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 Computation-Guided Exploration of The Reaction Parameter Space of 

N,N-Dimethylformamide Hydrolysis

Ignas Pakamorė†, Ross S. Forgan†

†WestCHEM School of Chemistry, University of Glasgow, Joseph Black Building, 

University Avenue, Glasgow G12 8QQ, UK

Abstract

Navigating the reaction parameter space can pose challenges, especially considering the 

exponential growth in the number of parameters even in seemingly straightforward chemical 

reactions or formulations. Consequently, recent research efforts have been increasingly 

dedicated to the development of computational tools aimed at facilitating the exploration 

process. Herein, we introduce ChemSPX, a Python-based program specifically crafted for 

exploring the complex landscape of reaction parameter space. We propose the use of the 

inverse distance function to map reaction parameter space and efficiently sample sparse 

regions. This is implemented in ChemSPX to allow the user to simply generate sets of reaction 

conditions that efficiently sample wide parameter spaces. In addition, the program includes 

tools necessary for the analysis and comprehension of the multidimensional parameter space 

landscape. The developed algorithms were utilized to experimentally investigate the hydrolysis 

of N,N-dimethylformamide (DMF), a commonly employed solvent, in the specific context of 

metal-organic framework synthesis. We use ChemSPX to generate batches of experiments to 

sample parameter space, starting from an empty space, but subsequently assessing 

undersampled regions. We use statistical analysis and machine learning models to show that 

addition of strong acids induces hydrolysis, generating up to 1.0% (w/w) formic acid. The 

results show that ChemSPX can generate datasets that efficiently sample parameter space, in 

this case allowing the user to distinguish the individual effects of five different physical and 

chemical variables on reaction outcome.
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Introduction 

The integration of advanced computational tools, driven by machine learning, artificial 

intelligence, and data science, has become pivotal in modern chemical research.1–3 The synergy 

between computational and experimental approaches facilitates a deeper understanding of the 

relationship between reaction parameter and chemical spaces.4 As the volume of synthetic and 

physical/chemical data burgeons, sophisticated computational tools equipped with machine 

learning algorithms play a crucial role in navigating and processing this information.5–12 The 

data-driven approach not only boosts research efficiency but also fosters innovation, steering 

the field towards more precise and accelerated methodologies.13,14 From an experimental 

perspective, a time- and resource-efficient method for exploring the vast reaction parameter 

space involves utilising a high-throughput synthesis approach.15,16 This technique allows for 

simultaneously testing multiple reaction conditions, significantly accelerating the exploration 

process and reducing the required resources. Manual strategies for probing parameter space 

typically follow the one-variable-at-a-time approach, by iteratively changing individual 

parameters.17

Over the past decade, algorithms for exploring reaction parameter space have emerged, 

encompassing machine learning-driven approaches or various alternative strategies.15,18,19 

Machine learning algorithms thrive with ample data, but the challenge lies in acquiring and 

ensuring the quality of such datasets. For example, literature-based synthesis databases suffer 

from inherent biases, where published research is not representative of all studies.20 This bias 

arises from factors such as the fear of journal rejection for negative results. Additionally, the 

presence of fraudulent manuscripts, as seen in cases of counterfeit publications in the field of 

metal-organic frameworks (MOFs), raises concerns about the reliability of data.21,22 

Anthropogenic biases, such as heuristics and social influences in chemical reactions, further 

impact data-driven planning efforts, hindering the objectivity of literature-based synthesis 

databases.23 Additionally, compiling such extensive databases can be complex and, at times, 

seemingly impossible.

In this study, we introduce the ChemSPX program, which facilitates the analysis and 

exploration of a predefined reaction parameter space autonomously, without dependence on 

prior knowledge or experimental outcomes. The search algorithm employs an inverse distance 
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function to maximise the separation between sampled reaction condition vectors in n-

dimensional parameter space, thereby enhancing exploration. The algorithm aims to 

methodically navigate through the parameter space, sampling a minimum number of unique 

reaction formulations that have not been explored before. Sequential sampling is focused on 

sparse regions of the parameter space with the highest potential for yielding novel and 

unexplored reaction conditions. This strategic approach aims to efficiently provide human 

researchers with a feasible number of experiments, streamlining the experimental process and 

maximising the information gained from each iteration. The primary motivation behind 

developing the ChemSPX program is to create a user-centric application that aids researchers 

working on small or medium-scale projects, especially in the absence of experiment 

automation.

We demonstrate the application of ChemSPX code by exploring the parameter space of N,N-

dimethylformamide (DMF) hydrolysis. DMF is a widely used aprotic solvent with a high 

boiling point (152.85 °C) and is miscible with water and other solvents.24,25 Its versatile 

physical and chemical properties make it a common choice in both small-scale and industrial 

chemical processes; it has been widely applied to the synthesis of MOFs, for example. A key 

characteristic of DMF is its decomposition under certain conditions. Upon heating, DMF 

undergoes decarbonylation, producing carbon monoxide (CO) and dimethylamine (DMA).26 

Additionally, in the presence of water, DMF undergoes gradual hydrolysis, resulting in the 

formation of formic acid (FA) and DMA.27,28 Therefore, these two byproducts, DMA in 

particular, serve as predominant impurities in DMF, contributing to its distinct amine odour. 

Aqueous DMF hydrolysis can be accelerated with an acid or base catalyst.29–31 MOF syntheses 

typically employ neat DMF, but commonly used additives like acidic modulators and co-

solvents, such as water,32 are expected to promote DMF hydrolysis. The resulting products play 

crucial roles in influencing the kinetics of MOF formation: FA acts as a modulator and/or a 

source of proton, while DMA serves as a Brønsted base, deprotonating carboxylate ligands.33 

The slow release of base upon gentle heating allows pH control in solvothermal reactions, 

which are widely utilised in synthesising various MOF materials, for example, the well-known 

MOF-5.34 
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The hydrolysis mechanism of DMF under acidic conditions has been thoroughly studied and 

understood.30,35–37 Typically, DMF hydrolysis is qualitatively assessed in the literature through 

NMR spectroscopy. However, only a limited number of studies have specifically tackled the 

quantification of the generated products, formic acid and dimethylamine.38,39 The complexity 

of this reaction, influenced by numerous parameters, necessitates a comprehensive 

investigation to identify optimum conditions that minimise byproduct yield. Herein, we 

exemplify the power of the ChemSPX program to analyse and sample parameter space in the 

hydrolysis of DMF under conditions relevant to MOF synthesis.
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ChemSPX Design and Implementation

The design of the ChemSPX program necessitates methodology to parse information about 

reaction parameter spaces into mathematical functions which become key features of the 

software, all of which are detailed below.

Distance Function. Chemical reactions can be conceptualised within a mathematical function 

space, where a set of parameters x is considered. Within the defined domain (𝑥 ∈ 𝑋𝑛), for each 

parameter choice, there exists an associated experimental response 𝑓(𝑥). The mapping of 𝑓(𝑥) 

affords the analytical assessment of reaction coordinates. In the context of optimization, the 

response 𝑓(𝑥) can be minimised or maximised by varying a set of parameters x. Algorithms 

such as Bayesian optimizers (BOs) or genetic algorithms (GAs) can explore the landscape of 𝑓

(𝑥) and determine optimal reaction parameters.15,19,40,41 The majority of algorithms reported in 

the literature depend on experimental responses to serve as targets (𝑓(𝑥)). In contrast, in this 

study we utilize mathematical assessments of reaction parameter coordinates as the target for 

the optimisation algorithm.

The diverse reaction conditions can be visualized in an n-dimensional parameter space through 

multidimensional vectors. The mathematical distance between vectors (Equation 1), signifies 

the difference between two sets of reaction conditions. This distance metric quantifies the 

dissimilarity or separation between the multidimensional vectors 𝑢 and 𝑣, providing a measure 

of how distinct or similar the corresponding reaction conditions are.

𝑑 𝑢,𝑣 = (𝑢1 ― 𝑣1)2 +  (𝑢2  ―  𝑣2)2  + … + (𝑢𝑛  ―  𝑣𝑛)2(1)

Therefore, the probability of two reaction conditions producing identical results is proportional 

to the inverse of the distance between their respective multidimensional vectors (Equation 2).

𝑝 𝑢 = 𝑣 ∝ 1

𝑑 𝑢,𝑣
(2)

This mathematical relationship underscores the concept that closely positioned points in the 

parameter space are associated with more comparable reaction conditions, while greater 

distances suggest greater dissimilarity or divergence in the outcomes. Therefore, to select 

reaction conditions from the parameter space with the lowest likelihood of producing identical 
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or similar outcomes, it is crucial to maximise the spatial distance between the corresponding 

vectors.

Inverse Distance Function. In this work, we propose the use of an inverse distance function, 

denoted as 𝜙, which assesses the average distance between vector 𝑢 and its N nearest 

neighbours within the defined reaction parameter space (Equation 3).

𝜙  𝑢 =
1
N

N

𝑖=1

1

𝑑 𝑢, 𝑣𝑖
𝑏 =  

1
𝑁

𝑁

𝑖=1
𝑑 𝑢, 𝑣𝑖

―𝑏
(3)

Applying this concept, we sample new reaction conditions from regions characterized by the 

lowest 𝜙 values, which indicate the highest probability of producing diverse reaction outcomes.

The magnitude of the inverse distance measure is determined by two variables: the number of 

nearest neighbours, considered N; and the exponent, b. Adjusting these two parameters alters 

the distribution landscape of 𝜙 in the parameter space (Figure 1a).

Figure 1. a) An example of a two-dimensional parameter space of randomly generated sample points 

overlaid with the distribution of calculated inverse distance function 𝜙 values. b) The distribution of 

the normalized inverse distance function 𝜙 (where 𝜙 ∈ [0,1]) as a function of distance with various 

reciprocal powers. c) The distribution of 𝜙 varying with the number of nearest neighbours across 

different reciprocal powers.

The reciprocal power b serves as a critical factor in determining the proximity threshold 

between the reaction vectors. As the reciprocal power increases, the sharpness of the change in 

𝜙 values at low distances diminish (Figure 1b). This implies that at higher values of b, reaction 

condition vectors can be sampled at closer proximities. Furthermore, increasing the number of 

nearest neighbours N results in a reduction of 𝜙 values (Figure 1c). In other words, as N 
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increases, the impact of nearby neighbours on the inverse distance function 𝜙 diminishes. 

Therefore, to evaluate unexplored local regions effectively, careful tuning of the N parameter 

is essential. Overall, while reciprocal power allows control over the proximity of vectors, the 

number of nearest neighbours steers 𝜙 towards local minima in the parameter space.

Parameter Space Exploration Algorithm. To initially populate the parameter space, 

ChemSPX samples M reaction parameter vectors within the designated parameter space, 

employing user-selected techniques such as Latin Hypercube Sampling (LHS) or random 

sampling methods. Subsequently, the average inverse distance function, ⟨𝜙⟩, is calculated to 

assess the distribution of the sampled vectors across the space. To refine this distribution, the 

algorithm optimises the vector coordinates to minimise the global ⟨𝜙⟩ value, thus encouraging 

convergence of the sampled data points and maximising the overall spacing in the parameter 

space. To achieve this, a stepwise strategy is implemented in the iterative process of 

exploration. Every move is governed by the step size parameter χ. In each move, a subspace B 

of a reaction vector A is constructed. The upper and lower boundaries of this subspace are 

defined by adding and subtracting the step size χ value (Equation 4).

𝐵 = [𝐴 ― 𝐴𝜒, 𝐴 + 𝐴𝜒].(4)

After constructing the subspace hyperrectangle, an optimisation algorithm is employed to 

minimise 𝜙 within the vicinity of B and identify a new vector with the minimum 𝜙 value. 

The implemented optimization algorithm, as illustrated in Figure 2, iteratively focuses on 

optimizing the coordinates of individual vectors within the sampled set. By systematically 

refining each vector's coordinates, the algorithm gradually improves the overall distribution 

and convergence of the sampled data points, leading to enhanced representation and 

effectiveness within the parameter space. At each algorithm iteration step, the average 

ensemble properties (denoted in ⟨⟩) of sample parameter vectors are calculated.
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Figure 2. The reaction parameter space sampling algorithm implemented in ChemSPX.

The success of the search of sparse regions is defined by three convergence criteria: the average 

inverse distance function; the average change in inverse distance function; and the average 

sample vector change (Equations 5-7).

𝑚𝑖𝑛
1
𝑀 ⟨𝜙 ⟩ (5)

𝑚𝑖𝑛
1
𝑀 Δ⟨𝜙 ⟩ ,(6)

𝑚𝑖𝑛
1
𝑀 ⟨|Δ𝑣| ⟩ .(𝟕)

The vector change is determined by computing the difference between vectors at iteration i and 

i+1 and expressed as the modulus of the resultant (Equation 8).

|Δ𝑣| = |𝑣𝑖 ― 𝑣𝑖+1|(8)

This parameter enables the assessment of whether the vector has converged in specific 

coordinates, and hence if the algorithm can be terminated. The convergence of the vector 

occurs when its coordinates either remain unchanged or exhibit minimal changes between 

successive iteration steps,

It is also possible to use ChemSPX to search and optimise an existing parameter space that has 

been populated manually or by alternative computational methods. When employing a pre-
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populated parameter space for analysis and sampling, the existing reaction vectors remain static 

while the sampled vectors are optimised in relation to each other and the static vectors. This 

optimization process aims to enhance the coherence and distribution of the sampled vectors 

within the parameter space, ensuring that they align effectively with the existing data points 

while also maintaining appropriate spacing and coverage across the entire space. 

Algorithm Performance Analysis. To investigate the impact of step size on the convergence 

behaviour of three distinct mathematical functions - Ackley, Matyas, and Himmelblau - the 

parameter χ was systematically varied across four values: 0.01, 0.1, 0.5, and 1 (see SI section 

S1). For each configuration, 150 parameter space exploration iterations were conducted to 

allow sufficient opportunity for convergence. An initial set of 10 data points was generated 

using the Latin Hypercube Sampling (LHS) method, chosen for its ability to provide a well-

distributed representation of the input space. The primary objective was to evaluate whether 

all sampled points converged to a consistent minimum. For the Himmelblau function, particular 

attention was given to assessing the algorithm’s capacity to simultaneously identify all four 

known global minima.
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Figure 3. Visual maps of the three investigated functions - Ackley, Matyas, and Himmelblau - depicting 

the distribution of minima and maxima across the input space. The plots below illustrate 𝜙 convergence 

for the respective functions: a) Ackley, b) Matyas, and c) Himmelblau.

The plots presented in Figure 3, illustrating the minimization of the test functions, reveal the 

significant influence of the step size parameter χ on the convergence behaviour. In particular, 

for the Ackley function - known for its complex landscape with numerous local minima - the 

Genetic Algorithm optimizer exhibits difficulty in locating the global minimum when smaller 

χ values are used. In contrast, for the Matya’s and Himmelblau functions, convergence to the 

global minimum is consistently achieved when the step size is greater than or equal to 0.1. 

These observations highlight the critical role of appropriately tuning the χ parameter to guide 

the optimization process toward either local or global convergence.

Boundary Conditions of the Search Space. While the proposed reaction parameter space 

sampling algorithm operates without explicit boundary conditions by default, it is advisable to 

establish constraints on vector sampling to facilitate convergence. Setting boundary conditions 

is recommended; aligning them with the permissible maximum and minimum values of the 

parameters is particularly crucial. With boundaries set, any parameter vector surpassing the 

predefined limits undergoes correction by relocating it within the proximity of the boundary 

conditions. This correction involves adjusting values that exceed the specified limits to the 

maximum allowable values for the respective parameter. 
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Void Search Algorithm. An additional feature of the ChemSPX program is the ability to search 

existing datasets for large sparse regions, or voids, which can form due to the sampling 

approach or data point distribution. To identify and explore these regions, a void search 

algorithm was designed. The backbone of this method is a genetic algorithm that operates 

within the boundaries of the defined parameter space. In this case, the objective function 

constructs an n-dimensional hypersphere (𝑆𝑛) of radius r around centre point Z and counts the 

number of reaction vectors A inside it. The genetic algorithm optimizer will search for a 

minimum of data points falling within the defined hypersphere (Equation 9).

𝑚𝑖𝑛
𝑖+1

𝑖=1
𝐴𝑖 ∈ 𝑆 (9)

The new sampled reaction vector is the centre point Z of a hypersphere S, encompassing the 

smallest number of reaction vectors A.  In the consecutive sampling, all parameter space is 

explored with new data points considered. The search radius can be manually controlled and is 

defined by Equation 10:

𝑟 =
𝑖+1

𝑖=1
(𝑎𝑖 ―  𝑧𝑖)2(10)

where Z is the hypersphere centre point (Equation 11).

𝑍𝑖 = {𝑧0,𝑧1,…,𝑧𝑛}(11)

The radius of the hypersphere can be tuned based on the previously discussed vector change 

factor |Δ𝑣| (Equation 8). The size of the defined hypersphere affords control over the regions 

that are explored within the parameter space. The more vacant regions will fit a larger 

hypersphere and vice versa. 

When compared to the aforementioned inverse distance function method, the void search 

algorithm exhibits a higher level of stochasticity. As the initial positions for the genetic 

algorithm are randomly determined, there is no guarantee of convergence to identical 
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coordinates between iterations. Therefore, the void search algorithm proves effective in 

discovering unsampled regions while retaining a stochastic nature that reduces bias in 

parameter selection. The void search algorithm can be seen as an extension of the inverse 

distance function, facilitating the rapid identification of large unpopulated parameter space 

regions.

The ChemSPX Package. The parameter space sampling algorithm using the inverse distance 

function has been integrated into the ChemSPX (Chemical Space Explorer) Python package. 

ChemSPX has a user-friendly interface for both the analysis and sampling of the reaction 

parameter space. The package encompasses a variety of implemented functionalities (see SI, 

Section S2), making it suitable for straightforward applications. This integration enhances the 

package's accessibility, allowing researchers to efficiently explore reaction conditions. In 

addition, the ChemSPX package includes LHS and LHSEQ initial sampling algorithms, the 

void exploration algorithm, and tools for parameter space analysis (see SI, Section S4). 

Reaction Parameter Space Exploration of DMF Hydrolysis

To validate the ChemSPX program, the hydrolysis of DMF was selected as a model reaction, 

being of specific interest to our program of research examining the self-assembly of MOFs.32 

In the context of MOF synthesis, DMF hydrolysis can be influenced by five key chemical and 

physical parameters: water content, quantity of catalyst (in this case acid), pKa of the catalyst, 

reaction temperature, and reaction time (see SI, Section S6). These were used as variables in 

the exploration of the reaction parameter space. To quantify the extent of how much formic 

acid is generated in this reaction and establish reliable quantification methods, initial 

experiments were manually selected, using concentrated (37%) hydrochloric acid as a catalyst. 

Two distinct temperature modes were investigated, each subjected to evaluation across four 

different time intervals. 1H NMR spectroscopy was shown to be feasible for the quantification 

of formed formic acid, which reached a maximum of 0.5% (w/w) under these conditions and 

therefore used as a measurement of DMF hydrolysis (see SI, Section S7). Plots of formic acid 

against reaction time exhibit logarithmic behaviour, allowing the identification of a cut-off 

point for the investigated time range (see SI, Section 8).
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Parameter Space Description and Sampling. Having established proof-of-principle manually, 

we comprehensively explored the broader impact of reaction parameters on DMF hydrolysis 

reaction by using ChemSPX to undertake an in-depth study of the parameter space. The choice 

of primary parameters, and their respective ranges, were influenced by commonly employed 

solvothermal synthesis procedures in the realm of metal-organic frameworks (Table 1).32 In 

particular, it is reflected in the choice of DMF/acid and DMF/water volume ratios, spanning 

from 1:0 to 1:0.5. The acid catalysts selected are common modulators used in MOF synthesis: 

hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid, dichloroacetic acid, 

chloroacetic acid and formic acid. Each acid is characterized by its pKa value in the parameter 

space calculations, covering a range between -6.3 and 4.76.

The DMF hydrolysis parameter space was sampled using the developed ChemSPX package. 

Two sampling methods were employed to search the parameter space: discrete and uniform 

(outlined in Table 1). For experimental simplicity, the DMF volume was kept constant. For the 

time parameter, a mixed sampling method was used, obtaining data in short (1 – 12 h, uniform) 

and long (24 – 168 h, discrete) periods. Additionally, a uniform method was applied to sample 

continuous parameters of moles of an acid catalyst and water volume. Taking all parameters 

into account, there are approximately 672,000 possible reaction conditions. Hence, in silico 

reaction condition sampling proves instrumental for a more efficient and focused examination 

of the parameter space.
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Table 1. Boundaries of investigated parameter space and variable sampling methods. 

Boundary values

Parameter Minimum Maximum Sampling method

DMF (mL) 8 8 Constant

H2O (mL) 0 4 Uniform

Acid (mol) 0 0.05 Uniform

Acid pKa -6.3 4.76 Discrete

Temperature (oC) 25* 150 Discrete

Time (h) 1 168 Uniform/Discrete

*Room temperature. 

The reaction formulations were systematically sampled within the specified bounds, as outlined 

in Table 1. The complete reaction parameter space sampling was executed in five batches 

(Table 2). Variations in batch sizes were employed to track improvements in both the 

correlation between generated formic acid and reaction parameters, as well as enhancements 

in machine learning model performance (vide infra). The first batch of 50 experiments were 

selected using LHS and kept exempt from equilibration by the inverse distance function, thus 

creating a pre-populated parameter space. To exemplify the features of ChemSPX, the 

subsequent batches 2-5 were samples by both the LHS method (batches 2 and 3) and the void 

search algorithm (batches 4 and 5). Every successive set of reaction conditions generated by 

ChemSPX was added to the pre-existing reference dataset, thereby blocking already explored 

regions. The initial formulations acquired in batches 2-5 were refined through additional 

iterations utilising the inverse distance function 𝜙, aiming to identify its minimum. The 𝜙 

values for individual data points were calculated by considering their four nearest neighbours. 

The reciprocal power b was set to 1 aiming to maintain a larger distance between sampled 

reaction parameter vectors. A genetic algorithm optimiser, configured with optimisation step 

size χ set to 0.01, was employed to locate the minima of the 𝜙 function. Genetic algorithm 

optimizations consisted of 80 cycles with a population size of 100, while other parameters were 

maintained at default program settings (see SI, Section S3). A total of 120 inverse distance 

function optimisation cycles were performed, with ⟨𝜙⟩, ⟨Δ𝜙⟩, and ⟨|Δ𝑣|⟩ parameters achieving 

convergence.
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Table 2. Batch-to-batch initial sampling methods, batch sizes and whether inverse distance search 

algorithm was used. 

Batch Size

ChemSPX 

initial sampling 

method

𝜙 minimisation 

applied

1 50 LHS No

2 20 LHS Yes

3 21 LHS Yes

4 21 Void Yes

5 40 Void Yes

To evaluate the extent of exploration within the defined parameter space, we employ the Monte 

Carlo integration algorithm (refer to SI, Sections S8 for detailed methodology). The computed 

exploration fraction quantifies how much of the parameter space has been covered, varying 

between 0 (entirely unexplored) and 1 (fully explored). In the consecutive sampling of the 

parameter space, from batches 1 to 3, the fraction of the explored parameter space increases 

sharply to 0.55 with 91 sampled reaction conditions (Figure 4). Furthermore, the exploration 

rate drops sharply with the addition of an extra 61 reaction formulations. These observations 

indicate that most of the reaction parameter space is explored with batches 1 to 3. The reduced 

exploration rate implies that beyond batch 4, there is a transition from exploration to 

exploitation of the parameter space. The Monte Carlo calculations reveal that 57% of the 

parameter space has been explored and showcase the effectiveness of the ChemSPX algorithm 

in uncovering under-sampled regions of the parameter space.
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Figure 4. The computed fraction of explored parameter space is expressed as a function of the total 

number of sampled reaction conditions. The exploration rate is defined as the change in a fraction of 

exploration per unit change in the total number of sampled reaction formulations.  

Collection of Experimental Data. All in silico generated reaction formulations were tested 

manually in the laboratory (see SI, Sections S6). All reactions were carried out in glass vials, 

or hydrothermal reactors for temperatures larger than 100 oC. The content of the formic acid 

formed (%FA, w/w) was measured using quantitative 1H NMR spectroscopy, by comparison 

of integral ratios from signals from a known amount of tetramethylsilane (TMS) reference. The 

amount of formic acid per sample was determined using Equation 12.

%𝐹𝐴(𝑤/𝑤) =
𝑚(𝐹𝐴)

𝑚(𝑠𝑎𝑚𝑝𝑙𝑒) ∙ (12)

Each experiment was carried out in triplicate to obtain the standard deviation of the 

measurement. 

Prior to analysis of the data, a systematic assessment of the impact of 1H NMR spectroscopic 

measurement errors on the entirety of our experimental data was carried out. The analysis 

procedure demanded a meticulous level of precision in both the preparation of the deuterated 

solvent containing the standard reference (TMS) and the analyte. Despite the potential for 

errors during sample preparation and measurement, the error distribution across the entire 

dataset reveals a remarkably high level of measurement accuracy. As depicted in Figure 5a, a 
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significant proportion of the samples exhibit low standard deviation values, underscoring the 

precision of our measurements. 

Figure 5. a) The distribution illustrates the average %FA and standard deviation obtained from three 

independent NMR measurements, providing insights into both central tendency and variability. b) The 

distribution of fractional errors, plotted against the generated formic acid, showing larger errors only 

occur when minimal formic acid is formed, towards the detection limit of NMR spectroscopy. c) 

Histogram of all fractional errors (bin size = 0.025) showing that the vast majority of fractional errors 

are small. Errors are plotted for the 25 manually selected initial experiments and the 152 experiments 

sampled by ChemSPX.

For a more nuanced measurement error analysis, we computed fractional errors by dividing 

standard deviation values by the average %FA values of a single experiment (Figure 5b). The 

obtained data revealed a discernible trend: as the %FA amount in the measured samples 

decreases, fractional errors exhibit an increasing pattern. Notably, most samples demonstrate 

fractional values around 0.2, indicating a higher level of accuracy (Figure 5c). However, a 

small subset of samples, found in the lower %FA range, exhibit higher fractional error values 

due to limitations in the detection of small quantities of material by 1H NMR spectroscopy. 

This observation is attributed to peak merging, coupled with low signal intensities, leading to 

reduced accuracy in peak integration (see SI section S8). Importantly, these samples constitute 

a minor proportion of the overall dataset: approximately 5%.

Analysis of Experimental Data. A total of 152 experiments, as selected across five batches by 

ChemSPX, were conducted in triplicate, encompassing 456 1H NMR spectroscopic 

measurements. The complete dataset consists of 7 parameters (features), making it challenging 

for straightforward analysis. Therefore, several methods were used to determine underlying 

trends in DMF hydrolysis reactions. 
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The influence of each batch, and consequently the sample size, on the overall dataset was 

assessed using Pearson's R correlation measure. The extended Pearson’s correlation matrix and 

parameter pair plot can be found in the SI, Section S9. Initially, it was noted that the water 

parameter exhibited a relatively low correlation coefficient, which was counterintuitive. 

Further examination of the data revealed the need to account for water originating from 

aqueous acid solutions, which was not captured by the initial parameter space generation. 

Corrections were specifically applied to reactions involving 37% HCl and 70% HNO3 acid 

catalysts to account for the water in these solutions. The post-correction correlation analysis 

on the overall data demonstrated a significant improvement in the R factor, increasing from 

0.16 to 0.37 for all data. 

Machine Learning Assisted Data Analysis. To gain deeper insights into the importance of 

parameters or features in our DMF hydrolysis dataset, various machine learning (ML) models 

have been evaluated to determine their ability to capture chemical intuition. Herein, the data 

obtained from the initial experiments was combined with the overall data set, yielding a total 

of 177 samples in triplicate. In this dataset, tree-based machine learning models have displayed 

superior performance compared to linear regression and support vector regressor model (see 

SI, section S10). The selected models were tested using a leave-one-out cross-validation 

strategy to assess prediction accuracy (for more detailed model assessment, please see the 

supporting information section S10). LightGBM exhibited the highest prediction accuracy, 

achieving an R2 value of 0.73 and a mean absolute error of 0.08 (Figure 6a). The performance 

of the LightGBM model tends to decrease in regions of low certainty (%FA ≥ 0.6) and can be 

attributed to the lower number of data points available to train the model. This is notable for 

the outlier lying beyond 1% (w/w) FA in the residual plot. 

SHAP analysis was conducted to deepen our understanding of the resultant model. This method 

provides insights into feature contribution towards the machine learning model predictions, 

offering a nuanced understanding of its behaviour.43 Positive SHAP values indicate a feature's 

contribution to increasing the prediction output, negative values indicate a contribution to 

decreasing the prediction output, and values close to zero signify minimal influence on the 

prediction. SHAP values correlate with real processes by revealing the impact magnitude of 

each feature on the model's predictions, helping to understand how changes in input variables 

affect the outcome, which can align with actual mechanisms or behaviours observed in the real-

world process.6
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Figure 6. Summary of the LightGBM machine learning experiment: a) residual plot comparing true 

and predicted %FA values, b) mean absolute SHAP value plot indicating feature importance, c) SHAP 

value distribution for the input variable acid moles, and d) SHAP value distribution for the acid pKa 

input.

Upon analysing the data, it becomes evident that the concentration of acid moles and the pKa 

value emerge as pivotal factors shaping the predictions (Figure 6b). In contrast, water volume, 

temperature, and duration exhibit diminished significance in influencing the outcomes. These 

observations align with findings from Pearson’s correlation analysis (see SI, Section S12), 

which indicated significant correlations between acid moles and pKa values and the percentage 

of formic acid (%FA). In contrast, water volume, temperature, and time features exhibit a 

relatively minor influence on the model's predictions. Notably, the removal of these parameters 

does not alter the accuracy of the model, underscoring their limited significance in the 

predictive framework. 

Furthermore, the calculated SHAP values were analysed for each model input or feature 

individually (Figures 6c and 6d; other plots are given in SI, Section S10). As anticipated, all 
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features demonstrate consistency with the correlations observed between the generated formic 

acid and the various reaction parameters.  In addition, the obtained LightGBM regression 

model was utilised to predict the distribution of formic acid in the parameter space. By 

evaluating the determined principal parameters, discrete regions can be identified for 

estimating the yield of %FA (see SI, Section S10). Again, the ability to unveil these subtle 

effects of modifying specific variables on the outcome of the DMF hydrolysis reaction 

underpin the utility of ChemSPX in efficiently searching parameter space.
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Conclusions

In this study, we introduce an inverse distance function, 𝜙, as a metric for evaluating the 

novelty of sampled reaction condition vectors. We have demonstrated the sensitivity of the 

proposed 𝜙 function in locating new reaction vectors within under-sampled regions of the 

reaction parameter space, and used it to underpin the ChemSPX program, which is tailored for 

user-targeted needs, facilitating straightforward applications in research. Within the context of 

our study, we illustrated the practical applications of the developed code by employing it to 

sample the parameter space of the DMF hydrolysis reaction. By analysing the data collected 

from the hydrolysis experiments put forward by ChemSPX, we were able to construct a 

sophisticated ML model that enhances our comprehension of how five individual parameters 

impact the reaction. Notably, the pivotal parameters influencing the hydrolysis reaction include 

the acid catalyst amount and its pKa. The models derived indicate that the percentage of formic 

acid (%FA) can be diminished by minimizing the quantity of water and acid present, as well 

as by increasing the pKa value of the acid catalyst. These findings have significant implications 

for the solvothermal synthesis of metal-organic frameworks, where formic acid can play a 

significant role (both positive and negative) in formation of desired phase and/or control of 

physical properties such as particle size. Moreover, our demonstration of the machine learning 

capability to capture chemical intuition implies that obtaining a more robust model with 

enhanced predictive accuracy for %FA generated during the DMF hydrolysis reaction is 

achievable with a larger dataset. We hope that the ChemSPX program – available freely for the 

chemical community – will become another useful resource in the ongoing digitisation of the 

field.
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Code and Data Availability 

The ChemSPX code and machine learning code are available at:

https://github.com/ignaspakamore/ChemSPX

https://github.com/ignaspakamore/dmf_hydrolysis  

The collected experimental data is provided in DMF_hydrolysis_data.csv and 

DMF_hydrolysis_data_water_updated.csv as supporting files. The second file includes revised 

water quantities, adjusting for the additional water contributed by diluted acid solutions. All of 

the data collected in this work can be accessed on  https://researchdata.gla.ac.uk/id/eprint/1977

(https://doi.org/10.5525/gla.researchdata.1977).
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Data Availability Statement

The developed ChemSPX code is publicly available on the GitHub repository: 

https://github.com/ignaspakamore/ChemSPX. The code and data used for DMF hydrolysis 

experiment analysis and machine learning modelling are available on the GitHub repository: 

https://github.com/ignaspakamore/dmf_hydrolysis. All of the data collected for this work is 

deposited within the University of Glasgow and can be accessed using the following DOI 

https://doi.org/10.5525/gla.researchdata.1977. In addition, we attach data files as supporting 

information. 

27th of May 2025
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