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Raman spectroscopy is a powerful technique for probing molecular vibrations, yet the computational

prediction of Raman spectra remains challenging due to the high cost of quantum chemical methods

and the complexity of structure–spectrum relationships. Here, we introduce Mol2Raman, a deep-

learning framework that predicts spontaneous Raman spectra directly from SMILES representations of

molecules. The model leverages Graph Isomorphism Networks with edge features (GINE) to encode

molecular topology and bond characteristics, enabling accurate prediction of both peak positions and

intensities across diverse chemical structures. Trained on a novel dataset of over 31 000 molecules with

state-of-the-art Density Functional Theory (DFT)-calculated Raman spectra, Mol2Raman outperforms

both fingerprint-based similarity models and Chemprop-based neural networks. It achieves a high fidelity

in reproducing spectral features, including for molecules with low structural similarity to the training set

and for enantiomeric inversion. The model offers fast inference times (22 ms per molecule), making it

suitable for high-throughput molecular screening. We further deploy Mol2Raman as an open-access

web application, enabling real-time predictions without specialized hardware. This work establishes

a scalable, accurate, and interpretable platform for Raman spectral prediction, opening new

opportunities in molecular design, materials discovery, and spectroscopic diagnostics.
1 Introduction

Raman spectroscopy is a versatile, label-free analytical tech-
nique widely applied in chemistry, materials science, and
pharmaceuticals, offering molecular structure and bonding
information through vibrational modes.1,2 Its applications
include compound identication,3 material characterization,4
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and non-invasive medical diagnostics.5 However, acquiring
experimental high-quality Raman spectra is expensive and time-
consuming, limiting their use in large-scale molecular
screening.6

Computational methods, particularly Density Functional
Theory (DFT), provide an alternative for calculating Raman-
active vibrational frequencies.7,8 While highly accurate, DFT-
based approaches scale poorly with molecular size due to
their high computational cost, making them impractical for
high-throughput applications.9,10 Similarly, universal machine
learning models, such as the Articial Intelligence-Quantum
Mechanical (AIQM) approach, have been successfully applied
to infrared (IR) spectrum prediction, offering accuracy compa-
rable to DFT with signicantly reduced inference times.11,12

However, these models still face scalability challenges in the
context of large-scale screening, where sub-second predictions
are oen required. Fast and accurate computational predictions
of spectroscopic properties are particularly crucial in elds such
as molecular identication and molecular design, where
Raman-active molecules are used in applications such as
biomedical imaging, environmental sensing, and anti-
counterfeiting technologies.13,14 Other predictive models, such
as heuristic ngerprint-based approaches, oen fail to capture
the nuanced relationships between molecular structure and
Digital Discovery
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vibrational properties.15 Descriptor-based methods, such as
polarizability tensor predictions, introduce propagation errors
and transferability limitations, leading to misalignment
between predicted and actual Raman peak localization.16–19 In
addition, recent advances in machine learning for vibrational
spectroscopy have also demonstrated the signicant potential
of neural network architectures in predicting vibrational
density of states and phonon band structures,20,21 though these
methods have not been specically optimized for the unique
challenges of Raman spectroscopy.

To address these limitations, we introduce Mol2Raman,
a Graph Neural Network (GNN)-based framework that directly
predicts spontaneous Raman spectra from SMILES (Simplied
Molecular Input Line Entry System) molecular
representations.22–24 GNNs have demonstrated signicant
impact across various scientic elds, particularly in drug
discovery, where they have enabled accurate prediction of
molecular interactions, drug-target binding affinities, and de
novo molecular design, accelerating pharmaceutical
research.25–27 Unlike descriptor-based approaches, Mol2Raman
learns from graph-based molecular representations, where
atoms and bonds are modeled as nodes and edges, aligning
naturally with the underlying physics of molecular
vibrations.28–30 By leveraging Graph Isomorphism Networks
with Edge (GINE) convolutions,31 Mol2Raman effectively
captures both local atomic interactions and global molecular
structure, improving predictive accuracy over conventional ML
models.30 In addition, we integrate traditional chemical
descriptors such as Daylight and Morgan ngerprints into the
GINE molecular representation.32,33 This combination provides
a more comprehensive molecular description, improving the
model's ability to predict Raman spectral properties, such as
differences in enantiomeric Raman modes. By leveraging this
hybrid approach, Mol2Raman benets from both detailed
molecular graph learning and the chemical insights encoded in
established descriptors. One of the key contributions of this
work is the development of a large-scale, high-delity dataset
comprising over 30 000 organic molecules taken from the QM9
database,34 each paired with DFT-calculated Raman spectra
using the academic-free ORCA soware,8,35 used to train the
Mol2Raman model. This study focuses on training the model
on high-quality DFT-generated spectra, given the challenges of
assembling sufficiently large and standardized experimental
Raman spectral datasets available online,36 representing also
a foundation model for possible future ne-tuning with exper-
imental data.

Additionally, we introduce a custom loss function speci-
cally designed for Raman spectrum prediction. This function
balances global spectral similarity with precise peak-position
constraints. Unlike conventional loss functions that prioritize
only overall spectral shape, our hybrid approach enhances
Raman-active peak localization, leading to signicantly
improved predictive accuracy.

While not a perfect match to DFT calculations, our model
provides highly accurate predictions with an inference time of
less than a second per molecule, compared to the hours
required for DFT calculations. This balance of speed and
Digital Discovery
accuracy makes Mol2Raman particularly valuable for prelimi-
nary molecular design studies, where researchers need to
rapidly screen thousands of candidate molecules to identify
those with desirable spectroscopic properties. By enabling effi-
cient pre-selection, Mol2Raman signicantly accelerates high-
throughput screening workows. Once an initial shortlist is
identied, more precise DFT calculations or experimental
measurements can be performed to rene the selection and
obtain nal optimized molecular candidates.

Finally, we developed a free web-based platform for Mol2-
Raman, enabling real-time Raman spectrum predictions
directly from SMILES input. By combining a novel dataset, an
advanced GNN architecture, and an accessible web application,
Mol2Raman provides a fast, scalable, and high-accuracy alter-
native to rst-principles Raman spectrum calculations. To the
best of our knowledge, this work represents the rst deep-
learning framework specically designed for Raman spectral
predictions,37 with broad implications for materials discovery,
molecular design, and high-throughput chemical screening.

2 Methods
2.1 Dataset preparation

The Mol2Raman model is trained using a novel dataset of
Raman spectra for 31 776 molecules. These molecules are
extracted from the dataset provided by Ramakrishnan et al.,34

which contains the elements C, H, O, N, and F with up to nine
heavy atoms. This dataset comprises 134 000 molecules and
provides a chemical space with diverse molecular and stoi-
chiometric properties.

The molecular geometries in the QM9 dataset were opti-
mized using DFT at the B3LYP/6-31G(2df,p) level of theory,38,39

which balances computational efficiency with predictive accu-
racy for organic compounds.34 The dataset contains a wide
range of quantum chemical properties, such as dipole
moments, isotropic polarizabilities, frontier orbital eigen-
values, harmonic vibrational frequencies, and thermodynamic
properties like atomization energies, enthalpies, and free
energies at 298.15 K.

Starting from these optimised geometries in Cartesian
coordinates, we calculate the Raman spectral activities using
ORCA soware8 and a high-performance computing (HPC)
cluster provided by CINECA,40 using the BP86/DEF2-SVP level of
theory as suggested in ORCA.41,42 This calculation allows us to
obtain molecular Raman spectral information in the region
from 500 cm−1 to 3500 cm−1. We retain only molecules whose
numerical frequency calculations are completed without any
error or missing displaced geometry, and discard all incomplete
runs. The nal curated dataset, aer excluding 2 782 molecules
that report SCF/NUMCALC failures in nite-difference
frequency calculations, contains 31 776 molecules used for
training, validation, and testing of the model. No additional
ltering of DFT activities is applied. The ORCA soware package
provides advanced tools for calculating vibrational spectra
using DFT,43 including Raman activities and IR spectra, which
are essential for understanding molecular interactions with
light. Raman activity is a distinct concept from Raman intensity.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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The former is an intrinsic molecular property derived from
quantum chemical calculations, while the latter depends on
experimental conditions, such as the wavelength of incident
light and the temperature of the system.44 Raman activities are
determined using the derivatives of the molecular polarizability
tensor with respect to the vibrational normal coordinates as
given by:43

IRamanf

�
vaij

vQk

�2

;

where aij represents the polarizability tensor components, and
Qk denotes the k-th vibrational normal mode. ORCA calculates
these derivatives numerically by displacing nuclei along vibra-
tional modes and computing changes in the polarizability
tensor. Combined with DFT, this approach ensures efficient
and accurate predictions even for large molecular systems.44

This method leverages the dipole moment approximation,
assuming a linear relationship between polarizability and
nuclear displacement. This computational strategy allows
ORCA to simulate Raman spectra with high delity, closely
matching experimental observations and enabling its applica-
tion in diverse molecular studies.8

To encode the chemical information of each molecule, we
use its SMILES representation as input to the neural network.
SMILES is a widely used notation to represent the structure of
chemical molecules in a compact and machine-processable
format,22–24 encoding the molecular structure as a linear string
of ASCII characters, where atoms are represented by their
atomic symbols, and bonds are described (implicitly or explic-
itly) by specic characters. The simplicity and expressiveness of
SMILES made it one of the standards for molecular represen-
tation in cheminformatics and computational chemistry.
However, it should be noted that while SMILES encodes
connectivity, it does not inherently capture all the three-
dimensional geometric information of molecules, which may
be necessary for certain property predictions.45
2.2 Dataset preprocessing

Spontaneous Raman spectra exhibit two distinct spectral
regions: the ngerprint region and the C–H stretching region.46

The former (500–1800 cm−1) is characterized by complex
vibrational modes arising from bending and stretching of
functional groups47 and is widely used for molecular identi-
cation and structural elucidation. The latter (2800–3300 cm−1)
corresponds to stretching vibrations of carbon–hydrogen
bonds,47 providing insights into aliphatic and aromatic struc-
tures and aiding in conformational analysis and intermolecular
interaction studies.48

Given the distinct physical mechanisms governing Raman
modes in these spectral regions, we divided the global spectrum
(500–3500 cm−1) into two subregions: the ngerprint region
between 500 cm−1 and 2100 cm−1 and the C–H stretching
region between 1900 cm−1 and 3500 cm−1. To ensure a smooth
transition between spectral subregions, we introduce an over-
lapping window (1900–2100 cm−1), facilitating seamless inte-
gration of predictions across both regions.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Moreover, because DFT calculations yield discrete Raman-
active vibrational frequencies, they lack natural peak broad-
ening effects,8 resulting in sparse spectra with numerous zero-
intensity points. This sparsity introduces challenges during
neural network training by adding unnecessary complexity. To
address this, we employ a two-stage max pooling strategy,49

commonly used in computer vision, to downsample spectra.
Max pooling involves selecting the maximum value within
a dened window, helping to reduce the dimensionality of the
data while retaining important features. First, we apply max
pooling with a resolution of 2 cm−1 to the raw DFT-calculated
Raman activities. The resulting 800-point spectra are used as
the reference spectra, namely these are considered the “true”
Raman spectra of each molecule and are used for evaluation
throughout the paper. Second, for the training phase of the
Mol2Ramanmodel, we further apply max pooling with a 6 cm−1

resolution to reduce the 800-point spectra to 267 points. This
coarser representation simplies the learning task by reducing
sparsity and dimensionality, while retaining the key vibrational
features. The resulting training spectra retain spectral integrity,
with Raman-active frequencies still well-aligned and
a maximum deviation of only 3 cm−1 from the reference.

2.2.1. Molecular graph representation. Each molecular
structure, provided in SMILES format, undergoes a preprocess-
ing step to generate its graph representation. First, molecular
representations from SMILES are extracted through the
Chem.MolFromSmiles method in the RDKit library.50 Then
these molecular structures are parsed and sanitized with error-
aware operations using the Chem.SanitizeMol method. Stereo-
chemistry is assigned to the sanitized molecules through the
Chem.AssignStereochemistry method of the same library. This
step enforces a consistent internal representation of the
molecular representation employed, like valence checks,
aromaticity/kekulization and charge/valence consistency, and
forces stereochemical assignment from the input string. We
then employ the MolGraphConvFeaturizer from the DeepChem
library,15 which converts molecular structures into graphs,
where atoms are nodes and bonds are edges. This trans-
formation enables the model to learn molecular interactions
directly from their connectivity. To ensure a comprehensive
representation, we extract the following set of descriptors for
atoms and bonds: atomic species, chirality, partial charges,
bond type (single, double, triple, aromatic) and bond connec-
tivity, ring features (presence and structure of cyclic motifs),
degree and valence.15 SMILES are therefore used to build
a stereochemistry-aware molecular graph and global chemical
representation of molecules, which retain their main chemical
features, to be used as input to a GNN.

In addition to these graph-based local descriptors, we also
employ two other sets of features to enhance the input
descriptive power of molecules, the Daylight ngerprint32 and
the Morgan ngerprint.33 Briey, the Daylight ngerprint
encodes the global molecular structures into a binary vector
where each bit represents the presence or absence of a specic
substructure or molecular pattern. The ngerprint is generated
by systematically decomposing the molecule into all possible
linear substructures up to a certain length. Each substructure is
Digital Discovery
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then converted into a numerical representation that activates
one or more specic positions within a xed-length binary
vector, encoding the presence of that feature, in a process called
hashing. This method is particularly effective in similarity
searching, where the Tanimoto similarity is oen used to
compare ngerprints.51 Alongside this, the Morgan ngerprint
is an advanced and widely used ngerprinting method, partic-
ularly in modern machine learning applications. It is based on
the Extended Connectivity Fingerprints algorithm.33 Unlike the
Daylight ngerprint, which relies on linear paths, the Morgan
ngerprint captures local circular environments around each
atom, making it more effective at encoding molecular topology
and chemical context. The algorithm iteratively expands around
each atom up to a specied radius, generating unique identi-
ers (hash codes) for the substructures at each step. These
identiers are then mapped to a xed-length binary or integer
vector.

The combination of Daylight and Morgan ngerprints as
input to a neural network allows the model to learn from the
complementary strengths of linear path-based substructure
detection and circular neighbourhood encoding. These
complementary descriptors encode long-range molecular
interactions and structural patterns, rening the ability of the
model to capture both local and global spectroscopic variations.
2.3 Mol2Raman architecture

The model architecture employed in this work relies on two
graph neural networks: one for predicting the number of
Raman-active frequencies for a given SMILES and one for pre-
dicting the corresponding Raman activities. Both networks are
trained twice: once for predicting Raman spectra in the nger-
print region and once in the C–H stretching region, therefore
resulting in four training runs in total. These two networks
share the same core architecture, but are differentiated in terms
of which features they take in input and on which target variable
they are trained.

2.3.1. Graph neural network for the prediction of the
number of Raman-active modes. The rst neural network in our
pipeline is designed to predict the number of Raman-active
frequencies present in either the ngerprint or C–H stretching
region, using only the SMILES representation as input. This
prediction serves as an auxiliary global feature for the main
Mol2Raman network, providing valuable contextual informa-
tion that enhances the nal Raman spectrum prediction. By
pre-estimating the number of active vibrational modes, the
main network can better focus on rening the spectral inten-
sities and positions, improving overall accuracy.

As illustrated in Fig. 1A, the network follows a graph-based
deep learning architecture. The input SMILES undergoes
transformation through the molecular featurizer, converting
the molecular structure into a graph representation that
captures atomic and bond-level information. This featurization
enables the model to extract meaningful structural features
directly from the molecular graph.

At its core, the network consists of four GINEConv layers,31

which allow the atomic features to be inuenced by neighboring
Digital Discovery
atoms up to four hops away. This hierarchical aggregation
captures complex interatomic relationships and molecular
topologies that are essential for predicting vibrational
frequencies. Each GINEConv layer incorporates a linear trans-
formation of the node features, followed by batch normaliza-
tion to stabilize learning and improve convergence,52 and
a ReLU activation function is applied aer each linear trans-
formation to introduce non-linearity.53 These steps ensure
robust feature extraction, preserving both local atomic envi-
ronments and global molecular connectivity.54

Following the GINEConv layers, a global pooling operation is
applied to aggregate node-embedding information across the
entire molecular graph54 through a sum pooling function. This
step allows the network to produce a xed-size embedding,
irrespective of the number of atoms in the molecule. The pooled
representation is then passed through two fully-connected
linear layers. The rst linear layer expands the dimensionality
of the pooled features by a factor of 4 to enhance expressiveness
before making the nal predictions. The second linear layer
maps these features to the nal output, which corresponds to
the predicted number of peaks in the spectrum and it is ob-
tained via a Soplus function.55 Between the two layers,
a dropout of a factor 0.25 is used.

2.3.2. Graph neural network for the prediction of Raman
activities. This second neural network is the actual network that
outputs the Raman activity for each frequency, namely the
Raman spectrum. It shares most of the architecture with the
GNN for the prediction of the number of Raman-active modes,
discussed in the previous paragraph. However, they differ in
some key aspects, which are highlighted in Fig. 1B. Indeed, also
this network presents a rst step given by the molecular fea-
turizer and a second step represented by four GINEConv layers
that build the local embeddings of the molecules. The main
difference is in the aggregation layers, where, together with the
global pooling performed on the GINEConv embeddings, we
integrate also the predicted number of Raman-active frequen-
cies from the previous network and the global molecular
description provided by both the Daylight and Morgan nger-
prints. These new sets of features, before the fully connected
layer, allow the network to enhance its predictive performance,
which is due to more detailed and complete descriptions of the
input molecules.

The output from the aggregation layers goes in input to three
fully connected layers, with two dropout layers having a dropout
parameter of 0.4 between them. The last layer is represented by
a Soplus layer having a dimension equal to the training
spectra (267 points, see Dataset Preprocessing), which gener-
ates the network output, namely the Raman spectrum. The nal
output of the network is obtained aer a Monte Carlo dropout
step with 10 rounds of predictions.56 Fixed hyperparameters are
selected on the validation set to balance model complexity and
computational efficiency, following a 20-trial random search
over the architecture's layers, dropout rate, and loss weights,
and targeted manual adjustments informed by validation
curves.

Like the previous one, also this architecture works both in
the ngerprint and C–H regions, providing in output two
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Mol2Raman architecture schema. Both architectures are used for the prediction in both the fingerprint and C–H stretching regions. (A)
Architecture of the network for the prediction of the number of Raman-active frequencies. (B) Representation of the architecture for predicting
Raman activities for every Raman shift. The architecture in panel B differs from the one in panel A, because it also employs the predicted number
of Raman-active frequencies as well as the global molecular descriptions provided by the Daylight and Morgan fingerprints. The red and blue
boxes in the spectrum represent the predictions in the fingerprint (500–2100 cm−1) and C–H region (1900–3500 cm−1) with an overlapping
region of 200 cm−1.
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vectors of size 267 representing the predicted Raman activities
for the two spectral regions. Moreover, an overlap of 33 points
between the ngerprint and C–H regions is included in these
267-sized vectors, which is given by the overlap in the range
between 1900–2100 cm−1 discussed above.
2.4 Model training

The training process is designed to independently optimize
models for the ngerprint and C–H stretching regions, allowing
each network to specialize in the distinct spectral characteris-
tics of its respective domain. This approach improves general-
ization and predictive accuracy by ensuring that the model
effectively captures the molecular vibrational modes relevant to
each spectral region. Every molecule in the dataset contains at
least one carbon and one hydrogen atom. Additionally, 27 129
molecules include oxygen, 19 416 contain nitrogen, and 484
feature uorine. More details on the molecular properties of the
dataset are reported in SI Table 1. The dataset is randomly split
into 80% (25 440 molecules) for training, 10% (3 168 molecules)
for validation, and 10% (3 168 molecules) for testing. SI Fig. S1
shows the distribution of training and test molecules in the
space of the rst two Principal Components (PC1 and PC2)
calculated over the Morgan ngerprint representation of each
SMILES, which proves the random sampling of the test mole-
cules from the entire dataset population. The training and
validation datasets are used to iteratively rene model param-
eters, while the independent test set is reserved for nal
performance evaluation.

The two networks discussed above are trained using
different loss functions. The network predicting the number of
Raman-active frequencies is optimized using the Root Mean
Squared Error (RMSE), whereas the network predicting Raman
© 2025 The Author(s). Published by the Royal Society of Chemistry
intensities is trained with a custom peak-weighted RMSE loss
function. This loss function enhances the model's ability to
correctly identify Raman peaks by assigning different weights to
true positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN).57 The function is formally dened as:

Peak weighted RMSE loss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

wi$
�
ypred;i � ytrue;i

�2
vuut ; (1)

where we assign a different weight wi on whether the i-th pre-
dicted data point corresponds to a true positive (TP), true
negative (TF), false positive (FP) or false negative (FN) compared
with the actual value. The TP, TN, FP and FN regions are
determined based on a thresholding mechanism that identies
signicant Raman peaks, distinguishing them from back-
ground noise: the predicted and actual values are considered
true positives if both exceed a given intensity threshold, true
negatives if both are below it, and false positives or false
negatives otherwise. The values used in training arewTP= 8, wFP

= 6, wFN = 5, and wTN = 1, while the threshold value used is 0.5.
Due to the computational cost associated with training large
GNN architectures and the complexity of our custom loss
function, an exhaustive hyperparameter search is not feasible.
Instead, we combine a small random search with a validation-
guided manual tuning guided by domain intuition and empir-
ical performance, selecting the conguration that provided the
best trade-off between peak precision and recall. This weighting
scheme ensures that correctly identied Raman-active
frequencies are prioritized while reducing excessive peak
predictions and minimizing false negatives. By penalizing FP
errors slightly more than FN errors, the model avoids over-
estimating Raman activities while maintaining a balanced
sensitivity to peak detection. Similarly, the loss threshold
Digital Discovery
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hyperparameter is tuned to balance sensitivity to weak peaks
against the risk of predicting spurious peaks; during training,
intensities below the threshold are treated as non-peaks, which
prevents the model from reinforcing small uctuations while
preserving sensitivity to chemically meaningful signals.

Model parameters are optimized using Stochastic Gradient
Descent (SGD) with momentum.58 The learning rate is set to an
initial xed value and gradually reduced throughout training to
ensure stable convergence. Momentum is included to accelerate
updates in the correct direction while mitigating oscillations,
and weight decay is applied to prevent overtting by penalizing
excessively large parameter values. Training is conducted for
a maximum of 1500 epochs under an early-stopping framework,
where every two epochs the validation loss is computed, and the
model parameters corresponding to the lowest loss value are
retained.59 The computational time for the prediction of Raman
spectra is on average 22 milliseconds per molecule, represent-
ing a substantial improvement over DFT calculations, which
require hours. More details on the hardware and computational
time for training are reported in SI Note 1.

The number of trainable parameters differs signicantly
between the two models due to architectural variations. The
network predicting the number of Raman-active frequencies
consists of 1 530 193 parameters per spectral region, while the
network predicting Raman activity has 77 091 419 parameters
per spectral region. The larger parameter count in the latter
model results from the inclusion of both global molecular
features and the predicted number of Raman-active frequencies
before the fully connected network. This additional information
increases the dimensionality of the rst layer, leading to a more
complex multi-layer architecture.
2.5 Prediction post-processing

Predictions generated from the second network undergo a post-
processing step to fully use the information learnt by the
network predicting the number of Ramanmodes and to join the
ngerprint and C–H spectral regions on a nal spectral window
between 500 cm−1 and 3500 cm−1 with a spectral step of 2 cm−1.

In detail, the initial post-processing step involves upscaling
the 267-dimensional vectors (obtained from max pooling) cor-
responding to the ngerprint and C–H predictions back to 800-
dimensional vectors. This is accomplished through linear
interpolation, ensuring a continuous and coherent spectral
representation across the entire frequency range.

Aer the upscaling process, we perform a ltering step on
the predictions of Raman activities. This is done using the
prediction on the number of Raman-active modes using
prominence as a parameter.60 In this context, prominence
measures how much a Raman peak rises above its neighboring
valleys. This metric assures that only peaks that are distinctly
higher than their immediate surroundings are detected,
ltering out minor uctuations or noise. Specically, using the
information on the predicted number of Raman peaks for the
ngerprint and C–H regions, we retain in the prediction of
Raman activities only the points corresponding to the most
signicant peaks. To achieve this, the predicted peaks are rst
Digital Discovery
ranked in descending order based on their prominence. We
then select only the top peaks, matching the number predicted
by the rst network, ensuring that the most prominent spectral
features are preserved while less signicant uctuations are
discarded. Here, prominence is computed with the signal.-
peak_prominences method in the Scipy library, whichmeasures
how much a peak rises above its surrounding valleys and it is
used solely for ranking predicted peaks and does not alter the
peak denition. This approach effectively renes the predicted
spectrum by focusing on the most relevant Raman signals.

We then concatenate the predictions from the two distinct
spectral regions, performing an averaging operation within the
overlapping window between 1900 and 2100 cm−1. This aver-
aging step ensures a smooth and continuous transition between
the two spectral domains, facilitated by the few Raman activities
that generally occur in this region.46 Eventually, the nal spec-
trum accurately represents the complete Raman prole (from
500 cm−1 to 3500 cm−1 Raman shi with a step of 2 cm−1),
essential for downstream analyses and comparison with
experimental spectra.

Subsequently, since the model output consists of discrete
peak predictions, we apply a convolution with a Lorentzian
function dened by a full width at half maximum (FWHM) of
10 cm−1.61 This specic FWHM value ensures that each pre-
dicted peak is broadened to realistically reproduce the natural
line shape typically observed in experimental Raman spectra.62

This convolution process broadens the predicted peaks,
generating a continuous and smooth spectrum that more
accurately resembles an experimentally measured Raman
spectrum.

Aer that, we normalize the resulting spectrum dividing it by
the sum of its vector representation, such that the sum of the
entire spectrum equals 1. These smoothing and normalization
processes facilitate a continuous and coherent representation
across the entire spectrum of the Raman predictions and are
important for accurate performance evaluation and compari-
sons with other models.

3 Results and discussion
3.1 Evaluation metrics

To evaluate the performance of the Mol2Raman network and
compare it against other models, we employ a novel evaluation
metric, the F1 score with tolerance as described below. In
addition to this, we assess model performance also using well-
established metrics like Spectral Information Similarity (SIS)63

and cosine similarity.64

3.1.1. F1 score with tolerance in Raman spectral prediction.
The F1 score is a widely used metric that combines precision
and recall in a single value, offering a balanced measure of
model precision.65 However, the standard F1 score is a classi-
cation metric and cannot be used straightforwardly in the
spectrum prediction problem studied in this work. Here, we
propose a novel evaluation metric, based on the F1 score, more
suited to assess predictions in spectroscopic techniques char-
acterized by high spectral resolution, such as Raman, which
require a high ability to correctly recognize peak positions. In
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00210a


Fig. 2 Scatter plot of predicted versus actual number of Raman-active
frequencies: in the fingerprint region (A) and in the C–H stretching
region (B). The dashed lines represent the line of perfect agreement
between true and predicted values.

Table 1 Performance metrics for predicting the number of Raman-
active peaks in the fingerprint and C–H regions

Metric Fingerprint region C–H region

R2 0.937 0.844
RMSE 1.282 1.089
Accuracy 0.349 0.458
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fact, accurately identifying the positions of Raman spectral
peaks is essential, as these correspond to molecular vibrational
modes crucial for chemical characterization. To accommodate
expected minor shis in peak positions arising from instru-
mental noise or model approximations,1,66 we introduce
a tolerance window d, which denes the acceptable wave-
number range between a calculated and a predicted peak,
within which a predicted peak is considered correct. Formally,
given the set of true peaks {n1, n2, ., nm} and predicted peaks
{n̂1, n̂2 ,., n̂n}, the set of True Positives (TP) is dened as:

TP = {n̂jjdni such that jn̂j − nij # d & jn̂k − nij > dck < j}. (2)

This formulation ensures that each true peak is matched
only once within the dened tolerance, preventing multiple
assignments and maintaining evaluation integrity. We adopt
three tolerance values—d= 10, 15, and 20 cm−1—to benchmark
model exibility and accuracy.

Based on this framework, we compute the F1 score, dened
as the harmonic mean of precision (the fraction of predicted
peaks that are correct) and recall (the fraction of true peaks that
were identied):

F1 ¼ 2� precision� recall

precisionþ recall
: (3)

By integrating this physically informed tolerance into our eval-
uation, the F1 score becomes a robust and interpretable
measure of how well the model replicates Raman spectra, and
serves as the principal metric for comparative analysis
throughout this work.

Extending from the concept of F1 score with tolerance,
seamlessly also a Precision with Tolerance and a Recall with
Tolerance can be dened.

3.2 Model performance for the number of Raman-active
frequencies

An essential component of the Mol2Raman architecture is the
accurate prediction of the number of Raman-active frequencies
for a given molecule. This step plays a dual role: it serves as an
input feature for predicting Raman activities and acts as
a ltering criterion in the post-processing of spectral data.

Fig. 2A and B illustrate the model's predictive performance
by comparing predicted and actual Raman-active peaks on the
test set of 3,168 molecules. The density of points in these
scatterplots highlights the frequency distribution of prediction
outcomes.

To quantitatively assess model performance, standard
regression metrics, including the coefficient of determination
(R2), root mean squared error (RMSE) and accuracy, are
computed. Here, accuracy is dened as the ratio between the
number of molecules for which the predicted number of
Raman-active modes exactly matches the DFT-calculated value,
and the total number of molecules. The results, summarized in
Table 1, conrm the model's strong predictive capability.

The high R2 values (0.937 for the ngerprint region and 0.844
for the C–H region) indicate that the model successfully
captures the correlation between molecular structure and
© 2025 The Author(s). Published by the Royal Society of Chemistry
Raman activity. Notably, the observed accuracy values for
ngerprint (0.349) and C–H (0.458) regions are meaningful
considering the difficulty of predicting exact counts across
a wide range of possible peak values in the two regions, as
shown in SI Fig. S2 and S3. Additionally, the low RMSE values
suggest minimal deviation from actual peak counts, ensuring
reliable performance. The few mispredictions observed are
primarily limited to differences of one or two peaks,
Digital Discovery
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Table 3 Mean SIS and cosine similarity for the prediction of Raman
spectra in the fingerprint and C–H regions

Metric Fingerprint region C–H region

SIS 0.604 0.698
Cosine similarity 0.689 0.737
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demonstrating the robustness of the model. An analysis of
different performances for the prediction of the number of
Raman-active frequencies in the C–H and ngerprint regions is
reported in SI Note 2 and Fig. S2, S3.

This predictive accuracy is critical for the overall Mol2Raman
pipeline. First, the estimated number of Raman-active peaks
guides the subsequent network in predicting Raman activities,
helping it focus on the correct number of peaks as an initial
molecular feature. Second, it enhances the post-processing step
by rening the nal spectral output, ensuring that only the most
chemically relevant peaks are retained. This ltering improves
the interpretability of the predicted spectra and their alignment
with experimental data. The strong performance of this model
establishes a reliable foundation for subsequent stages in the
Mol2Raman framework.
3.3 Model performance for Raman activities

The evaluation of the model for the predictions of Raman
activities within the global Mol2Raman framework is performed
by calculating metrics on the test dataset composed of 3 168
molecules. This model is responsible for generating Raman
spectra, which are subsequently rened through the post-
processing pipeline. The primary metric used to assess the
model performance is the F1 score with tolerance. This choice is
motivated by the central role of peak positions in dening
Raman spectral specicity,3 ensuring both selectivity and
completeness in spectral peak identication, a key requirement
in molecular vibrational analysis.

Results in terms of F1 score, precision and recall for different
tolerance levels are shown in Table 2. These outcomes highlight
the robustness of the Mol2Raman model in accurately pre-
dicting Raman activities in both the ngerprint and C–H
stretching regions, respectively achieving F1 scores of 0.631 and
0.680, with a tolerance window of 15 cm−1. This performance
aligns well with standard experimental practices in Raman
spectroscopy, acknowledging that experimental Raman peaks
oen exhibit shis of up to 10–15 cm−1 due to thermal broad-
ening, matrix effects, and instrumental resolution, thus
a ±15 cm−1 tolerance window provides a chemically realistic
and spectroscopically grounded evaluation criterion.67,68
Table 2 Mean of F1 score, precision, and recall for the prediction of
Raman-active frequencies in the fingerprint and CH regions with
varying tolerances (10, 15, 20 cm−1), evaluated using the non-
convolved spectra

Metric (tolerance) Fingerprint region CH region

F1 score (10 cm−1) 0.551 0.617
F1 score (15 cm−1) 0.631 0.680
F1 score (20 cm−1) 0.705 0.739
Precision (10 cm−1) 0.549 0.614
Precision (15 cm−1) 0.629 0.677
Precision (20 cm−1) 0.703 0.736
Recall (10 cm−1) 0.553 0.624
Recall (15 cm−1) 0.634 0.688
Recall (20 cm−1) 0.708 0.748

Digital Discovery
To better evaluate the model, we also calculate the spectral
similarity between predicted and calculated Raman spectra
using Spectral Information Similarity (SIS) and Cosine Simi-
larity,63,64 as shown in Table 3. These metrics assess the overall
spectral shape and intensity distribution, complementing the
peak-based evaluation. For this purpose, both the predicted and
calculated spectra are convolved with Lorentzian functions to
simulate natural peak broadening, as discussed previously.

The results in Table 3 reveal differences in model perfor-
mance between the two spectral regions. Higher average SIS and
cosine similarity scores in the C–H region (0.698 and 0.737,
respectively) indicate superior performance in predicting C–H
stretching vibrations compared to the ngerprint region (0.604
and 0.689). This discrepancy is likely due to the simpler vibra-
tional modes in the C–H region, which are predominantly
inuenced by localized molecular bonds. On the other hand,
the ngerprint region reects the complex global 3D molecular
geometry, which is more challenging to model from SMILES
representations.69,70

Aer evaluating the two separated spectral windows, we also
assess the full spectral range between 500 and 3500 cm−1

consequent to the concatenation of the two regions as discussed
previously.

As shown in Table 4, the model demonstrates consistent
performance across the entire Raman spectrum, in terms of both
distribution mean and median. The model achieves a mean F1
score of 0.642, with corresponding precision and recall values of
0.640 and 0.645. Additionally, the F1 score distribution across the
entire test dataset, shown in Fig. 3A, further highlights the
model's reliability and generalizability, with the majority of
predictions achieving high F1 scores, reecting consistent
performance across diverse molecular structures.

Furthermore, the SIS score of 0.669 and cosine similarity of
0.735 (Table 5) reect the ability of Mol2Raman to integrate
predictions from both spectral regions into a coherent and
accurate full-spectrum representation reproducing DFT calcu-
lated spectra at a very high degree. The combined analysis
benets from the complementary information in the ngerprint
and C–H regions, enhancing the overall spectral prediction. In
Table 4 Mean F1 score, precision and recall for the prediction of
Raman-active frequencies across the full spectrum (500–3500 cm−1)
with a 15 cm−1 tolerance

Metric
Full spectrum mean
(15 cm−1 tolerance)

Full spectrum median
(15 cm−1 tolerance)

F1 score 0.642 0.656
Precision 0.640 0.651
Recall 0.645 0.658

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Distribution of F1 scores for Mol2Raman Raman spectra
predictions, evaluated with a 15 cm−1 tolerance, (A) on the entire test
dataset, (B) reporting the distribution of molecules in the test dataset
with at least an oxygen (2 703molecules), a nitrogen (1 940molecules)
or a fluorine atom (44 molecules) and (C) showing the distribution of
performance for chiral (2199 molecules) and not-chiral (969 mole-
cules) molecules in the test dataset.

Table 5 Mean SIS and cosine similarity for the prediction of Raman
spectra across the full spectral range (500–3500 cm−1)

Metric Full spectrum

SIS 0.669
Cosine similarity 0.735

Table 6 F1 score with a 15 cm−1 tolerance mean and standard devi-
ation for molecules with at least one oxygen, nitrogen or fluorine atom
in the test dataset and for chiral and non-chiral molecules

Typology Mean Median St. dev.

Atomic species
Oxygen 0.641 0.655 0.093
Nitrogen 0.622 0.633 0.096
Fluorine 0.481 0.488 0.108

Chirality
Chiral 0.667 0.675 0.074
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SI Table 2 we also show that combining the predicted number of
Raman-active modes with Daylight and Morgan ngerprints
yields the best performance across metrics, outperforming all
other combinations of these three global molecular descriptors.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Moreover, Fig. 3B shows the distribution of F1 scores at
15 cm−1 tolerance for different molecules of the test dataset,
namelymolecules with at least one oxygen atom (2 703molecules),
at least one nitrogen atom (1 940 molecules) and at least one
uorine atom (44 molecules), whose results are provided in Table
6. We see that molecules with at least one uorine atom are
strongly underrepresented in both the training and test datasets
(SI Table 1); however, they still present a fairly good F1 score of
0.481. Instead,molecules with at least one nitrogen (mean F1 score
of 0.622) or one oxygen atom (mean F1 score of 0.641) more closely
resemble the global F1 score distribution of Fig. 3A, as expected
due to the larger representativeness in the training dataset.

We further examine the distribution of F1 scores for chiral
and achiral molecules in the test dataset, as presented in Fig. 3C
and summarized in Table 6. Notably, the model exhibits
stronger predictive performance on chiral molecules compared
to not-chiral ones. This trend is partially attributed to the
underrepresentation of non-chiral compounds in the training
set (see the SI), but also to the fact that chirality is explicitly
included as a molecular input feature. Moreover, the model
successfully captures the inuence of the enantiomeric inver-
sion on Raman spectra, reproducing the differences between
enantiomers' Raman modes, as illustrated in SI Fig. S9 and S10.
We mainly attribute this result to the comprehensive set of
descriptors used to represent molecules, combining both local
features through GINE layers and global features through
Morgan and Daylight ngerprints. Thus, this combination
allows the model to learn the subtle structural relations which
produce spectral differences under enantiomeric inversion.

Additional analyses of model performance concerning other
molecular properties are provided in SI Fig. S4–S10.

To qualitatively assess the predictive performance of the
model, Fig. 4 displays the comparison between the DFT-
calculated and Mol2Raman-predicted spectra for four repre-
sentative molecules across the 80th, 60th, 40th and 20th
percentiles in the distribution of F1 scores with 15 cm−1
Not chiral 0.584 0.596 0.103
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Fig. 4 Comparison of DFT-calculated and Mol2Raman-predicted Raman spectra for different F1 score percentiles at different percentiles
(15 cm−1 tolerance). Raman modes in the fingerprint region are multiplied by a factor of 2 to provide a better comparison.
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tolerance. As shown in Fig. 4, the predicted spectra in the 80th
and 60th percentiles closely match the DFT-calculated spectra,
demonstrating excellent agreement in both the ngerprint and
CH stretching regions. Even in the 40th and 20th percentiles,
where performance slightly drops, the model still successfully
predicts most of the signicant peaks, with only a few missed or
shied peak-positions above the 15 cm−1 threshold. This
consistency across various performance levels highlights the
robustness and reliability of the Mol2Raman model in
capturing both prominent and subtle spectral characteristics,
showing strong predictive capability for both peak localization
and spectral shape. Additional comparisons between DFT-
calculated and Mol2Raman-predicted spectra for these
percentile thresholds are shown in SI Fig. S11–S14.

To probe how Mol2Raman arrives at its predictions, we
performed peak-conditioned Integrated Gradients (IG) on the
graph inputs and visualized atom- and bond-level relevance
maps.71 For a target peak j (chosen as the largest peak in either
the ngerprint or the C–H region), we integrated the gradient of
the scalar output ŷj from a zero baseline to the true input; atom
scores are obtained by summing absolute attributions over
node-feature channels, and bond scores by averaging the scores
of their two incident atoms. Scores are normalised per molecule
and reported on a scale of 0 to 1. Fig. 5 illustrates this analysis
for the shown molecule: panel (A) reports the Mol2Raman
prediction and the DFT-calculated spectrum, whereas panels (B)
and (C) display the relative attributions from the peak–condi-
tioned IG analysis, respectively, for the C–H and the ngerprint
regions. As shown in Fig. 5B, in the C–H stretching region the
most intense peak is captured almost entirely by the local C–H
environment: attributions concentrate on carbon atoms and
their adjacent C–H/C–C bonds, consistent with CH2/CH3
Digital Discovery
stretching. In contrast, Fig. 5C shows attributions distributed
across the entire molecular scaffold, indicating that the model
relies on global, molecule-wide patterns typical of ngerprint
vibrations. Full methods and an additional example are
provided in SI Note 3 and Fig. S15.
3.4 Comparison with a tanimoto benchmark

To further evaluate the performance of the Mol2Raman model,
we compare it against a benchmark model based on molecular
similarity using the Tanimoto coefficient.51,73 This baseline
model predicts the Raman spectrum of a test molecule by
taking the weighted average of the DFT-calculated spectra of its
10 most structurally similar molecules in the training set, where
similarity is measured by the Tanimoto coefficient computed on
Daylight molecular ngerprints. The resulting averaged spec-
trum is then used as a benchmark to evaluate the performance
of Mol2Raman. The weights are thus calculated using the
Tanimoto similarity itself. The metric used for comparison is
the F1 score with a 15 cm−1 tolerance.

As shown in Fig. 6A and Table 7, the Mol2Raman model
signicantly outperforms the Tanimoto-based benchmark. The
mean F1 score for Mol2Raman is 0.642, which is 81% higher
than the F1 score calculated with the weighted Tanimoto model.
A Mann–Whitney test also shows that the F1-score distribution
of Mol2Raman is statistically larger than the Tanimoto model
distribution with a p-value lower than 10−8.74 This rst
comparison is motivated by the intuitive idea that the Raman
spectrum of a molecule could be fairly approximated by the
average of the most similar molecules. However, this analysis
proves that this intuition leads to unreliable predictions.
Raman modes do not just easily follow chemical similarity but
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Peak-conditioned integrated gradient attributions for the most
intense C–H and fingerprint peaks. (A) Mol2Raman- and DFT-calcu-
lated spectra for the molecule shown in (B) (C–H region) and (C)
(fingerprint region); atom and bond colors denote relative attribution
(scaled to [0, 1]) from the peak-conditioned IG analysis. The localized
attributions on C–H bonds in (B) corroborate the well-known prom-
inence of C–H vibrations for Raman activity near 3000 cm−1,72

whereas the broadly elevated attribution across the molecule in (C)
supports a delocalized, concerted vibration consistent with finger-
print-region modes.66
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are generated by more subtle and complex structure–spectral
relationships that Mol2Raman can capture better than this
benchmark model.75 The results in Table 7 emphasize the
advantage of the Mol2Raman model over the Tanimoto-based
benchmark also across all the other tolerance windows,
underlining how the difference in F1 score increases enlarging
the tolerance window.

To further examine model generalization capabilities on
structurally novel compounds, we evaluated both models on
a subset of the test dataset, which consists of 425 structurally
diverse molecules with a Tanimoto similarity of less than 0.6 to
anymolecule in the entire training dataset. Fig. 6B illustrates that
Mol2Raman is again consistently better than the benchmark
even on structurally novel compounds, achieving an F1 score of
0.568 compared to 0.392 of the benchmark. The performance gap
between Mol2Raman and the Tanimoto-based model further
widens on the low-similarity dataset. This result underlines the
inherent limitation of relying solely on molecular similarity for
spectral prediction. In contrast, Mol2Raman effectively captures
complex molecular interactions, making it a more robust and
scalable solution for Raman spectra prediction.
© 2025 The Author(s). Published by the Royal Society of Chemistry
3.5 Comparison with a chemprop benchmark model

We furthermore compare our model against a Message Passing
Neural Network (MPNN) model developed by McGill et al. for IR
spectral prediction, known as Chemprop-IR.76 This is a more
sophisticated and reliable benchmark on which to assess the
performance and the goodness of Mol2Raman. To perform this
comparison, we retrained the Chemprop-IR architecture on our
Raman training dataset of 25440 molecules and evaluated it on
the same test dataset of 3168 molecules used to assess Mol2-
Raman performance. Since Chemprop was originally designed
for dense IR spectra, we adapted it for Raman spectra by
convolving the sparse Raman activity data extracted from DFT
with a Lorentzian function (full width at half maximum, FWHM
= 10 cm−1). This preprocessing step is necessary to transform
the sparse Raman data into continuous spectra suitable for
Chemprop's input pipeline.

The comparison is performed using the F1 score with
a tolerance of 15 cm−1, evaluating both models on the entire
test set and on the subset consisting of molecules with a Tani-
moto similarity lower than 0.6, as done against the Tanimoto
benchmark. As shown in Fig. 6C, the Mol2Raman model
outperforms Chemprop across the full test dataset. Themean F1
score for Mol2Raman is 0.642, compared to Chemprop's 0.391,
providing a 64% improvement. The F1 score for the Chemprop
models is calculated using a prominence of 0.05 not to include
peaks originated by noise in its calculation. A Mann–Whitney U
test conrms that this difference is statistically signicant (p <
10−6), highlighting Mol2Raman's superior capability in identi-
fying Raman-active frequencies. The F1 score distribution of
Mol2Raman is skewed towards higher values, indicating its
superior ability to predict Raman-active frequencies accurately.
This better performance can be explained by the Mol2Raman
specialized architecture, designed to handle the spectral spar-
sity and peak-specic information inherent in Raman spectra.
Table 7 reports a comprehensive comparison of Mol2Raman
and Chemprop performance in terms of different F1 score
tolerances, showing how Mol2Raman outperforms Chemprop
for each considered tolerance window.

The comparison on the low similarity dataset is reported in
Fig. 6D and Table 8. Fig. 6D demonstrates that Mol2Raman
maintains its advantage on unseen molecular structures, with
an F1 score of 0.568 compared to Chemprop's 0.412. This 38%
improvement underlines Mol2Raman's high robustness in
generalizing to novel chemical spaces. Table 8 presents the
comparison of both models on this low-similarity dataset.
Interestingly, the Chemprop model shows slightly better
performance on the low-similarity subset (Tanimoto similarity
<0.6) compared to its predictions on the full test dataset. This
counterintuitive result can be attributed to several factors.
Firstly, Chemprop may exhibit overtting tendencies towards
molecular structures prevalent in the training dataset, limiting
its ability to generalize effectively within structurally similar
groups in the full test dataset. In contrast, the more structurally
diverse molecules in the ltered dataset could reduce this bias,
enabling the model to generalize better. However, even with this
modest improvement, Mol2Raman consistently outperforms
Digital Discovery
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Fig. 6 Comparisons of the distribution of F1 scores (15 cm−1 tolerance) for Mol2Raman against benchmark models. (A) and (C) show the
comparison of Mol2Raman against the Tanimoto similarity and Chemprop benchmark models on the full test set, while (B) and (D) show the
same comparisons on the low-similarity subset of the test dataset (Tanimoto similarity <0.6).

Table 7 Comparison of F1 score metrics between Mol2Raman, the
Tanimoto benchmark and the Chemprop benchmark on the full test
dataset, at varying tolerance levels (10, 15, and 20 cm−1), along with
their mean, median, and standard deviation across the entire Raman
spectrum

Metric F1 tol. 10 cm−1 F1 tol. 15 cm−1 F1 tol. 20 cm−1

Mol2Raman
Mean 0.565 0.642 0.713
Median 0.576 0.656 0.727
St. dev. 0.094 0.092 0.088

Tanimoto benchmark
Mean 0.353 0.355 0.356
Median 0.353 0.355 0.356
St. dev. 0.057 0.056 0.056

Chemprop benchmark
Mean 0.347 0.391 0.428
Median 0.346 0.386 0.426
St. dev. 0.076 0.079 0.085

Table 8 Comparison of F1 score metrics between Mol2Raman, the
Tanimoto benchmark and the Chemprop benchmark on the low-
similarity test dataset, along with their mean, median, and standard
deviation across the entire Raman spectrum, at varying tolerance
levels (10, 15, and 20 cm−1)

Metric F1 tol. 10 cm−1 F1 tol. 15 cm−1 F1 tol. 20 cm−1

Mol2Raman
Mean 0.491 0.568 0.639
Median 0.500 0.576 0.655
St. dev. 0.107 0.107 0.105

Tanimoto benchmark
Mean 0.306 0.309 0.311
Median 0.311 0.314 0.316
St. dev. 0.050 0.050 0.049

Chemprop benchmark
Mean 0.353 0.412 0.468
Median 0.356 0.415 0.467
St. dev. 0.082 0.077 0.079
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Chemprop across both datasets, highlighting its superior
capability to model Raman spectra and generalize across
varying chemical spaces.

The observed performance gap between Mol2Raman and
Chemprop can be explained by the differing design philoso-
phies of the twomodels. Chemprop was originally optimized for
IR spectra, which are inherently denser and smoother than
Raman spectra. In contrast, Mol2Raman was specically
Digital Discovery
engineered to model the sparse and peak-oriented nature of
Raman spectra, effectively capturing both peak localization and
relative intensities. Mol2Raman's GINE layers, combined with
traditional chemical descriptors, allow for a richer encoding of
molecular properties, enabling more accurate peak prediction.
In contrast, Chemprop's standard MPNN architecture struggles
to capture the nuanced spectral features inherent in Raman
© 2025 The Author(s). Published by the Royal Society of Chemistry
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spectroscopy, particularly in the ngerprint region where
structural complexity is more pronounced.
3.6 Mol2Raman open web application

To bridge the gap between advanced computational models and
practical usability, the Mol2Raman algorithm has been further
developed into a user-friendly open web application, accessible
at https://mol2raman.streamlit.app and deployed using the
Streamlit library.77,78 This platform allows users to interact
with the model's predictions in a seamless manner,
eliminating the need for extensive computational resources or
specialized technical expertise. By integrating machine
learning-based Raman spectral prediction into a web-
accessible tool, Mol2Raman extends its applicability beyond
computational chemistry experts to a wider scientic commu-
nity. Users can use the input box to write molecular structures
in SMILES format, which are automatically preprocessed and
analyzed using the Mol2Raman model. The system performs all
inference steps and post-processing in real-time, generating
high-quality Raman spectra that can be visualized and down-
loaded for further analysis.

A key advantage of this web-based platform is its integration
of visualization tools that allow users to explore and interpret
the predicted spectra effectively. This enhances the interpret-
ability of computational predictions, facilitating their adoption
in experimental workows. The model is optimized to provide
fast and accurate spectral predictions, making it suitable for
both small-scale academic research and high-throughput
industrial applications.79 This democratization of access is
particularly relevant for researchers working in disciplines such
as drug discovery, materials science, and process chemistry,
where rapid molecular analysis is essential for decision-
making.1,25

The development of this web-based interface exemplies
how cutting-edge machine learning models can be translated
into practical, accessible tools that enhance scientic discovery.
Beyond its immediate application, this platform lays the foun-
dation for future expansions, including the integration of
additional spectroscopic techniques and more sophisticated
analytical capabilities. By providing an intuitive and interactive
framework, Mol2Raman not only demonstrates the feasibility of
deep learning-based Raman spectrum prediction but also
highlights the broader potential of articial intelligence in
transforming computational chemistry into a more accessible
and impactful discipline.
4 Conclusions

In this work, we introduce Mol2Raman, a novel GNN model
designed to predict spontaneous Raman spectra directly from
molecular structures. By combining our tailored peak-aware
loss function with our GNN-based molecular representation,
leveraging on GINE layers and traditional chemical descriptors,
along with a spectral-ltering procedure informed by the pre-
dicted number of Raman modes, Mol2Raman achieves an F1-
score exceeding 64% for peak prediction within a 15 cm−1
© 2025 The Author(s). Published by the Royal Society of Chemistry
window and a cosine similarity above 0.7. This approach
enables the model to capture also intricate and subtle molec-
ular properties, like Raman spectral differences arising from
enantiomeric inversion. By utilizing a large dataset of over 31
000molecules with DFT-calculated Raman spectra, Mol2Raman
demonstrates a signicant step forward in integrating deep
learning approaches into molecular spectroscopy.

The performance of Mol2Raman is rigorously evaluated
against two benchmarks: a Chemprop-based model adapted for
Raman spectral prediction and a Tanimoto similarity-based
model. Across the F1 score with various tolerance windows
(10, 15, and 20 cm−1), Mol2Raman consistently outperforms
both benchmarks. Notably, the model achieves a mean F1 score
of 0.642 with a 15 cm−1 tolerance, substantially surpassing the
Chemprop model (0.391) and the Tanimoto benchmark (0.355).
This consistent outperformance is observed not only on the full
test set but also on more challenging subsets composed of
structurally novel molecules (Tanimoto similarity <0.6), high-
lighting the model's robust generalization capabilities.

One of the most impressive aspects of Mol2Raman is its
ability to generalize beyond structurally similar compounds.
The model's superior performance on the low-similarity subset
emphasizes its capacity to capture complex structure–spectrum
relationships that cannot be adequately modeled by simpler
similarity-based approaches. This capability is particularly
important for real-world applications, where new or previously
unseen molecules are frequently encountered.

Despite its larger number of parameters (157 million),
comprising the two models and the two spectral windows for
each model, Mol2Raman demonstrated fast inference time (22
ms). This efficiency enables large-scale molecular screening in
drug discovery, materials optimization, or spectroscopic probe
design, where rapid pre-selection of candidates based on pre-
dicted vibrational ngerprints is essential, as shown by Stokes
et al.25 Our model goes exactly in this direction, facilitating and
speeding up this rst screening. Then, starting from this
shortlist, more detailed DFT calculations or experimental
measurements can be performed to reach the nal optimal
molecules. This efficiency stems from the model's architecture,
which effectively uses its higher capacity to learn and generalize
complex molecular features without introducing signicant
computational overhead.

The development of a user-friendly web application further
extends the impact of this work. By deploying Mol2Raman
through an accessible web interface, it is possible to easily
generate high-quality Raman spectra predictions without the
need for specialized hardware or advanced computational
skills, enhancing the model's practical utility.

While Mol2Raman presents a signicant advancement in
Raman spectrum prediction, some limitations remain. The
current model is trained exclusively on DFT-calculated spectra,
which, while accurate, may not fully capture experimental
complexities such as instrumental noise and environmental
effects. However, this DFT-based training may also be seen as
a strong pretraining stage that can be adapted to experimental
data through transfer learning. Fine-tuning on curated experi-
mental Raman spectra should help close the gap between
Digital Discovery

https://mol2raman.streamlit.app
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00210a


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
N

ov
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
3/

20
26

 1
0:

50
:0

1 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
simulation and measurement by accounting for baseline
backgrounds, instrument response, and temperature effects, as
also shown in Chemprop-IR.76 In practice, this can be achieved
by freezing the early GINE layers and updating only the nal
blocks and readout with a small learning rate, thereby
preserving the information learned from DFT while aligning
predictions to experimental variability. We therefore expect that
incorporating experimental spectra into the training process
could further improve the model's robustness and real-world
applicability. Additionally, although the model shows excel-
lent performance in predicting peak positions and intensities,
expanding its capabilities to predict other spectroscopic prop-
erties or extending its application to molecular datasets
composed of more atomic species could further enhance its
utility. Exploring hybrid models that combine data-driven
approaches with physical constraints could also offer new
avenues for improving spectral predictions.

In summary, Mol2Raman represents a signicant advance-
ment in applyingmachine learning to spectroscopic analysis. By
combining an innovative GNN-based architecture with strong
predictive performance and computational efficiency, the
model provides a practical and scalable solution for molecular
spectroscopy. The additional deployment as a web application
further broadens its accessibility, enabling seamless integration
into research and industrial workows. Beyond its immediate
applications, this work lays the foundation for future develop-
ments aimed at expanding the model's capabilities. Incorpo-
rating experimental spectra into training could enhance
robustness, while extending its framework to other spectro-
scopic techniques would further increase its utility. With
continued open-source renement of the model, Mol2Raman
has the potential to accelerate discoveries across materials
science, pharmaceuticals, and chemical engineering, contrib-
uting to molecular design and diagnostics in an increasingly
data-driven era.
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