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explaining machine learning
models for the exploration and design of
boron-based Lewis acids

Juliette Fenogli, * Laurence Grimaud * and Rodolphe Vuilleumier *

The integration of machine learning (ML) into chemistry offers transformative potential in the design of

molecules with targeted properties. However, the focus has often been on creating highly efficient

predictive models, sometimes at the expense of interpretability. In this study, we leverage explainable AI

techniques to explore the rational design of boron-based Lewis acids, that activate a wide range of

organic reactions. Using fluoride ion affinity as a proxy for Lewis acidity, we developed interpretable ML

models based on chemically meaningful descriptors, including ab initio computed features and

substituent-based parameters derived from the Hammett linear free–energy relationship. By constraining

the chemical space to well-defined molecular scaffolds, we achieved highly accurate predictions (mean

absolute error <6 kJ mol−1), surpassing conventional black-box deep learning models in low-data

regimes. Interpretability analyses of the models shed light on the origin of Lewis acidity in these

compounds and identified actionable levers to modulate it through the nature and positioning of

substituents on the molecular scaffold. This work bridges ML and chemist's way of thinking,

demonstrating how explainable models can inspire molecular design and enhance scientific

understanding of chemical reactivity.
Introduction

Machine learning (ML) has become indispensable across
various scientic domains for uncovering patterns in databases
and modeling complex relationships among variables in high-
dimensional spaces.1–3 In chemistry, ML has made signicant
strides in recent years, leveraging experimental and computed
data made accessible by the development of extensive data-
bases,4,5 high-throughput experiments,6,7 and super-
computers.8,9 While data-driven modeling and statistical anal-
ysis have a long-standing history in chemistry, building upon
foundational concepts like the Hammett correlations in 1937,10

the adoption of ML techniques marks a notable advancement.11

Indeed, chemical questions ranging from drug discovery,12

molecular dynamics (MD) simulations,13,14 and chemical reac-
tion outcome prediction5,7,8,15–17 to synthesis planning18–20 have
been successfully addressed.

However, many models, particularly those based on deep
neural networks, lack interpretability and are oen referred to
as “black-box”models,21 which poses challenges in trust-critical
elds like medical diagnosis.22 Interpretability not only aids in
rationalizing decision-making processes but also helps evaluate
the validity of a model's predictions against domain knowledge,
ale Supérieure, PSL University, Sorbonne

ail: juliette.fenogli@ens.psl.eu; laurence.

ens.psl.eu

the Royal Society of Chemistry
guarding against spurious reasoning.23 Furthermore, while
some models can be highly accurate, their lack of interpret-
ability limits the ability to extract scientic knowledge from
them, thus diminishing their overall interest. The emergence of
explainable articial intelligence (XAI) seeks to address these
issues by elucidating what ML algorithms have learned,
fostering scientic knowledge, and inspiring new concepts and
ideas.24–26 In chemistry, XAI techniques have been successfully
applied to the study of quantitative structure–activity relation-
ships (QSAR),27–30 drug discovery,31 the modeling of organic
reactions,32,33 and to understanding what physical concepts
models have learned when predicting interatomic potentials for
MD simulations.34,35

Here we investigate how ML can guide the design of mole-
cules with a targeted specic property: the Lewis acidity, which
is of high importance in a wide range of organic trans-
formations.36,37 Strategies to boost the Lewis acidity of borane
derivatives include introducing electron-withdrawing groups
onto ligands38–41 or using constrained geometry ligands.42–44

While functional group decoration is common in QSAR organic
chemistry studies, applying ML techniques allows for the
exploration of a much broader chemical space, providing novel
insights for molecule design. Therefore, predicting the Lewis
acidity of compounds is highly valuable and has recently been
explored by the Greb group,45 who developed an advanced graph
neural network (GNN) model trained on a dataset of nearly 49k
Lewis acids with diverse central atoms and ligands.
Digital Discovery, 2025, 4, 3623–3634 | 3623
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Complementing this large-scale study, we aim at exploring
Lewis acidity using XAI, focusing on restricted chemical spaces,
employing “white-box” self-explanatory models and post-hoc
interpretability techniques. Indeed, interpreting ML models
can enhance chemical understanding by acting as a “computa-
tional microscope”,24,25 to explore the qualitative concept of
Lewis acidity and as a “source of inspiration”24,25 for designing
novel boron compounds with targeted Lewis acidity.

In this context, we constructed and analyzed arrays of Lewis
acids, annotated with their uoride ion affinity (FIA), a quanti-
tative measure of Lewis acidity (Fig. 1). By combining multiple
molecular descriptors with a range of ML algorithms, we
developed regression models to predict FIA and applied XAI
techniques to decipher the intrinsic Lewis acidity of these
compounds and identify actionable levers for molecular design.
Fig. 1 Workflow towards the design of efficient boron Lewis acids: sp
substituents) and molecule features (chemo-informatics, ab initio compu
by FIA and constructing predictivemodels. Models' predictions were then
design boron Lewis acids with specific Lewis acidity profiles.

3624 | Digital Discovery, 2025, 4, 3623–3634
Results and discussion
Lewis acidity scale

To construct a database of boron Lewis acids, a robust metric
for quantifying Lewis acidity was essential. The chosen metric
needed to be readily accessible to facilitate the fast labeling of
molecules, while also ensuring consistency, as noisy datasets
can hinder the learning process and potentially lead to over-
tting.46 Several metrics were evaluated and benchmarked with
conventional scales employed in experimental organic chem-
istry to determine Lewis acidity (see the SI, Section S1). FIA,
representing the standard negative enthalpy change associated
with the binding of a uoride ion to the Lewis acid in the gas
phase (Fig. 1), was retained as the most relevant, consistent and
accessible quantity, as it is a computed metric. Various cost-
anning from defining chemical space (four molecular scaffolds and
ted or derived from the Hammett correlations) to labeling Lewis acidity
explained to get insight into the qualitative concept of Lewis acidity and

© 2025 The Author(s). Published by the Royal Society of Chemistry
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effective ab initio methods were evaluated to compute FIA,
ensuring alignment with values computed at a higher level of
theory47 (SI, Section S2). We used density functional theory
(DFT) at the M06-2X/6-31G(d) level of theory in isodesmic
calculations as a compromise between efficiency and precision
to provide reliable FIA data. Throughout this manuscript, FIA
has been used as a proxy for Lewis acidity. Therefore, any
conclusions drawn about FIA also apply to Lewis acidity, and
the terms have been used equivalently.
Chemical space

We targeted scaffolds possessing aromatic ligands, which are
particularly effective at transmitting electronic effects over
long distances through their electronic p systems, unlike
aliphatic or non-conjugated ligands. This facilitates the
combination of effects from multiple substituents on the
same central atom. Additionally, as aromatic positions are not
chemically equivalent, their diverse substitution allows to
precisely modulate the effect on FIA. While the substitution of
aromatic positions to modulate molecular reactivity is well-
established in organic chemistry,39 its systematic integration
with ML to predict Lewis acidity is, to our knowledge,
unprecedented. Previous databases, such as the one devel-
oped by Greb and coworkers,45 have primarily focused on
exploring the effects of the central atom type and ligand
denticity. To enhance model performance and simplify
interpretation, we limited the chemical space to four scaf-
folds: triarylboranes, which have been extensively studied for
their catalytic activity,36,37 and three constrained Lewis acid
scaffolds (ONO,48 NNN,43 OCO49) featuring heteroatoms coor-
dinated to boron. The planar geometry of these constrained
ligands minimizes steric hindrance, while the pincer-like
structure facilitates boron atom accessibility, enhancing
Lewis acidity.43 For each scaffold, the chemical space consists
Fig. 2 Studied chemical space. (A) t-SNE map on fingerprint representa
circles), the initial random dataset (purple circles) and the dataset exten
circles) algorithms (see SI, Section S3). (B) Kernel density estimation plot

© 2025 The Author(s). Published by the Royal Society of Chemistry
of symmetric molecules, substituted with 13 possible
electron-donating or -withdrawing substituents at specic
aromatic positions, to minimize steric hindrance and ensure
synthetic efficiency (Fig. 1). These constraints result in an
accessible chemical space of 2197 molecules for the ONO
scaffold for example (Fig. 2A). For each dataset, molecules
intended for FIA computation were generated randomly by
selecting one fragment from the set of 13 options at each
substitutable position. However, we initially intended to study
the effect of only one or two substituents on FIA. To that end,
the random substitution pool was intentionally biased to
generate more hydrogen fragments, which resulted in an
overrepresentation of molecules featuring two non-hydrogen
substituents (clusters in Fig. 2A, ONO dataset). To enhance
diversity and better represent the chemical space for model
development, the ONO dataset was expanded from 175 to 272
molecules. This expansion used k-means50 and coverage51

algorithms applied to molecular ngerprint representations,
to uniformly sample the ONO chemical space (Fig. 2A, addi-
tional details in SI, Section S3). Datasets of the OCO, NNN and
triarylboranes scaffolds contain less molecules (61, 80 and
181, respectively) and were mainly used to assess the extrap-
olation capabilities of the developed models and to compare
the effects of substituents on Lewis acidity across different
scaffolds for molecular design. This brings the total number
of molecules to 594, each of which was subsequently labeled
with its computed FIA value.

The range of FIA values varies depending on the ligand
scaffold (Fig. 2B). OCO scaffold exhibits a very narrow distri-
bution of FIAs, whereas FIA is relatively normally distributed
across ONO derivatives, which will be advantageous when
constructing ML models. In contrast, triarylboranes show
a more uniform distribution, offering a broader spectrum of
accessible FIA values. Among these, the strongest Lewis acids
are found in the ONO and triarylboranes scaffolds.
tion showing the ONO chemical space (2197 molecules, light brown
sion thanks to k-means (light blue circles) and coverage (light orange
of the FIA distributions for each molecular scaffold.

Digital Discovery, 2025, 4, 3623–3634 | 3625
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Constructing models

Creating performant models is a prerequisite to any interpret-
ability task to ensure the reliability of the interpretations. We
aimed to design novel compounds by investigating the effects of
varying the heteroatoms coordinated to boron. To this end, we
focused on the ONO scaffold for building ML models, as the
unsubstituted NNN borane scaffold had already been synthe-
sized and studied by Martin and co-workers.43 In general,
oxygen ligated boron-based Lewis acids are more acidic than
their nitrogen-ligated counterparts, so we expected the ONO
ligand to yield more acidic compounds (refer to the NNN and
ONO FIA distributions in Fig. 2B). A benchmark of ML models
and molecular descriptors was realized to identify the most
effective combinations to predict FIA (Fig. 3). Models were
optimized on a training set following a grid search algorithm
and 10-fold cross-validation (CV). They were subsequently
Fig. 3 Benchmarking machine learning models and descriptors in FIA p
different combinations of models and descriptors (Linear: linear regressio
shrinkage and selection operator, SVR: support vector regression, Tree: d
gaussian process regressor, KNN: K nearest neighbors, MLP: multilayer pe
ridge model, combined with different molecular descriptors, (C) Boxp
descriptors, combined with different regressors (10-fold CV repeated 10

3626 | Digital Discovery, 2025, 4, 3623–3634
evaluated on a testing set (see the SI, Section S5, for details on
dataset splitting). Among the evaluated molecular descriptors,
some were already implemented in Python libraries (like
RDKit52 or DeepChem53), and are commonly used in drug
design, such as Morgan ngerprints54,55 and RDKit descriptors.
While Morgan ngerprints are benecial for visualizing frag-
ment diversity within chemical space (Fig. 2A), they are less
effective at accurately predicting FIA, with amean absolute error
(MAE) higher than 10 kJ mol−1. This limitation arises because
they focus primarily on local connectivity, probably missing the
effect of the delocalized p electrons on aromatic rings. RDKit
descriptors yield highly effective models, such as linear models
or SVR (Fig. 3A), yet out of the 208 features generated (e.g.,
counts of fragments, partial charge or molecular weight), only
a few dozen is readily interpretable. More physics-based
parameters can be obtained through the Auto-QChem9 DFT
rediction. (A) Heatmap of MAE scores calculated on the testing set for
n, LR: linear ridge, Bayes. Ridge: Bayesian ridge, LASSO: least absolute
ecision tree, RF: random forest, Grad. Boost.: gradient boosting, GPR:
rceptron), (B) Boxplots of MAE obtained on the training set for the linear
lots of MAE scores on the training set for the Hammett-extended
times with different folds).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Optimized model for ONO evaluated on the testing set (MAE =

5.39 kJ mol−1).
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calculation workow yielding DFT-derived molecular (e.g.,
frontier orbitals energies) and atomic descriptors for the boron
atom (e.g., partial charge), totaling 43 features. These descrip-
tors, referred to as “quantum descriptors”, offer reasonably
good performance across all ML models but require signi-
cantly more computational resources. While computing FIA
requires two DFT calculations, these quantum descriptors can
be extracted from the borane structure alone. Predicting FIA
from this single structure remains valuable, particularly
because the tetravalent boronate form is oenmore challenging
to converge. Although quantum descriptors may not be the
most efficient choice for FIA prediction due to their computa-
tional cost, their strong physical relevance makes them ideal to
investigate the relationship between the quantum features of
molecules and their Lewis acidity (see part Interpretability –

insights in the Lewis acidity). To balance cost and accuracy in
determining physically meaningful descriptors, an alternative
approach could be to use so-called “surrogate models”; though
this was not explored in the present study.56–58 However,
quantum parameters are not directly manipulable by organic
chemists for designing molecules. Instead, the typical strategy
involves designing molecular structures by substituting various
functional groups on a molecular scaffold, which play a signi-
cant role in modulating Lewis acidity. To better understand this
inuence, particularly the electronic effects of substituents, we
introduced substituent-based molecular descriptors. This
method builds upon the foundational work of Hammett,10 who
derived the substituent constants sm and sp, for the meta and
para substituents respectively, establishing the groundwork for
what would become a pioneering approach to QSAR. However,
Hammett constants are limited to meta and para substituents
on aromatic rings, as ortho substituents complicate the analysis
by introducing both electronic and steric effects.59 Indeed, when
considering onlymeta- and para-substituted molecules from the
triarylboranes dataset, the trend of FIA follows a linear rela-
tionship with sm and sp (FIA = 243 sm + 91 sp + 351, determi-
nation coefficient R2 = 0.91) (see Fig. S9A). Conversely, when
considering also the triarylboranes possessing a substituent at
the ortho position, the linear relationship is compromised
(Fig. S9B, R2 = 0.63), and this effect is intensied when
considering other molecular scaffolds such as ONO (R2 = 0.54),
for which the labeling of ortho, meta and para substituents is
less clear. To address this issue, we implemented “Hammett-
extended descriptors”, as proposed by Sigman et al.59 Addi-
tionally to sm and sp, these descriptors encompass steric and
electronic parameters for substituents across all three aryl
positions (ortho,meta, and para) of benzoic acid. Although these
parameters are computationally derived too, they are in essence
very different from the “quantum descriptors” introduced
above. They include infrared (IR) carbonyl stretching (nC]O) and
COH bending (nCOH) frequencies and intensities, natural bond
orbital (NBO) charges of each atom in the carboxylic acid
moiety, Sterimol B1, B5, and L of the substituent,60 and the
torsion angle between the carbonyl group and the aromatic ring
plane when the substituent is positioned in ortho. However,
these descriptors have limited applicability because they can
only be applied to one molecular scaffold at a time, since they
© 2025 The Author(s). Published by the Royal Society of Chemistry
do not describe the carbon backbone of the molecule (Fig. S10).
For the ONO scaffold, the ortho, meta, and para positions were
conventionally dened relative to the oxygen bonding atoms.
This convention was extended to the NNN scaffold, but these
descriptors were not implemented for the OCO. Using SMARTS
substructure identiers61 implemented in the RDKit Python
library,52 the chemical nature of substituents at ortho,meta, and
para positions was identied. Then Hammett-extended
parameters derived by Sigman and co-workers59 correspond-
ing to the ortho, meta and para substituents were concatenated
into a vector featuring the molecule (36 features). These
descriptors demonstrate robust performance with advanced
models such as gradient boosting (Grad. Boost.) and multi-layer
perceptron (MLP) regressors. They also excel with simpler
models like linear and linear ridge (LR) regressors, achieving
a mean absolute error of approximately 6 kJ mol−1 (Fig. 3C).
Given the straightforward nature of the molecule description
and the impressive results obtained with these basic models,
they provide an optimal balance between interpretability and
prediction accuracy. These ndings align with Hammett's
theory of linear free energy relationships (LFER), which
suggests that functional groups on an aromatic ring near the
reactive site linearly inuence the molecule's reactivity.

From this benchmark (Fig. 3A), we recognized the impor-
tance of both global descriptors and substituent-based
descriptors in predicting FIA, which is why RDKit and
Hammett-extended descriptors were concatenated in an
attempt to create a high-performant predictive model, an
oracle. Apart from the challenge of creating an accurate
predictive model, having such a model would be helpful to
investigate molecular design (see part Interpretability – Molec-
ular design) chemometrics on ONO chemical space. For any
given molecule, one could quickly determine its precise FIA, as
these concatenated descriptors are also fast to compute. This
yielded 244 features, from which we selected 126 based on their
correlation with the target FIA, evaluated using the F-statistic.
Digital Discovery, 2025, 4, 3623–3634 | 3627
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We selected LR as the machine learning algorithm due to its
strong performance in predicting FIA from these two molecular
descriptors. This allowed to reach a MAE of 6.39 kJ mol−1 on the
training set (repeated 10-fold CV, Fig. 3B) and of 5.39 kJ mol−1

on the testing set (Fig. 4, R2 = 0.98), representing less than 2%
error relative to the average FIA value (around 450 kJ mol−1).
The performance on the ONO dataset, with a MAE between 5
and 10 kJ mol−1 across almost all ML algorithms and molecular
descriptors (Fig. 3A), can be attributed to the limited chemical
space it encompasses. In contrast, the optimized graph neural
network model of Greb and co-workers, evaluated on a wide
variety of molecular structures, struggles to achieve a MAE
below 10 kJ mol−1. This model gave a MAE of 23 kJ mol−1 (R2 =

0.51) evaluated on the testing dataset of ONO scaffold (in
comparison with the MAE of 5.39 kJ mol−1 obtained by the
present oracle). In addition, such deep learning (DL) models
necessitate huge amounts of data to perform and are not
designed for tasks in low-data regime.
Fig. 5 Feature selection to extrapolate from ONO to NNN with the LR
model and quantum descriptors. (A) No feature selection. (B) Features
selected.
Capacity to extrapolate to another molecular scaffold

Aer optimizing models to predict FIA within the restricted
ONO chemical space, we aimed to assess their ability to predict
FIA across different chemical spaces, particularly from
a molecular scaffold to the other. We also explored methods,
such as feature selection, to customize models for enhanced
versatility. However, not all descriptors are suitable for this
purpose. In addition to being difficult to interpret, ngerprints,
represented as bit-vectors, have interdependent features that
cannot be individually selected. Furthermore, Hammett-
extended descriptors rely solely on the chemical properties of
substituents. Molecules with identical ortho, para, and meta
substituents are then assigned the same molecular descriptors,
even though their FIAs can differ signicantly across structures
(refer to Fig. S10). For this reason, we focused on enhancing the
extrapolation capabilities of models based on quantum or
RDKit descriptors (see the SI, Section S5 for the latter).

Models trained on ONO dataset, featured by the quantum
descriptors, can generally predict the FIA trend for the NNN,
though with a model-dependent bias that impacts the MAE
(Table S7). Simple models struggle to extrapolate, whereas the
Multilayer Perceptron (MLP) achieves reasonable prediction
performance (MAE = 24.1 kJ mol−1), as expected given the
inherent versatility of neural networks. This is illustrated in
Fig. 5A, showing the prediction for the NNN from a LR model
trained on ONO. While the trend is well captured (Pearson's r =
0.96), the MAE is high, reaching 188 kJ mol−1. The bias in
prediction observed in most models can be reduced by carefully
selecting features. Indeed, reducing the complexity of models
usually helps enhancing their extrapolation abilities. Following
this general guideline, features can be removed along two axes.
First, features that are not correlated with the target, here, FIA.
This is especially relevant for linear models (like LR), which
tend to overt noise when uncorrelated features are included,
thereby compromising extrapolation. Second, features di-
splaying substantial distribution differences between the
training and new test dataset warrant removal, regardless of
3628 | Digital Discovery, 2025, 4, 3623–3634
their apparent predictive importance for the model (like having
strong correlation with the target for example). This selective
approach prevents models from learning dataset-specic
patterns that fail to generalize, thereby improving robustness
when applied to new data contexts.

Therefore, we ranked features based on their differences
between ONO and NNN structures (quantied by mean values
of each feature, Table S9) and their correlation to the target FIA
(Table S10). We assessed the prediction performance of the LR
model by systematically removing features using these two
criteria. Among the features not correlated with FIA, boron
atom parameters such as its coordinates and buried volume led
to a notable drop in MAE (from 188 to 158 kJ mol−1) when
removed. Eliminating the lower unoccupied molecular orbital
(LUMO) energy, that is strongly correlated with FIA (Pearson's r
= 0.628) but varies considerably between structures (mean value
is −0.010 hartree for ONO an −0.002 hartree for NNN),
decreased the MAE to 140 kJ mol−1. Similarly, although not
© 2025 The Author(s). Published by the Royal Society of Chemistry
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correlated with FIA (Pearson's r = 0.076), the population of
Rydberg atomic orbitals (NPA_Rydberg) changes signicantly
between the two structures. Removing this feature decreased
the MAE to 14.5 kJ mol−1, indicating a considerable contribu-
tion to the observed bias, albeit difficult to explain. When this
feature alone was excluded, the MAE dropped directly from 227
to 35.5 kJ mol−1. Further removal of the dipolar moment of the
molecule reduced the MAE to 13.6 kJ mol−1. The improvement
in prediction performance of the LR model with the selected
features is illustrated in Fig. 5B. Prediction performance
remained high within the ONO (8.26 kJ mol−1) and the NNN
Fig. 6 Principal component analysis (PCA) of the quantum descriptors.
colored according to their FIA values. Triarylboranes (small crosses) app
tronic structure of the boron atom. (B) Explained variance ratio for each co
first two principal components.

© 2025 The Author(s). Published by the Royal Society of Chemistry
(11.4 kJ mol−1) chemical spaces using these selected features.
While this feature selection approach is general, the optimal
feature set remains task-specic, as evidenced by varying
performance in predicting from ONO to OCO (MAE =

84.8 kJ mol−1) and triarylboranes (MAE = 759 kJ mol−1) using
these features. This is due to inherent differences between
scaffolds, notably in terms of FIA distribution (Fig. 2B) and
electronic structure (Fig. 6). To explore these differences, we
attempted training on three molecular structures while testing
on the fourth, which partly improved the extrapolation perfor-
mances (see the SI, Section S5).
(A) Projection onto the first two principal components. Molecules are
ear clearly separated from other molecular scaffolds in terms of elec-
mponent. (C) Contributions of the quantum descriptors features to the
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Interpretability

Our goal here is to address two main questions by interpreting
the developed models. First, we aim to gain insight into the
intrinsic nature of Lewis acidity for boron derivatives. Second,
we seek actionable explanations for a compound's Lewis acidity,
exploring new routes to design molecular structures with tar-
geted Lewis acidity.

Insights in the Lewis acidity. ML can serve as an instrument
to unveil properties of a system that are challenging or even
impossible to probe using traditional methods. Lewis acidity is
inherently a qualitative concept. It can be accessed through the
reaction enthalpy of a Lewis acid-Lewis base adduct formation,
but unlike electrophilicity, that is associated with the energy
level of the LUMO, the relationship between molecular prop-
erties and Lewis acidity remains elusive. Analyzing FIA predic-
tive models may help to unravel the origins of Lewis acidity at
the electronic scale.

We used quantum descriptors, that provide precise physical
parameters for characterizing molecules, and examined the
whole database (the four molecular scaffolds together) to nd
broader patterns and insights. Conducting a principal compo-
nent analysis (PCA) to simplify complex data into two dimen-
sions, we identied distinct groups of molecules (Fig. 6). PC1
primarily encompasses electronic parameters of the boron
atom (ES_root_Mulliken_charge, ES_root_NPA_Rydberg,
ES_root_NPA_charge, ES_root_NPA_core, ES_root_NPA_total,
ES_root_NPA_valence, Mulliken_charge, NMR_anisotropy,
NMR_shi, NPA_Rydberg, NPA_charge, NPA_core, NPA_total,
NPA_valence, VBur, that are 15 out of the 27 features used),
whereas none of these atomic features contribute to PC2. Tri-
arylboranes appear thus separate from other structures along
the PC1 axis due to the electronic structure of boron atom. This
is unsurprising as triarylboranes lack heteroatoms bonded to
boron, which can affect electronic population through electron-
withdrawing effects. Additionally, the two PC derived from
quantum descriptors reect FIA evolution across the database.
This conrms the relevance of these descriptors in capturing
Lewis acidity. Additional projection onto PC1 and PC3 revealed
a separation of the constrained scaffold molecules cluster (SI,
Section S6, Fig. S13).

We then simplied the data by choosing twelve signicant
but uncorrelated features through a hierarchical clustering
(SI, Section S6, Fig. S14.A). Most ML methods struggled with
these simplied descriptors across the four molecular scaf-
folds, except for tree-based ensemble models like Random
Forest (RF) and Grad. Boost., which performed better than the
others (see Table S17). Our goal was to explore how these
features impacted the FIA using two interpretable ML
approaches. We rst looked at a straightforward and simple
model using linear regression to understand how much each
feature contributed. Then, we used the permutation feature
importance post-hoc technique, with a Grad. Boost. regressor,
as this model was the most performant on uncorrelated
features (MAE = 14.6 kJ mol−1, Table S17). The learned
coefficient of each feature in the linear model, as depicted in
Fig. S14C, reveals its importance. Both the global
3630 | Digital Discovery, 2025, 4, 3623–3634
electronegativity of the molecule and the partial charge of the
boron atom (NPA_charge) emerge as the most signicant
features, with approximately equal importance. This obser-
vation aligns with their ranking in the permutation feature
importance, although the electronegativity being slightly
more inuential (Fig. S14B). When the regression is restricted
to the ONO dataset (Fig. S16), electronegativity becomes the
most signicant parameter, with the partial charge coefficient
being three times lower. Electronegativity is a linear combi-
nation of frontier orbital energies, suggesting that, for the
boron derivatives studied, Lewis acidity is somewhat more
inuenced by molecular orbital interactions than by
coulombic interactions. This is notable because FIA is tradi-
tionally considered as an index of hard acidity, where
coulombic interactions would be expected to dominate.47,62

The absolute electronegativity is then a key global factor in
determining FIA magnitude, while local electronic parameters
of boron atom more precisely adjust the predicted FIA. FIA can
be roughly linearly predicted using only these two parameters
for the ONO scaffold (FIA= 60.0 c + 8.15 NPA charge + 161, R2 =

0.88, Fig. S17). Steric parameters (e.g., molar volume) seem to
play a less signicant role, potentially due to the predominance
of constrained-ligand boron derivatives in our database. Thus,
controlling the electronic environment around the boron atom
is essential. While chemists cannot directly manipulate
quantum properties that are not “actionable”, they can adjust
Lewis acidity through molecular design by varying functional
groups on the molecular scaffold. However, this approach is
complicated by the interconnected effects of the substituents on
the same reactive site, making the use of ML relevant.
Molecular design

Interpretable ML. This part will focus on the ONO molecular
scaffold (see SI, Section S6 for a comparison with the tri-
arylboranes). We used Hammett-extended descriptors, that are
specically tailored to unravel the effect of substituents.

Before any regression by a ML algorithm, we examined the
correlation between ortho, meta, and para parameters, relative
to the oxygens, and FIA (Fig. S18A), which shows that para
substituents have the most signicant effect on FIA. Steric
parameters, such as the torsional angle qtor or sterimol
parameters, poorly correlate with FIA. We then selected twelve
uncorrelated features through hierarchical clustering
(Fig. S19A). Using again the linear model (Fig. S18B) and
a permutation importance algorithm (Fig. S19B) on a Grad.
Boost. regressor, we identied the Hammett s constants as the
most signicant parameters, sp being slightly more important
than sm, with a lower contribution of parameters characterizing
the electronic demand of the ortho substituent. This observa-
tion is consistent with the correlations with FIA (Fig. S18A).

These methods help identify which aromatic positions to
prioritize when designing an ONO compound with a specic
Lewis acidity, namely here, the para position. However, they do
not inform on the electronic demand of the substituent or the
interactions between substituents at different positions. We
used decision trees to understand the decision criteria for
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Decision tree model for the ONO structure (0.73 accuracy on 10-fold CV). Nodes are split based on Hammett-extended feature
thresholds. A left arrow indicates a “Yes” decision, while a right arrow indicates a “No” decision. The entropy (E) of each node reflects its purity,
indicating whether it contains a unique class (E = 0) or not. Original tree from Scikit-learn63 is provided in Fig. S20.
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predicting FIA. We thus categorized FIA into six classes based
on the ONO chemical space distribution (Fig. 2B), turning the
original regression task into a classication problem. To
simplify the analysis and the resulting tree structure, we
focused on four Hammett-extended features capturing steric
and electronic effects of ortho, meta, and para substituents. We
included the partial charge of the oxygen atom of the C]O
Fig. 7 (A) Violin plots separating data between molecules possessing me
not. (B) Distributions of molecules with a mesomeric electron-withdra
variations in the meta group; dotted markers indicate molecules where

© 2025 The Author(s). Published by the Royal Society of Chemistry
bond of benzoic acid (NBO]O) for each position, as the Sigman
group showed that these parameters could effectively replace
the empirical s constants,59 plus Lo, the bond length between
the ortho substituent and the aromatic ring, to account for steric
effects at the ortho position. The root node of the decision tree
shows that the NBO]O charge for the para substituent is the
critical criterion for classifying LA as good, strong or super, if it
someric electron-withdrawing groups (CN or NO2) in para position or
wing group in para, separated by the ortho group and highlighting
the meta group matches the ortho group.

Digital Discovery, 2025, 4, 3623–3634 | 3631
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exceeds−0.59e, a threshold distinguishing mesomeric electron-
withdrawing groups (such as CN and NO2) from others (see
Table S6); otherwise, it is classied as medium. Subsequent
nodes evaluate the ortho and meta substituents for majority-
medium and majority-good classes, respectively. The obtained
tree diagram is depicted in Scheme 1, translated into chemical
terms based on the feature thresholds from the original Scikit-
learn63 tree (see Fig. S20).

In summary, the tree structure shows that adding or not
a mesomeric electron-withdrawing group at the para position of
an ONO molecule already determines the accessible range of
FIA (Scheme 1). Then, the substituents at the ortho and meta
positions must be examined to rene the targeted FIA value. To
conrm these results, we need more data for statistical analyses
on the diverse substituents. For that, we have used the oracle
previously developed (Fig. 4) to screen the entire ONO chemical
space and provide precise FIA values to enrich our database.

Chemometrics on ONO chemical space. Using the root node
criterion from the tree in Scheme 1, we compared the FIA
distributions for ONO molecules with a mesomeric electron-
withdrawing group in the para position to those without. The
2197-molecules chemical space is effectively separated as
shown by the weak overlap between violin plots of FIA distri-
butions (Fig. 7A). Next, we divided the set of molecules pos-
sessing a mesomeric electron-withdrawing group in para by
their ortho group (Fig. 7B). Since these distributions are still
broad, merely xing the ortho group while maintaining a para
mesomeric electron-withdrawing group fails to standardize the
FIA. Therefore, we put the same substituent at both the meta
and ortho positions, resulting in a single molecule, with a xed
FIA value. The approach ensures that the electronic demand at
the ortho and meta positions is nearly the same, reducing the
complexity of the interconnected effects of the substituents.
Varying this substituent, while keeping a mesomeric electron-
withdrawing group in para, enables exploration of the full
range of FIA values (from 400 to 600 kJ mol−1) for the ONO
scaffold (see the spread of ONO FIA distribution, Fig. 2B).

This analysis suggests that if an organic chemist needs
a compound within a specic FIA range, say 450 to 500 kJ mol−1,
a practical approach using the ONO scaffold might involve
adding a mesomeric electron-withdrawing group in para and
halogens (such as –F, –Br, or –Cl) in ortho and meta positions,
although synthetic challenges should be considered when
implementing this strategy.

Conclusion

ML has proven highly effective in predicting Lewis acidity via
FIA regression models. Advanced techniques like GNN, trained
on extensive datasets of tens of thousands of molecules,45 ach-
ieve MAE levels of 14 kJ mol−1, enabling rapid reactivity
assessment without costly ab initio calculations. However, these
models require substantial computational resources, which are
unaffordable for many experimental labs, but also extensive
data, which is challenging to acquire in chemistry considering
data scarcity, heterogeneity, and cost. Nonetheless, effective
simple models can be developed in low-data regimes by
3632 | Digital Discovery, 2025, 4, 3623–3634
constraining the chemical space. We have successfully devel-
oped such a high-performing oracle, achieving a MAE of less
than 6 kJ mol−1 (i.e., less than 2% error on average). Moreover,
while simple classical ML models may be less versatile than DL
models, they can be adapted to extrapolate across different
chemical spaces through careful feature selection. DL models
continue to serve as powerful tools for predicting quantities
with profoundly nonlinear relationships with the features.
However, in the case of FIA, we have demonstrated that linear
models based on physically meaningful descriptors perform
exceptionally well, suggesting a linear relationship between FIA
and molecular parameters.

Apart from their simplicity, linear models and decision trees,
that use chemical features in a way that resembles chemical
thought, are also more interpretable than “black-box” DL
models. Models that can learn and represent genuine chemical
concepts are essential for integration into a broader scientic
approach: building models, making predictions, interpreting
results for deeper understanding, and eventually rening the
models. Developing such ML approaches grounded in physical
reality remains a challenge in chemistry.21

In this study, we leveraged explainable ML in two key ways.
We employed quantum descriptors based on electronic struc-
ture parameters and revealed that the reactivity of the studied
boron Lewis acids is governed by molecular orbital interactions,
classifying them as so Lewis acids. However, these quantum
descriptors are not readily actionable for molecular design. To
address this, we introduced “Hammett-extended” descriptors,
which focus on the nature and positioning of substituents.
Interpretations from these models align with the XAI attributes
identied by Wellawatte et al.25 They are actionable and
succinct, and, as they align with the language and concepts of
organic chemistry, they are domain applicable. These explana-
tions are also correct, corresponding to the expected electronic
demand of a substituent at a given position. By interpreting
models based on these descriptors, we unraveled the interde-
pendent effects of substituents and identied design rules for
creating novel ONO compounds with targeted Lewis acidity.

Here, our aim was to provide a route for the design of novel
organic compounds, bridging the gap between pure ML tech-
niques and traditional intuition-based strategies in organic
chemistry. While our focus was centered on Lewis acidity, this
methodology holds promise for exploring other types of reac-
tivity, provided relevant parameters can be readily accessed
(either computationally or experimentally) to construct
a dataset.
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Data availability

Supplementary information is available (see DOI: https://
doi.org/10.1039/d5dd00212e) for additional details and
extended results (Lewis acidity metrics benchmark,
computational methods, database construction, molecular
descriptors implementation, machine learning models
building and interpretation). This project was implemented in
Python leveraging the Scikit-Learn and RDKit libraries. The
code, including optimized models and datasets, is publicly
available on GitHub at https://github.com/jfenogli/
XAI_boron_LA and on Zenodo at https://doi.org/10.5281/
zenodo.17019794. This repository also includes Jupyter
notebooks to reproduce the analyses presented in this
manuscript and adapt workows for new datasets or reactivity
studies.
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