2971 | 2955
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Fig. 1 The supramolecular calix[8]arene-based [Cu(C8PhenMe6)I] system that catalyses the C–N coupling reaction of phenyl bromide and
aniline. The black spheres represent the connections of the calixarene ring to the phenanthroline moiety.
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Reaction energetics analysis and ensemble labelling

We analysed 142 simulations, in which a reaction occurred, to
gain insights about the C–N coupling process. As the reaction
happened spontaneously during the simulations, the energy
prole could be obtained directly (see SI Fig. S2) and was used to
identify the three states, educt, transition state, and product.
These states were labelled based on the energies, with the
educts considerably higher in energy than the products. The
transition states were labelled as the highest energy point,
before the energy drop associated with C–N coupling occurred.
For technical details see methods section and SI Section 2.

The reaction energy was obtained by averaging the ensem-
bles of the educt and product states and calculating the differ-
ence; it amounts to −212 ± 25 kJ mol−1 (See SI Sections 3 for
details regarding uncertainty estimation). A sigmoid t through
the smoothened energy prole of each simulation (see SI,
Fig. S2B and S2C) allowed identication and the calculation of
the energy barrier to be 13 ± 9 kJ mol−1. These GFN2-xTB
reaction energies and structures are in excellent agreement
with full DFT data, obtained with PBE0/def2-SVP/D3 (see SI
Section 4, Fig. S3 and Table S2).
Extracting chemical information from structural data

To obtain information about the changes in chemical structure
from the reaction trajectories with a total of over 1.5 million
frames, we resorted to interpretable machine learning
approaches.
Determination of a suitable coordinate system

A standard method to extract reaction coordinates from
trajectories, either in biomolecular or reaction dynamics
studies, is Principal Component Analysis (PCA)37 in cartesian
coordinate space. However, this approach proved unsuccessful
for the [Cu(C8PhenMe6)I] catalyst due to the difficulty in prop-
erly aligning this highly exible system. The corresponding PCA
does not show any separation between the three states (Fig. S4).

To achieve good separation between the three states, educt,
transition state, and product, we developed a reduced internal
2956 | Digital Discovery, 2025, 4, 2954–2971
coordinate description of the system (see Fig. 2A) to minimize
the noise from highly correlated coordinates.76 We used bond,
angles, and torsion coordinates and described rigid fragments,
such as the individual calixarene units (cX), the phenanthroline
bridge (Phena), the phenyl (Phe) and aniline (NPh) moieties by
their respective centres of mass (Fig. 2A). An overview over the
distribution of the internal coordinates which dene the
reduced model can be found in the SI, Fig. S5. This internal
coordinate set nicely separates educts and products in the PCA
space (Fig. 2B), but still shows overlap between educts and
transition states. Analysing the loadings of the principal
components (see SI Tables S3 and S4), we can see that the main
contributions belong to the coordinates dening the reaction
centre (C–N, NPh–C, NPh–Phena distances), as well as to the
distances between the product and the cage, describing changes
in the coordination at the Cu centre as the product is formed
and the settling of the product in the cavity.
Improved reaction coordinate detection through supervised
methods

We intended to further improve the separation of the three
states in the PCA by utilizing the labelling of the data (See SI,
Section 2), indicating each structure as educt, product or tran-
sition state. Using this information, we trained a model that
maximized the separation between the three ensembles and
simultaneously reduced the number of internal coordinates
(features) to those that contribute the most to the separation.
This process is known as feature elimination. There are several
methods to achieve this, and we tested a few of them using PCA-
based dimensionality reduction approaches (see Fig. 3). The
results show that the performance of PCA varies depending on
the feature elimination technique used (Fig. 3A–C and SI
Fig. S6). However, good separation, even within the ensembles,
can still be achieved, depending on the method of feature
elimination applied.

A second method, Linear Discriminant Analysis (LDA),77 was
also used for comparison. LDA is independent of feature
selection and consistently yields excellent separation between
groups (Fig. 3D and SI Fig. S6). While LDA produces compact,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (A). Schematic depiction of the [Cu(C8PhenMe6)I] intermediate that we denoted as “educt” here, showing the centres of mass used for the
calculation of the reduced set of internal coordinates; (B). PCA performed on the reduced internal coordinates.
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distinct ensembles, it does not provide separation within the
ensembles themselves.

Analysis of the PCA loadings (see SI Table S3) revealed that
amongst the top contributors to separating the three ensembles
are the change in the distances dening the reaction centre (C–
N, Phe–N, NPh–N, NPh-C and Phena-Cu-Br). Secondary
features, such as the distance between the copper and O7, also
plays an important role for the Logistic Regression (LR) classi-
er (Fig. 3A). The Random Forest (RF) identies the C–N
distance alongside Phe–N and NPh-C as important (Fig. 3B)
with distinct product ensembles emerging. While in RF PC1 has
Fig. 3 Dimensionality reduction performance with various feature red
cutoff; (B). PCA with Random Forest with mean-based cutoff; (C). PCA
validation using a Logistic Regression classifier.

© 2025 The Author(s). Published by the Royal Society of Chemistry
the highest loading of all methods (0.68, see Table S3), the
separation between the states is best for the LassoCV approach.

As the feature selection methods differ in the selected
internal coordinates and performance (see also SI Fig. S7 for
a visual display of features across the methods), we switched to
a consensus model (see methods for details on the creation of
the consensus model). This consensus approach retains smaller
number of features (49 internal coordinates), namely only those
that were found to be of high importance in 75% of all previ-
ously used ML methods (Fig. 4A), that is in PCA and LDA
models. For sake of comparison, the highly important features
uction methods: (A). PCA with Logistic Regression with mean-based
with LassoCV; (D). LDA with Recursive Feature Elimination with cross

Digital Discovery, 2025, 4, 2954–2971 | 2957
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Fig. 4 Analysis of internal coordinates deemed as highly important by the consensus model. (A) Internal coordinates and their contribution; (B)
PCA of the consensus features.
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of a PCA-only and LDA-only consensus model are depicted in
the SI in Fig. S8. It is important to note that individual models
assign varying importance scores to each internal coordinate.
As a result, the feature importance ranking derived from the
overall consensus model is likely to differ from those of the
individual models. We performed an additional PCA on the 49
consensus features (Fig. 4B). As evident from Table S3, in this
model PC1 shows the highest retained variance (0.76) of all
PCAs.

Judging the importance of the consensus model features
(Fig. 4A), we see that the C–N bond distance is most important
(in agreement with chemical intuition), alongside several
distances and angles describing to the reaction centre. Notably,
the c6–C distance is also deemed highly important, which
indicates that the cage indeed plays a role in dening the
reaction coordinate. This small set of internal coordinates
yields almost perfect separation of the three states, as well as
distinguishing the product conformations (Fig. 4B), thereby
outperforming any of the individual feature selection methods.
Time correlation-guided identication of slow system
movements

While PCA focuses on the largest variance in the dataset, tICA
can be used to separate and extract the internal coordinates
which exhibit the strongest time-correlations for a chosen lag
time, thus revealing slow movements in the system.

Employing tICA on the initial reduced internal coordinate
set (Fig. 2A), resulted in a good separation of the product and
educt states, mainly across the rst independent component
(IC1), as shown in Fig. 5A, where the values of IC1 and IC2 are
plotted separately, and Fig. 5B, where they are plotted against
each other and the structures are color-coded according to their
labels. Yet the transition state ensemble cannot be fully sepa-
rated from the educts. When taking into consideration IC2
(Fig. 5A and B), we observe a broad distribution of the product
ensemble, indicating signicant conformational exibility. The
contributions to ICs can be traced down, by relating the
contribution strength (Fig. 5C) to the degree of freedom it
corresponds to (Fig. 5B insert). A positive contribution (col-
oured in red) means that the respective feature values increase
2958 | Digital Discovery, 2025, 4, 2954–2971
as the values of the IC increases, while a negative contribution
(coloured in blue) means the feature values decreases as the IC
values increase. The absolute value of a contribution (colour
intensity) represents the importance of the feature in dening
the IC. Please note that going from the educt to the product
corresponds to a decrease in IC1.

IC1 reveals the changes at the reaction centre related the Cu
adopting a planar conguration upon product formation, as
evident for example by the Phena-Cu-Br angle (1st column) that
increases with decreasing IC1 (1st column). Of particular
interest are the increase in Cu–C and the Cu–N bond distances
(1st column) when going to the products, accompanied to
a shortening of C–N (5th column), as indicative of the reductive
elimination step, as well as the strong contributions of the
distances between the aniline product moiety (NPh) and the c0,
c2, c6 and c7 calixarene units (4th column). The later hint at the
formation of p–p interactions between the cage and the
product. Additionally, a tilting of the calixarene cage can be
inferred, when looking at the changes in the Phena-Cu-cX and
Phena-Cu-oX angles: For example, Phena-Cu-O2, Phena-Cu-O3,
and Phena-Cu-O4 (1st column), all located at the lower rim of
the calixarene cage (Fig. 5B (insert)), anticorrelate with IC1,
hence, they increase when the product is formed (decreasing
IC1), whereas those on the lower rim of the cage, such as Phena-
Cu-c6 (4th column) as well as Phena-Cu-O7 and Phena-Cu-c7
(5th column) decrease. This nding indicates the movement
in opposing directions, when looking at units on opposite sides
of the cage. IC2 acts to separate various conformers within the
product ensemble, where we can see a difference in the position
of the product in the calixarene cage, inferred from the strength
of the contributions of the product-calixarene unit distances. To
further corroborate p–p interactions, we clustered the product
ensemble and performed an NCIPlot analysis78 of the non-
covalent interactions, which revealed weakly attracting van-der
Waals interactions between the formed coupling product and
the cage (see SI Fig. S16–S20).
Revealing causality in the reaction coordinate

While the correlation analysis shows which movements take
place in a correlated fashion, it is also interesting to evaluate the
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00216h


Fig. 5 Time-lagged independent component analysis of the MD trajectories, using a lag time of 20 fs. (A) Distribution of the structural ensembles
(feature values) over the first two independent components; (B). Projection of the ensembles in the space of independent components 1 and 2
(IC1 and IC2), with the ensemble colouring performed a posteriori; (C). Normalized internal coordinate (feature) contribution to each inde-
pendent component.
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causality of these movements and how they propagate through
the system. Given that tICA, a time-lag-based method, provided
new insights into cage movement and product interaction, we
applied the Granger Causality (GC) model, another time-lag-
based approach, to assess the reaction trajectories for causal
relationships. GC determines whether the prediction of a vari-
able X in the future improves by including past events of Y. If
this is the case, Y is found to Granger cause X.

With this causality model, we utilized the 49 consensus
features (Fig. 4) and analysed each trajectory separately.
Therefore, we can assess which each feature is inuenced by
which of the other 48 features; however, a complete analysis of
all features quickly becomes impractical. Having identied C–N
bond formation and changes in Cu-coordination as the most
critical factors during product formation, we focused our GC
analysis on the C–N feature. We analysed which of the
remaining 48 features inuenced the C–N feature and evaluated
how oen each of the 48 variables was found to Granger-cause
C–N across all trajectories. For an overview over the 49 × 49
causality matrices generated for each reaction trajectory, the
reader is referred to the GitHub.
© 2025 The Author(s). Published by the Royal Society of Chemistry
In addition, we performed a hierarchical clustering of the
consensus features (branches in Fig. 6), which tells us, what
features are correlated. Further insight can be obtained by
quantifying the correlation with a Pearson score, resulting in
a clustermap (Fig. S9 SI), which also reorders the internal
coordinates according to their correlation to each other. From
this we can observe two distinct regions in the catalyst, corre-
sponding largely to the upper and lower rim of the calixarene
cage.

Combing the information of the correlation with Granger
Causality, we analysed the causality for C–N coupling, i.e., C–N
bond shortening, not only for the individual features but also
for the combined branches (Fig. 6). While the red arrows in
Fig. 6 show the direction of causality the percentages indicate in
how many trajectories C–N bond formation was caused by the
respective feature or group of features. Fig. 6 can be read as
a map of movements leading to the coupling reaction, by
choosing a starting point and following the arrows towards the
highlighted C–N feature.

For example, in 11% of all trajectories C–N coupling is
caused by a change in Phe-O4, O4-C, and c4-C distances (most
Digital Discovery, 2025, 4, 2954–2971 | 2959
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Fig. 6 Propagation cluster map of the system, leading to the C–N bond formation. The numbers represent the total causality effects uncovered
by the respective coordinate(s) and the red arrows indicate the direction of causality.
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le part of orange cluster, Fig. 6). Combining all features in the
orange cluster, in 37% of all trajectories, the coupling is trig-
gered by a move of features summarized in this cluster, con-
sisting of the calixarene 2,3,4 and 7 to C distances as well as Cu-
Phe distance. When we include information about the Phena-
Cu-Br angle, alongside Cu and Br distances to NPh, from the
purple cluster (right hand side of Fig. 6), as well as information
from the red cluster, we can infer causality in 65% of all
trajectories. The green cluster consists mostly of information
related to the position of the calixarenes around the reaction
centre. We see that changes in the Phena-Cu-calixarene angles
(e.g., Phena-Cu-O7, Phena-Cu-O2, .) on the upper and lower
rim are correlated. Combined with the information from the
clustermap (Fig. S9), we see that the angle with the upper rim
decreases (positive Pearson correlation with C–N coupling,
coloured in red), whereas those on the lower rim increases
(negative Pearson correlation, coloured in blue), indicative of
a tilt of the calixarene cage. When we combine all information
together, we can infer that the C–N coupling is caused by
movements in the calixarene cage, alongside the Cu coordina-
tion change in 87% of the trajectories. Please note that because
of the correlation of the individual features, percentages of the
combined features do not necessarily equal the sum of the
individual contribution.

In addition to C–N coupling, the Phena-Cu-Br angle was
selected as a high importance feature by the consensus model
(Fig. 4A), it's the 5th in the ranking and the rst angle, and we
subjected it to GC analysis. It also corresponds to an intuitive
view of the change in coordination around the copper. From the
correlation analysis and clustering, it relates closely to the C–N
bond shortening and it directly Granger-causes C–N coupling
12% of the time. Conversely, we found that the C–N distance
shortening does not cause the change in the Phena-Cu-Br
2960 | Digital Discovery, 2025, 4, 2954–2971
angles, allowing us to deduce that the two movements happen
either simultaneously or, more likely, the change in the angle
precedes the C–N bond shortening. Furthermore, we observed
that movements of the calixarene cage Granger-cause changes
in the Phena-Cu-Br angle in 72% of all trajectories, establishing
the sequence of cage movement – Phena-Cu-Br change – C–N-
shortening. Due to the increasing complexity, we opted not to
conduct further analysis of the GC matrices.
Quantication of reaction coordinates

While the consensus approach revealed the relevant internal
degrees of freedom that dene the reaction coordinate, as a next
step, we sought to quantify it, by identifying ranges of individual
features that separate the data into three ensembles. To achieve
this, we used Decision Trees, which split ensembles by applying
cut-offs to those coordinates that show the largest distribution
differences between classes.

The Decision Tree in Fig. 7 has been trained on the whole
dataset. To avoid biasing against the transition state ensemble,
which contains signicantly fewer structures, balanced weight
is given to all classes via oversampling. For comparison, the
results of an unbalanced tree can be found in Fig. S10.

Analysing the tree, we can see that the Cu–C distance plays
a key role in the splitting of the educts and products, with the
majority of transition states being grouped with the educt class,
indicative of an early transition state. The remaining transition
state contamination of the product ensemble can be separated
by taking the angle determined by the phenanthroline bridge,
Cu and Br atoms into account (Phena-Cu-Br), where values
below 112.8° are indicative of a transition state.

To differentiate between the transition states and educts, the
C–N bond represents an effective metric, where values higher
than 2.33 Å indicate an educt, while distances below indicate
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 (A). Model of the Cu-calix[8]arene catalyst with the reduced centres of mass; (B). Decision Tree classifier used to interpret the differences
between the 3 structure ensembles, trained on the balanced classes. As indicated by the inequality operators, structures with values smaller or
equal to the threshold are summarized in the left branch, those with larger values on in the right branch.
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a transition state. The educt states that do exhibit a C–N bond
distance similar to that of the transition state can be identied
by a smaller phenyl to calixarene unit 4 oxygen atom distance
(Phe–O4). When transition states exhibit a C–N bond distance
over 2.33 Å, they can be distinguished from the educts by the
calixarene c0 and calixarene O5 distance greater than 11.79 Å
and the angle dened by the phenanthroline bridge, Cu and c0
(Phena-Cu-c0) smaller than 110.5°.

A major shortcoming of Decision Trees is that their results
depend on the initiation conditions. However, their reliability
can be improved by utilizing many Decision Trees in a Random
Forest (RF) classier and averaging the results. In general, this
improves accuracy, but reduces the interpretability. To over-
come this limitation Decision Rules can be deduced from the
results, providing a semantic understanding of the RF classier.
We used 30 Decision Trees, each trained on a subset of the data,
© 2025 The Author(s). Published by the Royal Society of Chemistry
to yield the RF. When applied to our dataset, this method
provides rules for each of the three classes, as seen in Fig. 8,
below. A complete diagram of the Decision Rules can be found
in the SI, Fig. S11.

Notably, the Decision Rules approach identies three
distinct rule sets for dening a product. Color-coding these
three product states in the PCA with consensus showed clear
separation (see SI, Fig. S12), which was further conrmed by
kmeans clustering, where only minor overlap occurred. Hence,
these three states are distinguishable to some degree.
Discussion

Using semi-empirical quantum chemistry methods, we gener-
ated massive sampling of the reductive elimination step of the
C–N coupling reaction with the [Cu(C8PhenMe6)I] catalyst,
Digital Discovery, 2025, 4, 2954–2971 | 2961
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Fig. 8 Graphical depiction of the Decision Rules derived from the RF
approach, Product A, B, C refers to different conformer ensembles
within the product category.
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through a hybrid QM/MM molecular dynamics approach. Since
the amount of generated data, alongside the very high dimen-
sionality, makes the reaction difficult to interpret by visual
analysis, statistical methods and machine learning techniques
were used to extract chemically relevant information from the
dataset.

As we observed a convergence of the PCA with increased
sampling (see SI, Fig. S13), we assumed the total simulation
time to be sufficient. In addition, we observed spontaneous C–N
coupling in 142 of the 152 trajectories, hence, we could directly
analyse these unbiased simulations.

By analysing the reaction energy proles, we were able to
quantify the reaction energy, as well as the reaction barrier,
including uncertainty values. The computed reaction barrier
amounted to 13 ± 9 kJ mol−1, which is within 6 kJ mol−1 of that
obtained from the full DFT trajectories (18 kJ mol−1). Notably,
the static quantum chemical (DFT) approach yielded a slightly
higher barrier of 23 kJ mol−1,7 indicating that dynamics lower
the barrier. For the reaction energy, differences are more
pronounced with −212 ± 25 kJ mol−1 obtained with QM/MM
MD vs. −255 kJ mol−1 with static DFT.7 However, these differ-
ences are due to the different conditions modelled: In the static
DFT model, the studied structure was obtained at 0 K, which
represents the bottom of the potential energy surface, while in
this QM/MM MD study not only the average over all confor-
mations is taken into account, but also the thermal energy, so
the structures are not 0 K structures and therefore no minima
on the potential energy surface. In addition, we assume that the
product can undergo slow relaxation to lower energy confor-
mations, which are too slow to observe in the timescales
investigated here and which further contribute to the difference
in reaction energies decreasing the variance between the static
and the dynamic approach. Besides energetics, the reaction
prole allowed for the categorization of the structures into three
ensembles, namely educt, transition state, and product. This
step was a key in improving the reaction coordinate recognition,
as it allowed for the use of supervised learning methods to
2962 | Digital Discovery, 2025, 4, 2954–2971
reduce the coordinate space. Due to the large energy difference
between reactants and products, which renders the trans-
formation irreversible in the context of unbiased MD at 300 K,
we sampled a single chemical reaction per trajectory. Thus,
there is one transition state structure before the large drop in
energy and, as we have not biased our simulation, this structure
should be on the dividing surface. Naturally, structures very
similar to the transition state are likely to be found in the
sampling leading up to the identied transition state due to
recrossing events. Such transition state and transition state-like
structures could probably be identied using a structural
criterion and, in an iterative process, be removed from the educt
ensemble. However, in the present case, we observe a good
separation between transition state and reactant ensembles,
also visible in the analysis of the internal coordinate distribu-
tion (SI Fig. S5), where for example, the C–N or the Phe–N
coordinate show excellent separation of the three states. This
nding indicates that there is no large transition state structure
contamination within the reactant ensemble.

While PCA has been used in the past to determine the
reaction coordinates, we have demonstrated that it is insuffi-
cient for a highly complex system, with many degrees of
freedom. To yield any separation between the three states in the
PCA, we had to transform cartesian coordinates to a set of
internal coordinates, which we further reduced to minimize the
number of highly correlated coordinates in the data set, thus
reducing noise. Although this single step of our workow is not
fully automated at the moment, clear guidelines to obtain the
reduced coordinate set can be applied, (i) usage of internal
coordinates and (ii) representation of rigid groups such as
phenyl by their centre of mass, which are applicable to describe
any chemical system. While product states could be separated
from educts and transition states, the latter two still showed
overlap. In contrast, standard PCA on the cartesian coordinates
resulted in no separation of the three states. We suspect the
poor performance stems from failure to fully eliminate rota-
tional and translational degrees of freedom from the system.

Utilizing the labelled data in PCA and LDA combined with
supervised ML approaches resulted in a much better separation
of the three ensembles. While the performance of PCA was
highly dependent on the internal coordinate set, LDA showed
remarkable separation between the three ensembles, high-
lighting the robustness of the method. A consensus model
developed to combine the performance of the various dimen-
sionality and feature reduction methods, identied 49 internal
coordinates to be relevant, with the C–N distance being the
most prominent one, which is in agreement with chemical
intuition.

From looking at the cumulative results of all analyses per-
formed on the reaction trajectories we deduced which move-
ments took place during the reaction. From the PCA, LDA and
the correlation analysis (clustermap), we saw a tilt in the calix-
arene cage. Likewise, we observed changes in the coordination
around the Cu centre, as indicated for example by Phena-Cu-Br
angle changes and the C–N bond shortening upon product
formation.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Complementary to PCA, tICA was used to identify slow
movements of the system. While tICA provided structural
insights into the product conformer ensemble, it failed to
distinguish educts from transition states. Thus, tICA was
insufficient fully identify the reaction coordinate Finally, the
tICA results suggest a settling of the product in the calixarene
cage, governed by p–p stacking interactions, which was further
corroborated by analysis of non-covalent interactions of repre-
sentative structures (SI Section 12 Fig. S16–S20). These corre-
lations can be then temporally dened by interpreting the
Granger causality analysis. Through the causality analysis of
changes in the C–N bond, we deduce that the reaction is
Granger-caused by a movement in the reaction centre (such as
a change in the Phena-Cu-Br angle) or a change in the calixarene
cavity conformation, particularly calixarene units 2,3 and 4,
whereas in turn changes in the Phena-Cu-Br angle are Granger-
caused by changes in the calixarene conformation. Finally, the
p–p stacking increased once the formed product reoriented
itself inside the cavity. Therefore, we may create a sequential
image of the reaction, schematically depicted in Fig. 9 as
follows: (i). The calixarene cage tilts perpendicularly to the
phenanthroline; (ii). The change in Cu-coordination takes place
before the C–N distance shortening, but aer the tilt of the cage;
(iii). The C–N bond distance shortens; (iv). p–p stacking effects
drive the movement of the product inside the cage and below
the phenanthroline.

To the best of our knowledge, this study represents the rst
application of Granger Causality analysis to a complex chemical
reaction – specically, the C–N coupling reaction step catalysed
by [Cu(C8PhenMe6)I] – and serves as a proof of principle.
However, the model provides a simple interpretation of
causality, as it analyses pairs of variables and not more complex
composite variables. Transitioning to more advanced causal
discovery methods, such as PC Momentary Conditional Inde-
pendence (PCMCI)-based approaches,79 would enable better
interpretation of nonlinearity and the presence of hidden vari-
ables within the dataset. Nonetheless, such advancements are
beyond the scope of this work.

To quantify the changes in internal coordinates, we
employed a Decision Tree trained on the three ensembles,
Fig. 9 Schematic representation of the movements corresponding to th
ment of the calixarene cage; (ii) Change in coordination of the copper ce
the product in the cavity.

© 2025 The Author(s). Published by the Royal Society of Chemistry
identifying the Cu–C and C–N distances as main feature for
separating products from educts and transition states, respec-
tively. While Decision Trees are sensitive on the initialisation
condition and require size limitations to maintain interpret-
ability, a Random Forest (RF) approach mitigates these limita-
tions by aggregating multiple trees. Applying the Decision Rule
method then allows for the semantic interpretation to a RF
classier, effectively separating the three ensembles. In addi-
tion, three distinct product conformers are identied, each
dened by a unique set of decision rules and distinguishable in
the PCA consensus features plot (Fig. S12) as well as in IC2 of
the tICA analysis. Structural differences are related to changes
in cage conformations. These conformations will likely
converge as the product diffuses out of the cavity.

To the best of our knowledge there is only a single study of
the reaction dynamics of a transition-metal complex with
explicit solvent with repeated sampling of the reaction step.24

This study on Fe-oxo-mediated C–H functionalization reactions
by Joy et al. used kinetic energies, quantum numbers and
velocities to distinguish between two different dynamic reaction
pathways.24 While they also used ML for feature selection, their
focus is on physical chemical factors that impact reactivity. Our
focus lies on the investigation of structural changes to ease
interpretation and to facilitate causality analysis, which has
never been attempted for chemical reactions, but opens
a completely new angle on how to understand reactivity. From
all statistical analyses, we can see that the transition state
structures tend to be close to the educt or even overlay with the
educt space: for example, this is visible in the unsupervised PCA
(Fig. 2), supervised PCA (Fig. 3) or tICA (Fig. 5), as well as in the
histograms of all internal coordinates (SI Fig. S5), where educt
and transition state distributions overlap for many internal
coordinates, while being clearly separated from the product. We
surmise that this is an indication that we have an early transi-
tion state here – information that can be utilised in further
optimisation of the catalyst. While the reaction step under
investigation does not represent the rate-determining step, as
previously reported, the energy for release of the product from
the catalyst is notably reduced by the presence of the calixarene
cage, allowing for improved catalytic performance.7 Our
e reaction coordinate of the C–N coupling reaction. (i) Tilting move-
ntre; (iii) Shortening of the C–N bond; (iv) p–p stacking effects stabilise

Digital Discovery, 2025, 4, 2954–2971 | 2963
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Fig. 10 General workflow to identify and quantify the reaction coordinate by analyzing correlations and causality in an ensemble of reaction
trajectories.
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analysis revealed that the reaction starts with a tilt in the cage.
Therefore, modication of this moiety distal to the reaction
centre can affect reactivity and even selectivity, similar to the
allosteric effects seen in natural enzymes. Experimentally,
modications could include changing the size and rigidity of
the cage, or introducing asymmetric modications to one side
of the cage. All of these efforts can result in greater control over
substrate selectivity. Identifying possible allosteric sites in other
systems could help advance supramolecular chemistry in
rational design, which is of particular interest for homogeneous
catalysis, where such insights may lead to greater substrate
selectivity or more efficient catalysts.

Our study presents a proof-of-concept approach to the
discovery of complex reaction coordinates that is transferable to
any chemical reaction. The presented methodology is not only
applicable to the study of single reaction steps, but can be
extended to reactions with competing reaction pathways that
determine selectivity: If the reaction energy prole is different,
then the energy can be used as a simple criterion to group the
trajectories and separate the pathways. In case, the energy
differences are similar and only the product structures are
different, this will be highlighted by PCA or tICA, allowing
separation using a clustering approach. This information can
then be leveraged to either separate the sampling data and
categorize the reaction trajectories or to perform new, biased or
restrained simulations which direct the reaction mechanism
through a single pathway.

Our protocol can be integrated into computational chemistry
workows to investigate the reactivity of complex systems under
operando conditions. By identifying secondary contributions to
the reaction coordinate, such as remote conformational
changes, it can guide further studies and inform the design of
reactivities and selectivity by tracing the impact of modica-
tions on the reaction prole under operando conditions.
Consequently, additional insights can be obtained from reac-
tion trajectories with minimal additional computational effort.
2964 | Digital Discovery, 2025, 4, 2954–2971
Conclusion

We developed a workow to identify and quantify the reaction
coordinate from a set of trajectories, detecting chemically
intuitive and remote contributions to the reactivity.

By devising a high throughput QM/MM MD workow, we
were able to study the C–N coupling reaction dynamics of
a supramolecular Cu-calix[8]arene catalyst under experimental
conditions. This development is a crucial step towards
a predictive operando model for complex catalytic reactions. It
allowed us to extract not only reaction energies and barriers
with uncertainties, but also provides insights into the intricate
dynamic nature of the macrocyclic transition-metal catalyst in
explicit solvent.

Interpretable machine learning techniques have proven
invaluable in dealing with the vast amount of data, because of
their ability to trace results back to structural changes. However,
a consensus model is needed to identify the internal coordi-
nates with the highest contribution to separating educt, tran-
sition state and product, and to eliminate the inherent
variability and instability of individual ML approaches.

By performing a causality analysis of the internal coordinates
of the consensus model, an extra temporal dimension can be
added to the reaction coordinate, allowing us to explain the
chemical reaction as a sequence of movements leading up to
C–N bond formation. This information, pinpointing the exact
source (group of atoms) that triggers the reaction, allows the
experimental chemist to generate testable hypotheses to
enhance reactivity, for example by suitable chemical modica-
tions. By checking the outcome of Decision Trees and Decision
Rules run on this modied system, we can gauge the impact of
a specic change on the reaction coordinate. The methodology
is implemented in a python script and presented in the Jupyter
notebook provided on github (see Data availability Section). The
analysis is largely automated, requiring only a few inputs from
the user, namely: (i) system trajectories; (ii) coordinates which
should be considered for dimensionality reduction e.g. centres
© 2025 The Author(s). Published by the Royal Society of Chemistry
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of mass for rings; (iii) labelling criteria for the various states of
the system; (iv) cutoff values for the consensus model. Notably,
the labelling of the states can be done on any descriptor of the
system, including energetic criteria, as well as partial charges or
other molecular properties. As a result, it can be readily applied
to other systems as a digital tool. By limiting the analysis to
structural changes in the system, we believe this technique is
accessible to non-expert users. The results reect coordinate
changes during the reaction, which makes them easy to
understand for a general chemist.

Our methodology was demonstrated on a highly exible Cu-
calix[8]arene catalyst. However, the approach supports the
exploration of both covalent and non-covalent interactions,
allowing for the applicability to the investigation of other
phenomena such as cluster formation and aggregation. Never-
theless, a requirement is that structures can be labelled, using
either energetic criteria or anymolecular feature. If that is given,
it offers a broadly applicable framework for probing reaction
coordinates in a variety of dynamic chemical systems, ranging
from small (in)organic complexes to more intricate biomolec-
ular structures.
Methods
Workow for determination of complex reaction coordinates

The multistep protocol developed to investigate the C–N
coupling dynamics with the [Cu(C8PhenMe6)I] catalyst is high-
lighted in Fig. 10. It involves high throughput explicit solvent
MD sampling of the reaction step, followed bymachine learning
analysis, where consensus features are extracted. These are
utilized for qualitative and quantitative analysis of the reaction
coordinate. As a last step, the time evolution of the system is
considered by applying a causality model that allows to redene
the reaction coordinate as a sequence of individual movements
of groups of atoms.
Simulation protocol

For the QM/MM MD simulation, we chose the in-house devel-
oped ab initio quantum mechanical charge eld (QMCF)
molecular dynamics approach80 using the link-bond method to
describe the bonds crossing between QM and MM.81,82 The
simulation parameters were set up using the GAFF83 force-
eld,84 using the PyConSolv19 1.0.0 tool, with default settings.
For the geometry optimization, the PBE0 functional85 was used
with the def2-SVP basis set86 and D3 dispersion corrections87 in
implicit chloroform, using CPCM.88 The system was solvated in
a cubic periodic box with 1708 chloroform molecules. For
detailed information regarding the simulation parameters, see
the SI. The 54 atoms at the centre of the calixarene cage were
included in the QM zone (see SI Fig. S1). The quantum
mechanical calculations were performed at two distinct levels.
The semi-empirical method GFN2-xTB was utilized, providing
a vast speed-up of the QM calculation. As semi-empirical
methods require benchmarking,89–91 a full DFT reference was
used, with PBE0/def2-SVP/D3, using Turbomole, showing very
© 2025 The Author(s). Published by the Royal Society of Chemistry
good agreement.92 A detailed comparison can be found in the SI
(Section 4).

We used chloroform in our simulations instead of toluene,
which was chosen experimentally. Chloroform and toluene have
comparable permittivities (3r 4.8 and 2.4),93 both typical of
apolar solvents. Thus, both solvents provide similar apolar
environments, consistent with the observation that the catalyst
is active in different media. Experimentally, the reaction also
works in tetrachloroethane but toluene was selected as a more
benign and environmentally safe option. As there is no evidence
for strong solvent effects on reactivity, the choice of solvent is
unlikely to signicantly alter the system. In simulations, chlo-
roform was preferred because its smaller size enables faster
equilibration than toluene.

To generate an appropriate starting structure the system was
equilibrated and a 100 ns of a MM/MD simulation was carried
out, using the multistep protocol implemented in PyConSolv.19

We conducted 152 simulation runs using the QM/MM MD
protocol of the reductive elimination step, employing GFN2-xTB
as the QM method. Among these runs, 142 simulations
captured the reductive elimination step and were utilized for
evaluating the reaction barrier and structural analysis of the
reaction. All 152 trajectories were used for labelling and evalu-
ation of the reaction energy (see below).
Ensemble labelling and reaction energy

From the MD simulation trajectories, cartesian coordinates
and QM energies of the catalyst were extracted. The QM energy
was used to label the individual frames as educt, transition
state and product, while employing a lter function to mini-
mize random uctuations. The transition states were identi-
ed as the frames that dene the last energy maximum before
the large drop in energy associated with the formation of the
product (see SI Section 2 for details), that is, all frames before
the TS region were considered as educt, all frames following
the TS region as product. To assess whether this is a viable
labelling of the states, we analysed the distribution of internal
coordinates in Fig. S5, where we can see a clear separation of
educt, transition state, and product for example in the decisive
C–N coordinate, but also in the Phe–N bond length
distribution.

The reaction barrier was dened as the difference between
the transition state structure energy and the maximum value of
a sigmoid function tted through the reaction prole (see
Section 2 of the SI). As DFT sampling on a similar scale as GFN2-
xTB was not achievable, the ensembles were too small to obtain
the reaction energy by averaging over them. Thus, to evaluate
the reaction energy from the DFT simulations, we tted
sigmoids between the educts and product. By subtracting the
highest sigmoid value from the lowest we were able to calculate
a reaction energy and compared it to that obtained from GFN2-
xTB using the same approach. As further conrmation of the
accuracy of the transition state labelling, we conrmed that the
structures in the ensemble resemble that of a transition state
optimized using eigenvector following in a static approach (see
SI Section 4 and Fig. S3).
Digital Discovery, 2025, 4, 2954–2971 | 2965
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Identication of the reaction coordinate

We resorted to different coordinate systems to describe the
reaction coordinate. We generated a set of fully redundant
internal coordinates for all trajectories, using the MDanalysis
package.94 This has the advantage of removing the issue of noise
due to alignment artefacts, yet introduces more correlational
effects.76 We also generated a reduced set of internal coordi-
nates, describing highly rigid chemical moieties by their centre
of mass (see SI Section 5 for details).

We utilized Principal Component Analysis (PCA)37 and Time-
lagged Independent Component Analysis (tICA)38 as dimen-
sionality reduction techniques to identify coordinates that
separate the states. The two unsupervised methods comple-
ment each other in regards to addressing the variances present
in the dataset.95,96 For supervised dimensionality reduction, we
opted for Linear Discriminant Analysis (LDA)77 due to its effi-
cacy in separating distinct classes within a given dataset. To
further enhance the separation capability of PCA and LDA,
several methods of automated feature selection were chosen
and implemented, namely Recursive Feature Elimination with
Cross Validation97 (RFECV) using both Random Forest98 (RF)
and Logistic Regression (LR)99 as classier models, and Lasso100

with Cross Validation (LassoCV), all using vefold stratied
cross-validation.101 The RF and Logistic Regression classiers
were additionally evaluated by selecting only the top 10% of
features. When subjecting the highlighted features to dimen-
sionality reduction using PCA or LDA, we observed varying
importance of the features to the principal components (SI,
Tables S3 and S4). To alleviate this discrepancy between the
results and increase separation performance, we dened
a consensus model, which combines the results of all previously
mentioned approaches and highlights features that are
consistently found across all models. These features were
identied by performing a PCA and LDA on each of the models
and examining the loadings. Subsequently, we computed the
average contributions to the rst three principal components,
as well as the two LDA components. The selected features
needed to appear in at least 75% of the elimination models to
be deemed signicant. This process yielded a set of 49 internal
coordinates for the PCA. These coordinates were hierarchically
clustered to group together correlated movements102 and then
subjected to causal inference analysis (see statistical model for
causality inference).102

In tandemwith automated feature reduction methodologies,
we leveraged Decision Trees to quantify the most relevant
features from our dataset. These Decision Trees underwent
training with class balancing that is augmenting the ensembles
via oversampling. Furthermore, we adopted a Decision Rule
framework, employing the skoperules103 library. Within this
framework, a Random Forest bagging classier, consisting of 30
Decision Trees, was used to provide a semantically quantitative
characterization of the three ensembles.
Statistical model for causality inference

We aimed to infer the cause of the onset of the chemical
reaction. We eliminated trajectories with few educt structures
2966 | Digital Discovery, 2025, 4, 2954–2971
(less than 100), thus having a total of 139 reaction sampling
events. To infer Granger Causality74 (GC) we followed the
protocol outlined by Toda and Yamamoto.75 This involved
performing the augmented Dickey–Fuller104 and Kwiatkowski–
Phillips–Schmidt–Shin105 tests to ascertain the stationarity of
the various time series. Most of the time series were deemed
stationary, with only a couple of the features presenting non-
stationarity, which were rendered stationary through di-
fferencing (see GitHub for the critical and test statistics for
each test and trajectory).106 A multivariate vector autore-
gression model (VAR)107,108 was constructed and tted with lag
times varying from 0 to 50, for each time series. The appro-
priate lag time was chosen for each trajectory, based on the
Akaike information criterion.107,109 The correlated time series
were checked for cointegration using the Johansen test.110

Finally, we calculated a GC matrix for each feature, for every
simulation, resulting in a total of 139 matrices, using VAR
models trained at the appropriate lag time. To account for the
occurrence of false positives with repeated sampling of the
reaction, we applied the false discovery rate (FDR) correction
proposed by Benjamini and Hochberg,111 with a threshold
alpha of 0.1. The threshold for the GC test was set to p < 0.05.
The full p-values for the causality matrices, non-FDR cor-
rected, can be found on GitHub, along with the results of all
statistical tests.
Limitations of Granger causality statistical model

While the GC model has been shown to be a reliable approach
for identifying causality, it suffers from some inherent limi-
tations. The model requires the dataset to be presented in the
form of time-series with constant variance and mean
(stationary). To this end, the time-series stationarity must be
veried and, depending on the results, rendered stationary
through common statistical approaches such as differentia-
tion. Another limitation in the nature of the GC analysis is the
inuence of hidden variables that may not have been taken
into account in the initial dataset. This implies that the
dataset must be carefully chosen, either manually curated or
through automated means, such as feature selection. More-
over, the GC test also looks at rst degree causality between
the selected features, meaning that while we observe one
variable inuencing another, we cannot rule out that the
inuencing variable was not provoked by a 2nd variable
beforehand. This can be overcome by performing a GC anal-
ysis on each possible pair of features and interpreting the
results; however, this becomes difficult as the number of
important features increases.
Code availability

The python code used for analysis is made available on Github
(https://github.com/PodewitzLab/MLReactCoord/releases/tag/
v1.0.0) and the respective functions will be implemented in
a future version of PyConSolv (https://github.com/
PodewitzLab/PyConSolv) to facilitate a broad applicability.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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effects. See DOI: https://doi.org/10.1039/d5dd00216h.
Acknowledgements

The authors could like to thank Prof. Dr Jonny Proppe for
fruitful discussion. M. P. would like to thank the Austrian
Science Fund (FWF) for nancial support (P-33528).
References

1 D. Ringe and G. A. Petsko, How Enzymes Work, Science,
2008, 320(5882), 1428–1429, DOI: 10.1126/science.1159747.

2 T. S. Koblenz, J. Wassenaar and J. N. H. Reek, Reactivity
within a Conned Self-Assembled Nanospace, Chem. Soc.
Rev., 2008, 37(2), 247–262, DOI: 10.1039/B614961H.

3 M. Raynal, P. Ballester, A. Vidal-Ferran and P. W. N. M. van
Leeuwen, Supramolecular Catalysis. Part 1: Non-Covalent
Interactions as a Tool for Building and Modifying
Homogeneous Catalysts, Chem. Soc. Rev., 2014, 43(5),
1660–1733, DOI: 10.1039/C3CS60027K.

4 M. Raynal, P. Ballester, A. Vidal-Ferran and P. W. N. M. van
Leeuwen, Supramolecular Catalysis. Part 2: Articial
Enzyme Mimics, Chem. Soc. Rev., 2014, 43(5), 1734–1787,
DOI: 10.1039/C3CS60037H.
© 2025 The Author(s). Published by the Royal Society of Chemistry
5 S. Pachisia and R. Gupta, Supramolecular Catalysis: The
Role of H-Bonding Interactions in Substrate Orientation
and Activation, Dalton Trans., 2021, 50(42), 14951–14966,
DOI: 10.1039/D1DT02131A.

6 G. Olivo, G. Capocasa, D. D. Giudice, O. Lanzalunga and
S. D. Stefano, New Horizons for Catalysis Disclosed by
Supramolecular Chemistry, Chem. Soc. Rev., 2021, 50(13),
7681–7724, DOI: 10.1039/D1CS00175B.

7 R. A. Talmazan, J. Refugio Monroy, F. del Ŕıo-Portilla,
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