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isited: toward more chemically
accurate benchmarks for 3D molecule generation

Filipp Nikitin, †ab Ian Dunn, †c David Ryan Koes c and Olexandr Isayev *ba

Deep generative models have shown significant promise in generating valid 3D molecular structures, with

the GEOM-drugs dataset serving as a key benchmark. However, current evaluation protocols suffer from

critical flaws, including incorrect valency definitions, bugs in bond order calculations, and reliance on

force fields inconsistent with the reference data. In this work, we revisit GEOM-drugs and propose

a corrected evaluation framework: we identify and fix issues in data preprocessing, construct chemically

accurate valency tables, and introduce a GFN2-xTB-based geometry and energy benchmark. We retrain

and re-evaluate several leading models under this framework, providing updated performance metrics

and practical recommendations for future benchmarking. Our results underscore the need for

chemically rigorous evaluation practices in 3D molecular generation. Our recommended evaluation

methods and GEOM-drugs processing scripts are available at https://github.com/isayevlab/geom-

drugs-3dgen-evaluation.
Introduction

Generative models for molecules are an emerging paradigm
that enables the construction of novel molecules in 2D or 3D.1,2

These AI models learn the patterns and distribution of existing
molecular data to generate previously unseen chemical struc-
tures. By encoding molecular information into mathematical
representations and then sampling from a learned distribution,
these models facilitate efficient exploration of vast chemical
space. The eld continues to evolve rapidly and is not yet
mature.

The eld of cheminformatics has established fundamental
protocols3,4 and best practices5,6 for achieving ML models with
high statistical rigor and external predictive power.4 Here, crit-
ical steps such as data preparation, chemical structure curation,
outlier detection, dataset balancing, and rigorous ML model
validation must be included into the overall data workow.
Multiple studies emphasized that chemical structure curation
should be treated as a separate and critical component of any
cheminformatics research.6 Seminal studies showed that accu-
mulated errors and incorrect processing of chemical structures
can signicantly reduce the accuracy of ML models.7

The GEOM data set8 is one of the most widely used large-
scale high-accuracy datasets of molecular conformations. A
subset of GEOM containing drug-like molecules, known as
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GEOM-drugs, has become a foundational benchmark for
developing 3D molecular generative models. The frequent use
of GEOM-drugs in this eld has given rise to a somewhat
standardized set of metrics to evaluate the quality of generative
models trained on this dataset. In this work, we identify several
critical issues in how state-of-the-art 3D molecular generative
models are evaluated. We believe these issues mislead the
research community and limit progress in the eld.

First, we highlight three major problems with the commonly
used “molecular stability” metric, which measures whether
atoms have valid valencies. One of the original implementa-
tions contained a bug. This bug caused chemically implausible
valencies to be counted as valid, which inated stability scores.
This awed implementation was reused by several follow-up
works,9–14 resulting in a signicant body of work with
misleading characterizations of model performance.

Second, many recent works lack rigorous and chemically
grounded evaluation of 3D structures, which continues to
hinder progress in generative modeling. Common issues
include the use of oversimplied atom–atom distance lookup
tables to evaluate the validity of generated 3D structures,15–20

reliance on distribution-based metrics that are difficult to
interpret,10,14 and the use of energy evaluations at different
levels of theory than the training data.9,21

To address these issues, this paper provides:
(1) A rened dataset split of GEOM-drugs, which excludes

molecules where GFN2-xTB calculations fractured the original
molecule.

(2) An updated molecule stability metric with a chemically
accurate valency lookup table that is derived from this rened
dataset.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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(3) An energy-based evaluation methodology for an accurate
and chemically interpretable assessment of generated molec-
ular 3D geometries.

We retrained several widely used generative models on our
reprocessed dataset and updated the evaluation metrics to
address previously observed issues. The relative rankings of the
models remained largely consistent. However, our updates
yielded practical improvements. These improvements highlight
the importance of rigorous and accurate evaluation practices in
the eld.

Revisiting the molecule stability metric

Valency in chemistry refers to the combining capacity of an
atom or element, describing how many chemical bonds it can
form with other atoms. It is dened as the sum of bond orders
of its covalent bonds. Due to chemical constraints (e.g., the octet
rule), atoms of a given element and formal charge typically
exhibit only a few plausible valencies; for instance, neutral
carbon almost exclusively has a valency of 4. Molecules violating
these valency constraints are chemically unstable. Thus,
generative models must produce molecules adhering to these
rules. A practical evaluation of generative models involves
measuring the fraction of atoms with valid valencies. This
evaluation was originally proposed by Hoogeboom et al.,17

a seminal work applying diffusion models to de novo molecule
generation; this metric is known as “atom stability”. The metric
“molecule stability” is dened as the fraction of molecules
where all atoms have valid valencies. A valid valency is dened
as one observed in the training data. A “lookup table” of valid
valencies, consisting of tuples of (element, formal charge,
valency), is created from the training set.

Valency can be computed as the sum of bond orders in
a molecule's kekulized form,‡ where bonds are explicitly rep-
resented as single, double, or triple. This approach works reli-
ably for molecules without aromatic bonds. When aromatic
bonds are introduced, however, valency computation becomes
more complex. In simple cases such as benzene, one can
assume each aromatic bond contributes 1.5 to the valency,
yielding the correct total (e.g., carbon atoms in benzene are
correctly assigned a valency of 4). But in more complex aromatic
systems, this assumption may not hold, and valency contribu-
tions can vary depending on the bonding environment and
resonance structures (see Fig. 1).

The authors of Hoogeboom et al.17 proposed atom and
molecule stability metrics to evaluate the correctness of the raw
output of generative models. They noted that traditional validity
metrics, dened as the fraction of molecules that can be sani-
tized with RDKit, can be misleading, as RDKit may implicitly
adjust hydrogen counts or modify aromaticity, altering the
predicted molecule. We generally support the idea of assessing
raw valencies, especially for models that explicitly generate both
atoms and bonds because it provides a more chemically
grounded evaluation. Unlike validity, stability captures whether
‡ Kekulization is the process of generating an alternative structure for a molecule
where aromatic bonds are converted to alternating single and double bonds.

© 2025 The Author(s). Published by the Royal Society of Chemistry
the generated molecules respect elemental valence constraints
without relying on post-processing. However, we identied that
early implementations of the molecular stability generally
contain aws related to the aforementioned complications of
counting valencies in aromatic systems.

Critical aws in existing molecule stability evaluation

We identify multiple critical issues with the valency evaluation
methods used in popular molecular generative models. The
issues we identify obscure instances where generative models
produce chemically implausible structures. One of the pio-
neering models, MiDi,14 implemented a valency calculation
method in which the valency contributions for all aromatic
bonds were rounded to 1 instead of the intended value of 1.5.
Thus, the valency computation for most atoms participating in
aromatic bonds is incorrect. More importantly, it appears that
the awed valency computation was also used to construct the
valency lookup table that is used to classify generated atoms as
“stable” or not, resulting in a lookup table with chemically
implausible entries. For instance, the lookup table allows for
neutral carbon with a valency of 3 and neutral nitrogen with
a valency of 2. Implausible entries in the valency lookup table
mask failures of the generative model and produce articially
inated molecular stability values. Due to widespread reuse of
MiDi's code, this numerical error propagated to several works
including EQGAT-Diff,10 SemlaFlow,9 Megalodon,13 and Flow-
Mol.11,12 Other models, such as JODO15 and NextMol,22

computed valencies using an alternative approach based on
RDKit kekulization. However, they still relied on an inappro-
priate lookup table for dening valid valency ranges (Fig. 2).

In their current form, widely-used molecular stability
metrics may not provide accurate representations of model
performance. The implementation of these metrics must be
corrected to enable future progress in the development of de
novo generative models.

A chemically grounded solution of molecule stability metric

Two key solutions are necessary to correct the aforementioned
problems with the molecular stability metric: xing the valency
computation bug for aromatic bonds and recomputing the
valency lookup table. We quantify the effects of our proposed
solutions by re-evaluatingmodels that used the faulty molecular
stability metric in their original publications: EQGAT-Diff,10

Megalodon-quick,13 SemlaFlow,9 FlowMol2,12 and Megalodon-
ow.13 The results of these reevaluations are shown in Table 1.
All metrics were computed using 5000 generated molecules per
model.

Correcting the numerical bug that erroneously rounded the
contribution of aromatic bonds from 1.5 to 1 (without adjusting
the lookup table) causes a dramatic drop in molecular stability.
This can be observed by comparing the rst two columns of
Table 1. Additionally, this demonstrates that neither 1 nor 1.5
provides a universally reliable estimate for the contribution of
an aromatic bond to atomic valency.

We propose two strategies to address the limitations in
molecular stability computation. The rst strategy involves
Digital Discovery, 2025, 4, 3282–3291 | 3283
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Fig. 1 An example of a molecule where the assumption that aromatic bonds contribute 1.5 to atomic valency holds only partially. In the aromatic
form of triphenylene (a), the green-highlighted atoms are correctly classified as stable under the 1.5 assumption, while others are misclassified. In
contrast, the kekulized representation (b) resolves the ambiguity and yields chemically accurate valency assignments across all atoms. This
illustrates the limitations of the 1.5 approximation in polycyclic aromatic systems.

Fig. 2 Examples of molecules that pass the molecular stability evaluation under commonly used criteria. These flawed metrics erroneously
classify chemically invalid configurations as stable. (a) contains a neutral carbon with three single bonds. (b) Contains a neutral nitrogen with two
single bonds. (c) Contains a nitrogen atom with +1 charge bonded via both a triple bond and an aromatic bond. In each subfigure the mentioned
invalid valency is highlighted with a red circle.
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enhancing the valency lookup table by explicitly accounting for
aromaticity. Instead of the conventional tuples (element, formal
charge, valency), we construct a more nuanced table indexed by
(element, number of aromatic bonds, formal charge, valency),
with the associated values representing allowed non-aromatic
bond valencies—i.e., total bond order excluding contributions
from aromatic bonds (see SI Table 5). In this formulation, each
atom's bonding environment is described by the tuple (narom,
vother), where narom is the number of aromatic bonds and vother is
the total bond order from non-aromatic bonds. For example,
a carbon atom in benzene typically exhibits congurations like
(2, 1)—two aromatic bonds and one single bond—or (3, 0), as
illustrated in Fig. 1. Remarkably, adopting this rened lookup
table results in molecular stability scores only 1–3% lower than
originally reported using awed metrics (third column in Table
1). While modest, this deviation can meaningfully inuence the
comparative assessment of generative models and may intro-
duce bias into subsequent benchmark studies if le
uncorrected.

An alternative approach involves retraining models on
a reprocessed dataset consisting exclusively of kekulized mole-
cules, thereby completely removing ambiguity associated with
aromaticity in valency computation. We prepared a revised
3284 | Digital Discovery, 2025, 4, 3282–3291
version of the GEOM-drugs dataset so that all molecules were
kekulized; there is no explicit modeling of aromatic bonds. As
illustrated in Table 1, models trained on the kekulized dataset
exhibited molecular stability comparable to previously pub-
lished results when valencies were computed correctly. Notably,
all models except Megalodon Flow demonstrated an average 5%
improvement in validity. Megalodon Flow did not show similar
improvements. We hypothesize that this discrepancy arises due
to smaller neural network architecture used for Megalodon
Flow, a decision necessitated by limited computational
resources available for this study.

We encountered another issue with GEOM-drugs: recom-
puting the valency table on the raw GEOM-drugs dataset
revealed unusual valencies. Resulting from rare failure in the
GFN2-xTB geometry optimization step used to produce the
dataset. These failures produced fragmented molecules and
unstable valencies such as hydrogen atom with no covalent
bonds or neutral carbon with a valency of two. Examples of
these instances are shown in Fig. 3. We removed molecules
from GEOM-drugs that were fragmented into multiple discon-
nected components due to failed GFN2-xTB geometry optimi-
zation. This led to the exclusion of 0.18% of the dataset;
although this is not enough data to signicantly impact model
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Comparison of molecular stability (MS) and connected validity (V&C) across models and processing pipelines. The left section reports
results obtained using the original GEOM-drugs dataset and evaluation code: “original” denotes the values from metric implementations
published in prior work, “1.5 Arom” reflects scores if aromatic bonds contribute 1.5 to valency, and “Arom-dependent valence” shows scores
based on valency computed as (narom, vother). The right section presents results obtained by retraining on fully kekulized molecules. V&C (valid &
connected) refers to the fraction of molecules that are both chemically valid and consist of a single connected component

Model MS original MS 1.5 Arom MS Arom-dependent valence V&C MS V&C

EQGAT10 0.935 � 0.007 0.451 � 0.006 0.899 � 0.007 0.834 � 0.009 0.878 � 0.007 0.891 � 0.010
JODO15 0.981 � 0.001 0.517 � 0.012 0.963 � 0.005 0.879 � 0.003 0.940 � 0.003a 0.923 � 0.004a

Megalodon-quick13 0.961 � 0.003 0.496 � 0.017 0.944 � 0.003 0.900 � 0.007 0.957 � 0.006 0.962 � 0.005
SemlaFlow9 0.980 � 0.012 0.608 � 0.027 0.969 � 0.012 0.920 � 0.016 0.974 � 0.012 0.975 � 0.008
FlowMol2 (ref. 12) 0.959 � 0.007 0.594 � 0.009 0.944 � 0.007 0.746 � 0.010 0.938 � 0.005 0.861 � 0.012
Megalodon-ow13 0.990 � 0.003 0.632 � 0.011 0.987 � 0.004 0.948 � 0.003 0.958 � 0.004b 0.949 � 0.002b

a JODO was trained with the EQGAT-diff objective, using categorical diffusion instead of the original Gaussian formulation for categorical variables.
b Indicates results from a retrained “quick” variant, differing from the original paper which reported results for a larger model.

Fig. 3 Examples from GEOM-drugs where GFN2-xTB failed and resulted in fractured molecules. The first row of molecules have neutral carbon
with valency 2 and those in the second row have a positively charged hydrogen with valency zero.
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performance, the presence of these molecules alters the
resulting valency lookup table.

To summarize, neither treating aromatic bonds as contrib-
uting a valence of 1 nor 1.5 yields chemically accurate results. By
correcting the valency table using a rened tuple representa-
tion, which captures the number of aromatic bonds separately,
the resulting molecular stability scores decrease modestly by 1
to 3%. However, since most reported stability values exceed 0.9,
even such small discrepancies can have an outsized inuence,
potentially skewing model development and encouraging opti-
mization against a chemically awedmetric. Notably, retraining
models on a reprocessed dataset with kekulized molecules, i.e.,
without explicit aromatic bonds, leads to approximately a 5%
improvement in validity for 4 of 6 evaluated models. Together,
© 2025 The Author(s). Published by the Royal Society of Chemistry
these results underscore the critical importance of chemically
sound preprocessing and robust evaluation protocols in the
development of 3D molecular generative models.

We make available in the attached github repository the
ltered GEOM-drugs dataset with kekulized molecules, the
scripts for producing the ltered dataset from the original
GEOM dataset, and an implementation of the molecular
stability metric that does not permit erroneous atomic
valencies.

3D molecule evaluation
Challenges in proper and accurate 3D structure assessment

Current 3D molecular generative models face signicant chal-
lenges in evaluating the geometric quality of their outputs. In
Digital Discovery, 2025, 4, 3282–3291 | 3285
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particular, models trained on the GEOM-drugs dataset oen
exhibit issues stemming from the evaluation protocols
themselves.

A widely used approach involves dening a bond length
lookup table and applying xed thresholds to assess 3D
molecular stability.15–20 However, this method is problematic for
GEOM-drugs. Only 86.5% of atoms meet the specied atom–

atom distances, and just 2.8% of molecules pass the stability
criterion. The conformers in the GEOM-drugs dataset are opti-
mized with respect to GFN2-xTB,5 a semi-empirical quantum
chemical potential. Thus, the observed bond lengths reect the
GFN2-xTB energy landscape. Molecules obtained from other
sources, such as the Cambridge Structural Database (CSD), may
exhibit different geometries. This metric produces implausibly
low stability rates yet remains widely adopted in new studies.

A more recent trend is to assess geometric quality by
comparing distributions of bond lengths and angles using
Wasserstein distance between generated and training
data.10,14,23 This approach is more principled. However, distri-
butional metrics are difficult to interpret, whichmakes it harder
to extract chemically meaningful insights.

Other studies have proposed evaluating generated molecules
by computing the relaxation energy using molecular mechanics
force elds.9,21,24 A common choice has been the Merck Molec-
ular Force Field (MMFF);25 however, this potential function
differs substantially from GFN2-xTB,5 the potential used to
produce the GEOM-drugs dataset. For conformers in the GEOM-
drugs dataset, the mean relaxation energy difference DErelax
when re-optimized with GFN2-xTB is close to zero, as expected.
In contrast, MMFF evaluation yields a mean DErelax of. This is
consistent with prior reports of MMFF errors in the 15–
20 kcal mol−1 range relative to higher-level methods.26

As we will demonstrate, current state-of-the-art generative
models produce structures that are closer to the GFN2-xTB
ground truth on the GEOM-drugs dataset than their MMFF94-
optimized counterparts. This renders MMFF-based compari-
sons unreliable and masks meaningful differences between
models. However, MMFF energy can still serve as a coarse-
grained lter to eliminate structurally implausible molecules,
similar to its use in PoseBusters27 for energy-based outlier
detection. Given the widespread reliance on inadequate
metrics, we argue that a GFN2-xTB-based evaluation pipeline is
necessary for accurately assessing the practical performance of
3D molecular generative models.
GFN2-xTB energy-based geometry benchmark

GEOM-drugs geometries are optimized using the GFN2-xTB
semi-empirical quantum calculation method. Therefore, it is
essential to use the same method to assess the structural
integrity of generated molecules. One approach is to measure of
how close a generated structure is to the closest local minima of
the given energy function. To measure this we suggest to assess
differences in bond lengths, bond angles, and torsion angles of
generated and optimized counterparts. These quantities
provide clear and interpretable measure of generated molecules
for both computer scientists and computational chemists.
3286 | Digital Discovery, 2025, 4, 3282–3291
Bond length differences

For each bond in the molecule, we compute the difference in
bond lengths between the initial (generated) and optimized
(relaxed) structures. Let rinitij and roptij denote the distances
between atoms i and j in the initial and optimized conforma-
tions, respectively. The bond length difference Drij is calculated
as:

Drij = jrinitij − roptij j

The average difference is reported as a result.

Bond angle differences

For each bond angle formed by three connected atoms i, j, and
k, we calculate the angle difference between the initial and
optimized structures. Let qinitijk and qoptijk represent the bond
angles at atom j in the initial and optimized conformations,
respectively. The bond angle difference Dqijk is given by:

Dqijk = min(jqinitijk − qoptijk j, 180˚ − jqinitijk − qoptijk j)

As with bond lengths, the average difference is reported as
a result.

Torsion angle differences

Torsion angles involve four connected atoms i, j, k, and l. We
compute the difference in torsion angles between the initial and
optimized structures using:

Dfijkl = min(jfinit
ijkl − fopt

ijklj, 360˚ − jfinit
ijkl − fopt

ijklj)

where finit
ijkl and fopt

ijkl are the dihedral angles in the initial and
optimized conformations, respectively. This formula accounts
for the periodicity of dihedral angles, ensuring the smallest
possible difference is used.

The average difference is reported as a result.

Results

We report results for EQGAT, Megalodon-quick, SemlaFlow,
FlowMol2, andMegalodon-ow, including both themedian and
mean relaxation energy DErelax—the energy difference between
the initial and GFN2-xTB-optimized structures—as well as
structural displacement metrics discussed above (see Table 2).
For each model, 5000 molecules were evaluated, and
a randomly selected subset of 5000 molecules from GEOM-
drugs was used for baseline comparisons. To compute con-
dence intervals, all metrics were calculated across ve equal-
sized splits of 1000 molecules each. In Table 2, the row
labeled “MMFF / GFN2-xTB” quanties geometric and ener-
getic discrepancies between MMFF-optimized structures and
their GFN2-xTB-optimized counterparts. These values highlight
the structural divergence between force-eld and semi-
empirical optimization methods. Diffusion-based models
already surpass MMFF in structural precision. Furthermore, we
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Energy relaxation and geometric deviation metrics across generative models. Bond lengths (Å), angles (degrees), and energies (kcal
mol−1) are reported for valid molecules only. Diffusion-based models use 500 steps; flow-matching models use 100 steps. DErelax denotes the
energy difference between the initial and GFN2-xTB-optimized structures (i.e., the generative model's deviation from the reference energy
landscape). DEMMFF

relax denotes the MMFF94 energy difference between the initial structure and the structure optimized with MMFF94

Model Bond length (×10−2) Bond angles Torsions DErelax Median DErelax Mean DEMMFF
relax Mean

GEOM-drugs 0.00 � 0.001 0.001 � 0.001 0.01 � 0.01 0.000 � 0.0001 0.001 � 0.001 16.4 � 0.2
MMFF / GFN2-xTB 1.12 � 0.01 1.22 � 0.004 4.89 � 0.10 9.84 � 0.06 11.4 � 0.2 0.00 � 0.05
EQGAT-diff 1.00 � 0.04 1.15 � 0.03 8.58 � 0.11 6.40 � 0.20 11.1 � 0.8 28.4 � 1.2
JODO 0.77 � 0.01 0.83 � 0.00 6.01 � 0.07 4.74 � 0.15 7.04 � 0.20 22.1 � 0.2
Megalodon 0.66 � 0.02 0.71 � 0.01 5.58 � 0.11 3.19 � 0.12 5.76 � 0.27 21.6 � 0.3
SemlaFlow 3.10 � 0.23 2.06 � 0.17 6.05 � 0.56 32.3 � 3.3 91.0 � 21.7 69.6 � 9.2
FlowMol2 1.30 � 0.04 1.62 � 0.02 15.0 � 0.3 17.9 � 0.5 24.3 � 0.8 39.4 � 1.2
Megalodon-ow 2.30 � 0.02 1.62 � 0.02 5.58 � 0.19 20.9 � 0.8 46.9 � 8.6 45.5 � 2.0

Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/1
2/

20
26

 5
:2

1:
51

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
observe a consistent performance gap between ow-matching
and diffusion-based models, even when the architecture is the
same. This discrepancy has not been emphasized in prior
literature. Conclusions drawn in prior works may have been
inuenced by the limited precision of their evaluation
methodologies.
Conclusion

In this study, we revisited the GEOM-drugs benchmark for 3D
molecular generative model and uncovered several issues in
current evaluation pipelines. We demonstrated that widely-
adopted stability metrics are affected by code errors, chemi-
cally inconsistent valency tables, and reliance on postprocessed
molecules, leading to inated measures of model performance.
Furthermore, our ndings suggest that energy evaluations
based on MMFF may not be reliable to characterize model
performance. The difference between MMFF and the energy
landscape of the dataset is substantially larger than the differ-
ence between the energy landscape of generated molecules and
their training data.

To address these limitations, we proposed a rened evalua-
tion protocol incorporating chemically sound valency deni-
tions and GFN2-xTB-based energy and geometry assessments.
Our experiments demonstrate that these corrections impact
reported performance while preserving the relative rankings of
models. Conversely, a high-quality dataset (error-free struc-
tures, consistent features, trustworthy labels) and relevant
metrics (e.g. appropriate choice of level of theory or realistic
valency lookup table) provide a solid foundation that can
markedly improve model performance. We hope that this study
will raise awareness about importance of chemical structure
curation and processing. We believe these improvements will
foster more reliable, interpretable, and chemically meaningful
progress in 3D molecular generative modeling. Our recom-
mended evaluation methods and GEOM-drugs processing
scripts are available at https://github.com/isayevlab/geom-
drugs-3dgen-evaluation.
Implementation

We release all scripts and evaluation tools used in this work at:
© 2025 The Author(s). Published by the Royal Society of Chemistry
https://github.com/isayevlab/geom-drugs-3dgen-evaluation.
The repository provides:
� Preprocessing utilities to sanitize, kekulize, and lter

molecules from the GEOM-drugs dataset based on the number
of fragments.

� Valency validation scripts that compute atom-level and
molecule-level stability using chemically accurate valency
tables.

� Energy-based geometry evaluation tools that compute
structural deviations (bond lengths, angles, torsions) and
relaxation energies using GFN2-xTB optimization.

Full usage instructions, examples, and dependencies are
provided in the repository README.
Conflicts of interest

There are no conicts to declare.
Data availability

All data processing scripts, evaluation tools, and instructions
for obtaining the corrected GEOM-drugs dataset used in this
study are openly available at https://github.com/isayevlab/
geom-drugs-3dgen-evaluation with the DOI https://doi.org/
10.5281/zenodo.17089337. The repository includes code for
molecule preprocessing (ltering, kekulization, valency table
construction), valency-based stability evaluation, and GFN2-
xTB–based energy and geometry benchmarking, enabling full
reproduction of the reported results.
Appendices
Appendix I: valency lookup tables for stability evaluation

To support rigorous evaluation of 3D molecular generative
models, we include here a collection of empirical valency tables
derived from the GEOM-drugs dataset. These tables are used to
dene chemically plausible bonding patterns, detect invalid
topologies, and serve as standardized references for assessing
molecular stability in raw generated molecules.
Digital Discovery, 2025, 4, 3282–3291 | 3287
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Table 3: allowed valencies

This table summarizes the allowed valencies (i.e., number of
bonds including hydrogens) observed in valid GEOM-drugs
structures. It lists congurations by element and formal
charge. These values are used as a reference for atom-level and
molecule-level stability metrics.
Table 3 Valency configurations derived from the GEOM-drugs data-
set, organized by element and formal charge. Each cell lists the
allowed valencies (including implicit hydrogens) observed for a given
formal charge

Element
Charge
−2

Charge
−1

Charge
0

Charge
+1

Charge
+2

Charge
+3

H — — 1 — — —
B — 4 3 — — —
C — 3 4 3 — —
N 1 2 3 4 — —
O — 1 2 3 — —
F — — 1 — — —
Si — — 4 5 — —
P — — 3, 5 4 — —
S — 1 2, 3, 6 3 4 2, 5
Cl — — 1 2 — —
Br — — 1 2 — —
I — — 1 2 3 —
Bi — — 3 — 5 —

Table 5 Allowed valency combinations by element and number of
aromatic bonds. Each cell shows normal valencies for a given atom
type and number of aromatic neighbours (row) and formal charge
(column). “—” indicates no observed combinations

Element
#
Aromatic

Charge
−2

Charge
−1

Charge
0

Charge
+1

Charge
+2

Charge
+3

H 0 — — 1 — — —
B 0 — 4 3 — — —
C 0 — 3 4 3 — —

2 — 1 2, 1 1 — —
3 — 0 0 0 — —

N 0 1 2 3 4 — —
2 — 0 0, 1 0, 1, 2 — —
3 — — 0 0 — —

O 0 — — 2 3 — —
2 — — 0 — — —

F 0 — — 1 — — —
Si 0 — — 4 5 — —
P 0 — — 3, 5 4 — —
S 0 — 1 2, 3, 6 3 4 2, 5

2 — — 0 0, 1 — —
3 — — — 0 — —

Cl 0 — — 1 2 — —
Br 0 — — 1 2 — —
I 0 — — 1 2 3 —
Table 4: legacy and invalid valencies

This table contains valencies found in earlier versions of gener-
ative model evaluation pipelines, which include chemically
implausible or legacy entries due to preprocessing bugs or failed
optimization. It is frequently used to benchmark the quality of
generated molecules and identify invalid valency assignments.
Many recent studies reference or reuse this table directly.
Table 4 Historically used but chemically implausible valency config-
urations by formal charge. This reference table has been widely used
to assess molecular generative models. Values highlighted in bold
represent known incorrect or unstable configurations; values high-
lighted in italic were missing from historical tables but are observed in
the dataset

Element
Charge
−2

Charge
−1

Charge
0

Charge
+1

Charge
+2

Charge
+3

H — 0 1 0 — —
B — 4 3 — — —
C — 3 3, 4 3 — —
N 1 2 2, 3 2, 3, 4 — —
O — 1 2 3 — —
F — 0 1 — — —
Al — — 3 — — —
Si — — 4 5 — —
P — — 3, 5 4 — —
S — 1, 3 2, 6 2, 3 4 5
Cl — — 1 2 — —
Br — — 1 2 — —
Se — — 2, 4, 6 — — —
I — — 1 2 3 —
Hg — — 1, 2 — — —
Bi — — 3 — 5 —

3288 | Digital Discovery, 2025, 4, 3282–3291
Table 5: aromatic valency tuples

This table enumerates all observed combinations of aromatic
and non-aromatic bonds per element and charge in the dataset.
Each entry is represented as a tuple , where is the count of
aromatic bonds and is the total bond order from non-aromatic
bonds. These tuples capture valency patterns that are otherwise
ambiguous under standard counting, especially in polyaromatic
and heterocyclic systems.
Bi 0 — — 3 — 5 —
Appendix II: examples of fractured compounds in GEOM-
drugs

Together, these tables offer a robust and chemically grounded
framework for interpreting stability metrics and ensuring
consistency in the evaluation of 3D molecule generation pipe-
lines. Table 4 in particular is widely used in existing bench-
marking literature and reproduced here for completeness.
Appendix III: convergence analysis of evaluation sample size

To verify that our evaluation sample size (5k molecules) is
statistically adequate, we conducted a convergence analysis
using SemlaFlow trained on both kekulized and explicit-
aromatic variants of GEOM-drugs. As shown on Figure 4, we
evaluated ve independent 10k-molecule chunks and measured
means and standard deviations for all metrics across cumula-
tive subsamples. The differences in mean validity and stability
metrics between 5k and 50k (5× 1k vs. 5× 10k) were #0.25%,
well within the train-to-train variance observed for generative
models. This conrms that using 5k samples provides repre-
sentative metric estimates.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Mean and standard deviation of validity and stability metrics for the SemlaFlow model trained on kekulized versus explicit-aromatic
GEOM-drugs molecules. Each point represents the mean across five independent 10k-molecule chunks; lines show cumulative subsampling at
sizes from 1k to 10k per chunk. The std at 5k samples do not exceed 0.25%, demonstrating that 5k samples are sufficient to obtain stable
estimates of evaluation metrics.

Fig. 5 Comparative property distributions (log P, QED score, and aromatic ring counts) for molecules generated by EQGAT and SemlaFlow
models trained on kekulized versus explicit-aromatic GEOM-drugs datasets. No significant shifts are observed across these properties, indicating
that kekulization does not introduce bias in the learned chemical space representation.

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2025, 4, 3282–3291 | 3289
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Appendix IV: convergence analysis of evaluation sample size

We investigated whether kekulization biases downstream
learning by comparing property distributions of molecules
generated by EQGAT and SemlaFlow trained on Kekulized
versus explicit-aromatic GEOM-drugs. As shown on Figure 5, we
observed no signicant distribution shis for log P, QED
score, or aromatic ring counts. This is consistent with the fact
that RDKit’s aromaticity detection is a deterministic function of
molecular topology—aromaticity can be algorithmically derived
from connectivity and thus represents dependent rather than
independent information. Given GEOM-drugs’ large scale,
generative models have sufficient data to implicitly learn
aromaticity patterns, showing that kekulization does not
introduce meaningful bias.
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