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Optimal message passing for molecular prediction
is simple, attentive and spatial

Alma C. Castafieda-Leautaud & *2 and Rommie E. Amaro & *P

Strategies to improve the predicting performance of Message-Passing Neural-Networks for molecular
property predictions can be achieved by simplifying how the message is passed and by using descriptors

that capture multiple aspects of molecular graphs. In this work, we designed model architectures that

achieved state-of-the-art performance, surpassing more complex models such as those pre-trained on

external databases. We assessed dataset diversity to complement our performance results, finding that

structural diversity influences the need for additional components in our MPNNs and feature sets. In

most datasets, our best architecture employs bidirectional message-passing with an attention

mechanism, applied to a minimalist message formulation that excludes self-perception, highlighting that

relatively simpler models, compared to classical MPNNs, yield higher class separability. In contrast, we

found that convolution normalization factors do not benefit the predictive power in all the datasets

tested. This was corroborated in both global and node-level outputs. Additionally, we analyzed the
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influence of both adding spatial features and working with 3D graphs, finding that 2D molecular graphs

are sufficient when complemented with appropriately chosen 3D descriptors. This approach not only
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1 Introduction

A neuron in deep learning (DL) is simply a linear equation, but
when multiple neurons join together with an activation func-
tion (e.g, Sigmoid or ReLu) they form a non-linear trans-
formation. Supported by the universal approximation theorem,
neural networks (NNs) can virtually adapt to any kind of data."

Graph Neural Networks (GNNs) rely on neural networks to
operate on graph-structured data.”> Since molecules are intrin-
sically graphs, where atoms are nodes and bonds are edges,
GNNs are capable of learning any molecular structure and
transform it into separable patterns, facilitating tasks such as
toxicity prediction, activity classification or atom-level predic-
tions.> GNNs have become widely applied in medicinal chem-
istry since the re-purposing of Halicin, a newly discovered
antibiotic using a directed Message-Passing Neural Network
(MPNN).*

MPNNs are a type of GNN, where the “message” concept
refers to the metadata abstracted from each atom (and some-
times edges) and passed iteratively to adjacent nodes using
a mathematical operation that combines each node embedding
into an output of defined size. This operation is known as the
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preserves predictive performance but also reduces computational cost by over 50%, making it
particularly advantageous for high-throughput screening campaigns.

aggregation function.” This function imposes a direction
possibly harming the molecular representation from a chemical
point of view. Molecules lack a defined start and end, making
the imposition of an A-to-B connection counterintuitive. Addi-
tionally, covalent bonds are fundamentally symmetric, repre-
senting mutual interactions rather than a one-way flow of
information. One strategy to circumvent directionality in
MPNNS s is to aggregate the message in both directions for each
node, effectively obtaining a bidirectional message passing.

MPNNs are usually classified into three main flavors:*
Message-Passing where nodes generate messages based on
their own features and those of their neighbors, aggregate
incoming messages, and update their representations through
learnable functions allowing learning relational inductive bi-
ases.>” The second includes Graph Attention Networks (GATs),
which incorporate attention weights during data transfer
between nodes.*® The last flavor is constituted by Graph Con-
volutional Networks (GCNs) which exploit convolution
normalization to add a penalty on highly connected atoms.*

We noticed that the combination of the three flavors into
hybrid architectures is mathematically feasible and could
exploit the advantages that each method has to offer. Addi-
tionally, Message-Passing can be simplified by avoiding the
insertion of raw self-nodes after message processing. We
hypothesize that eliminating redundant feature amplification is
unnecessary for small graphs, such as molecules, which typi-
cally have 20-70 heavy atoms."*

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://crossmark.crossref.org/dialog/?doi=10.1039/d5dd00193e&domain=pdf&date_stamp=2025-11-02
http://orcid.org/0009-0002-6287-3811
http://orcid.org/0000-0002-9275-9553
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00193e
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD004011

Open Access Article. Published on 16 October 2025. Downloaded on 11/8/2025 7:58:46 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

Traditionally, GNNs represent molecules using 2D features
including atomic number, hybridization, bonds conjugation
states, bond types, number of hydrogen bond donors and
acceptors, fraction C sp® and log P.">*7 The use of these types of
features is probably due to the ease of extraction provided by
RDKit modules, which we have noticed do not include chemi-
cally meaningful element-like descriptors such as van der Waals
radius, electronegativity, and dipole polarizability."”* While
these approaches are capable of encoding atom connectivity,
they fail to capture stereochemical properties critical for drug
discovery such as steric hindrance and radius of gyration.
Stereochemistry is crucial when designing new drugs, as even
a single chiral center can significantly influence potency toward
a target of interest.”

In this study, we: (1) constructed MPNNs with global and
node-level outputs to analyze their performance, (2) offer a re-
interpretation of message-passing in MPNNs by means of
modifying how the message is passed and assessing node self-
perception, attention and convolution mechanisms and (3)
evaluated novel 3D features, widely used 2D features and added
element-like 2D features on three different datasets applied to
benchmark performance on drug-discovery campaigns.

Finally, we make available a code that readily reads and
transforms molecules in SMILES (Simplified Molecular Input
Line Entry System) format to 3D graphs with an option to
visualize predictions at the node level using colormaps, helping
to interpret the patterns recognized by the deep learning model,
effectively facilitating machine generating insights for
chemists.

2 Theoretical foundations of graph
neural networks as molecular
representations

2.1 Directed and undirected graphs

We can mathematically represent a directed graph in terms of
the number of edges (i = 1, ..., N¢), where information flows
from source (s;) to destination nodes (d;) and a collection of
global (g) and edge (e;) features are included:

G = (g.epsindj)i1,...N, 6))]

The connectivity map is stored in an adjacency matrix A € R™",
which, in the case of a molecule, is represented by a square matrix
with a length equal to the number of constituent atoms.

One way to artificially create an undirected graph in MPNNs
is to create a symmetric adjacency matrix. Here, for every edge
(siy d;) there would be a corresponding reverse edge (d;, ;).
Alternatively, a two-way direction (bidirectional) can ensure that
the source would also perceive the destination nodes s; — d;
and d; — s;. An overlooked aspect of the message concept in
MPNNs is the notion of the self-node. This is particularly useful
for handling vague node representation caused by large graphs
where information vanishes as it propagates. To include the
self-nodes in the adjacency matrix A, we can modify it by adding
an identity matrix 7 to A. Alternatively, node features can be
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concatenated into the aggregated messages to ensure self-
perception is retained.

2.2 Properties of the GNNs

The architecture of a GNN must satisfy certain conditions to
preserve its structural integrity during data processing:

2.2.1 Permutation invariance. Indicates that the result
after a permutation operation remains unchanged. This means
that the function output is independent of the order of the data
input. Examples of such functions include summation, aver-
aging, and maximization, which are termed “aggregation
functions” xxx.® In terms of the adjacency matrix 4, the
permutation matrix p, acting on the node features vector X, is
permutation invariant if:

SflpX.pAp") = fiX,4) (2)

where the term pAp” represents the aggregation operation
acting on the matrix A.

2.2.2 Permutation equivariance. This property ensures that
any permutation applied to the input is reflected in the output
in the same manner. Permutation equivariant functions can be
represented as ¢.° In terms of A, we can express the equivariance
condition as:

fpX.pAp") = ¢fiX.A) (3)

This property has the advantage of incorporating a sense of
locality, ensuring that nearby processed nodes exhibit similar
transformations, ie., $(x;) = ¢(x;). Convolutional Neural
Networks (CNNs) serve as a prominent example of permutation
equivariant operators.>

2.2.3 Relational inductive bias. Means that locality is
reinforced by imposing constraints on interacting nodes during
the learning process.” Under this context, information is biased
toward learning from connected nodes, a key characteristic of
Message Passing Neural Networks (MPNNs), though not exclu-
sively so. Molecules particularly benefit from this property, as it
enables the detection of functional groups associated with
specific chemical properties, such as solubility or toxicity.

2.3 Defining GNNs

Having listed the characteristics that GNNs must obey, allows
us to introduce a mathematical expression to formalize them. A
minimal expression for a GNN algorithm that operates on
nodes only, f{x), is:

fx)=¢ (xi, ZX/) (4)

where the target node (x;) is aggregated to node x; and ¢(x) could
be a multilayer-perceptron (MLP). Additionally, global u and
edge e;; features can be incorporated. An example could be:

f(X) _¢<xi>2(xj»eijvu)> (5)

Jen;
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GNN architectures can be categorized into three main types:*
2.3.1 Convolutional GNNs. Convolutional GNNs, such as
Graph Convolutional Networks (GCNs),'* employ a convolution-
like aggregation function across node neighborhoods. Before
aggregation, the features of the connected nodes are normal-

ized using the factor C = where d; and d; denote the

1
dey
degrees of nodes i and j, respectively. This escalation balances
nodes contributions.

Thus, the aggregation function in a convolutional GNN can
be expressed as:

Jx) = ¢<xf,ZC(xj)> (6)

JeN;

GCNs have demonstrated effectiveness in processing
molecular structures using this simple normalization factor,
making them the fastest among the GNN categories.>**

2.3.2 Attentional GNNs. Attention mechanisms were orig-
inally designed for sequence-to-sequence models, which
allowed different importance values to be assigned to elements
within a sequence, improving sensitivity to contextual infor-
mation.” This concept was later adapted to GNNs as Graph
Attention Networks (GATs).?

In the classical GAT model, the attention coefficient a(x;, x;)
between adjacent nodes is computed as:

exp(LeakyReLU (a- [¢x;]|px;]))
S exp <LeakyReLU (a~ [d)x,- l ¢>x/] ))

ien;

a(xi, xj) = )

where a is a learnable attention vector applied to the concate-
nation of source and target node representations, each of which
has been independently processed. The associated weights and
biases are treated as trainable parameters. A LeakyReLU is an
activation function employed to amplify neurons with prom-
ising parameters while assigning small gradients for negative
ones, thus avoiding elimination. A SoftMax normalization is
applied following activation.”® Including a in the GNN expres-
sion yields,

f(X)=¢ (x,-, Za(x,-,x,-))g) (8)

JeN;

Additionally, multiple attention heads can be incorporated
into a GAT by computing K different attention weights and
concatenating them to create the final representation:

fX)=¢ (xn |kKIZak(xf7xj)xj) ©)

JENi

2.3.3 Message-passing. MPNNs operate in a two-step
process: message computation followed by the passing.” In
the message computation step, feature embeddings from pair-
wise neighbors are processed with a neural network. These
embeddings are then aggregated to each source node,
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processed and then aggregated to the destination nodes,
completing one passing. After sufficient iterations, every node
encodes information from all other nodes in the graph, making
MPNNs particularly effective for tasks requiring long-range
dependencies, such as molecular property prediction (e.g,
solubility estimation).

Mathematically, an MPNN is expressed as:

f(X) = ¢<Xivz(xivxj)>

JeNi

(10)

where (x;, x;) represents the processed message aggregated to
node i along with its self-node features x;. At each iteration,
messages are recalculated and propagated, making this
approach computationally slower compared to other GNN
categories. However, this iterative process enables the learning
of more detailed node embeddings.

After defining the categories of GNNs we can observe that
using one does not preclude the integration of others. Specifi-
cally, convolutional normalization factors and attention weights
can be extracted and incorporated into the message-passing
framework. The primary objective of this work is to evaluate
how MPNNs, enhanced with convolution and attention mech-
anisms, influence binary prediction tasks in the context of
molecular property prediction.

3 Experimental design and
methodology
3.1 General model architecture

We constructed five variations of MPNNs that included atom,
bond and molecular features to explore the effects of attention,
convolution and self-node detachment, using undirected and
bidirected graphs. The architectures followed the MetaLayer
style,” where our main focus was in the node block, leaving the
rest of the code intact (message and global processing) (Fig. 1).

The core algorithm around the node block follows the
general form:

(11)

ue Ny

f(X) =MLP (u, maxg, [MLP (x;, ¢, x/-)])

where an MLP processes the concatenated global features with
the processed message using scatter max-pooling. The modifi-
cations that define our models are done at the node block
(¢.[]), which integrates the passing procedure of the message.
In all of our models the message encompasses nodes and edges,
(xis €55, X;)-

3.1.1 Node block: bidirectional MP model (BMP). In this
model we use a directed adjacency matrix and integrate
a double-directed aggregation function to make sure each node
perceives another. In a classical MPNN, raw self-node features
are integrated after message passing. In this case however, we
avoid mixing raw with processed embeddings and aggregate the
message to the according atom indexes using a scatter maxi-
mization pooling, effectively taking the maximum incoming
value to each considered node. Both backward and forward
embeddings are concatenated and passed through an MLP,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Diagram illustrating the general architecture of our MPNN for
molecular classification. The message is processed in a batch-wise
manner including source (x;), destination (x;) nodes, and edge attributes
(e5), which are first processed by a Multi-Layer Perceptron (MLP),
detailed in the top inset. The message-passing module depends on the
tested model and optionally outputs node-level embeddings for col-
ormap visualization. A global max pooling operation aggregates the
node-level outputs into a single molecular representation, which is
then concatenated with global features. This pooled representation is
subsequently passed through another MLP to produce a single scalar
logit in the case of classification task (C/1), which is processed by the
Binary Cross-Entropy with Logits Loss (BCEWithLogitsLoss) operator
or a scalar value for regression (R/X) with error calculated using Mean-
Square Error Loss (MSELoss). The gradient is optimized using Adam.

o (xi,e5,x;) = MLP(maXMLP(x,-,e,-j,x,-), _E%xMLP(xi,eg,xj)>

JjeN; i
(12)

The key operation that defines bidirectionality is that max
aggregates messages from neighbors of node i and max ag/gefvei-
gates messages from neighbors of node j. %

3.1.2 Node block: bidirectional-MP with self-nodes
(BMP + SN). The BMP + SN is similar to the BMP and is
characterized for explicitly incorporating raw self-node features
after the message has been passed in both directions,

¢[x7 Xis eij7-xj] =

MLP (x7 maxMLP (x;, ey, x;),

JEN;

m%xMLP (x;, e, xj)> (13)

1ENj

3.1.3 Node block: undirected-MP (UMP). This model uses
a symmetrical adjacency matrix with duplicated connections to
create undirected graphs. We use the node block from the
MetaLayer in pytorch.geometric’ that included raw self-node

© 2025 The Author(s). Published by the Royal Society of Chemistry
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features. Different from the rest of our models this architec-
ture uses global mean-pooling, instead of max-pooling.
1
¢ [x, Xi, €jj, x]] = MLP <X, W ZMLP(xi, €ij, €jiy x])> (14)
J

ie N;

3.1.4 Node block: convolutional-bidirectional-MP (CBMP).
We sought to combine the convolutional flavor with message-
passing. This model includes a convolution normalization (eqn
(6)) applied to the message in the BMP framework (eqn (13)),

MLP iy €ijy Xj MLP is Cijy Aj
¢ (x;, €5, x;) = MLP |max (; ) ,max (i,

JEN; idj ie Nj ,d/

(15)

3.1.5 Node block: attentional-bidirectional-MP (ABMP).
The attentional-BMP model applies an attention mechanism
after message processing. Building on the GAT framework
described in eqn (7) and (8), we extend the mechanism to
incorporate edge features alongside source and target node
representations.

exp(LeakyReLU (a- [px;||pe;||px;]))
> exp(LeakyReLU (a- [px;||pe;|px;]))

jen;

(16)

a(x;,x;) =

Additionally, we replace the original summation step in GAT
with max-pooling, enabling a message-aware attention mecha-
nism that operates on processed messages before propagation.
maxa (xi, €5, X;)MLP (x;, €5, x;)

e, %;) = MLP
¢(x ejj x;) Iga&p_(a(xi,eij,x,-)MLP(xi,eij,x;)

(17)

3.1.6 Node block: attentional-bidirectional-MP + self nodes
(ABMP + SN). Finally, we sought to analyze the effect of
combining the ABMP model with raw self-node features,
investigating whether the increased performance correlates
with the added complexity, in comparison to the single-
component additions made to the BMP model.

X
maxa(x;, ¢, ;) MLP(x;, ¢, %))
maxa(x;, e, x;) MLP(x;, e, x;)
ie N;

¢(x,x;,¢5,x;) = MLP (18)

3.2 Datasets as Benchmkarks

MoleculeNet> and BindingDB* datasets were selected for
benchmarking based on experimentally determined biological
parameters relevant to drug discovery:

e BACE dataset: the BACE dataset in its qualitative (binary
label) mode, composed of 1513 drugs tested for their activity
against the B-secretase 1 receptor.

Digital Discovery, 2025, 4, 3320-3338 | 3323
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e Blood-brain barrier penetration (BBBP) dataset: a dataset
containing binary labels of blood-brain barrier permeability for
2039 compounds.

e TRPA1 dataset: a dataset retrieved from the BindingDB
database, containing 3020 ICs, values targeting the Transient
Receptor Potential Ankyrin 1 (TRPA1) ion channel.

e Lipophilicity dataset: a dataset comprised of 4200 mole-
cules with experimentally tested octanol/water distribution
coefficient (log D at pH 7.4) with values ranging —1.5 to 4.

3.3 Computational environment

All experiments were conducted on a system equipped with
a 13th Gen Intel Core i9-13900H CPU (14 cores, 20 threads, 5.4
GHz), an NVIDIA GeForce RTX 4070 Laptop GPU (8 GB VRAM,
CUDA 12.7), and 32 GB of DDR4 RAM.

The code is implemented in Python using PyTorch and
PyTorch Geometric and is available in our GitHub repository
https://github.com/chemdesign-accl/BMPs. Most features were
processed using RDKit,"”* and Mendeleev.>® Hyperparameter
optimization was performed using the Optuna package.”” We
used NumPy, Pandas, MolVS, and Matplotlib for metrics,
visualization, and data preprocessing.”**°

3.4 Molecules as 3D graphs

As part of the dataset preparation, the molecules were read in
Simplified Molecular Input Line Entry System (SMILES) strings
and transformed into molecular objects for graph representa-
tions in a 3D space for feature extraction and generating the
adjacency matrix.

First, the molecule was standardized, which included the
following actions using RDKit: RemoveHs(), SanitizeMol(),
MetalDisconnector, Normalizer, and Reionizer. Hydrogens
were added to allow 3D optimization using the Merck Molecular
Force Field (MMFF).** The original SMILES chirality was kept, if
present. If the stereochemistry was not explicitly specified in the
input SMILES string, it was inferred and assigned based on CIP
(Cahn-Ingold-Prelog) rules using the 3D conformation of the
molecule. Hydrogens were subsequently removed to prevent
overexpression of specific properties and reduce data dilution.
Finally, each node position is extracted from the 3D-generated
molecule and used for feature extraction.

3.5 Featuring atoms, bonds, and molecules

We selected chemical, physical, drug-like and spatial descrip-
tors to enrich the topological information and aid in detecting
patterns relevant to medicinal chemistry property predictions.
The data values for each feature had mathematical operations
tailored for each case, ensuring values ranging 0-1, although
batch normalization was later applied to ensure proper math-
ematical normalization per batch.’*** Table 1 summarizes all
selected features and operations made for each.

The atomic numbers (Z) were min-max normalized in
reference to hydrogen and platinum. The hybridization states
were mapped to three values for sp, sp?, and sp® with values 0,
0.5, and 1. The electronegativity values were min-max scaled
using fluorine and francium as limits.** The dipole
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Table 1 Features for atoms, bonds, and global molecular properties

Atom name Atom features

Atomic number
Hybridization
Electronegativity
Dipole polarizability
van der Waals radius
Buried volume

(z—-1)/78

sp, sp® or sp®: [0, 0.5, 1]
(Electronegativity — 0.9)/3.1
(DP — 4.5)/31.5

(VAW — 120)/46
Noccupied/Ntotal

Bond name Bond features

Bond length Bond length - 1

Conjugated [0, 1]

Bond type Single, aromatic or double: [1, 1.5, 2]/2
Ring size [0-8 — 0-1]

Global name Global features

# Chiral centers/6
(HBD/5 — HBA/10)/10
#Rotatable bonds/10
(TPSA + log P)/145
Nspa/Nc

Eqn (19)

Chiral centers
Hydrogen balance
Rotatable bonds
Solubility

SP3 fraction
Radius of gyration

polarizability was scaled using hydrogen (4 bohr®) and iodine
(35 bohr®) values. The van der Waals radius was normalized
between hydrogen (1) and gold (79).

A 3D atomic descriptor, the buried volume, measures the
occluded space within a spherical region (R, = 3.5 A). This
descriptor accounts for the steric effects that influence molec-
ular interactions. The calculation involves generating a 3D grid
with spacing A = 0.5 A and counting occupied nodes (Noccupied)
overlapping the van der Waals radius. The percentage of buried
volume is computed using the equation in Table 1, generating
a 3D spatial node feature.

The bond features include the length of the bond, obtained
from optimized 3D structures using the Merck Forcefield,*
ensuring precision over empirical tables. The lengths were
modified by subtracting 1 A. The conjugation status distin-
guishes double (1) and single bonds (0). Bond type values
(single, aromatic, double as 1, 1.5, 2) were normalized by
dividing over 2. The size of each ring (3-8 members) were
mapped between values of 0 and 1.

Global molecular features include chiral centers, scaled by
simply dividing over 6, based on MoleculeNet* distributions
where more than six chiral centers were rare (SI, Appendix A, A).
Hydrogen bond donors (HBD) and acceptors (HBA) form the
“Hydrogen Balance” function explicit in Table 1, yielding values
of 0.2-1 for drug-like molecules and <0.2 for Lipinski violations.
A safeguard replaces zero denominators with 10~ *°.

The number of rotatable bonds were divided over 10, based
on the Veber's rule (max = 10).** The solubility feature
combines log P and the topological polar surface area (TPSA),
preserving their complementary roles in predicting perme-
ability and bioavailability. Given TPSA < 140 A% and log P < 5 for

© 2025 The Author(s). Published by the Royal Society of Chemistry
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oral drugs, their sum (145) was used as normalization factor.*®
The fraction of sp® carbons quantifies the fraction of carbons in
sp® hybridization per molecule.

Finally, we chose to work with the molecular radius of
gyration (rrg) because of its capability to describe the spatial
distribution of each molecule, it calculation corresponds to the
mass-weighted root-mean-square (RMS) deviation from the
center of mass, given by (rcm):

N
Zmi"i

Fem = % (19)

3.6 Dataset preparation

The architecture models were written in pytorch.geometric.*”
For compatibility with pytorch, each molecule was transformed
into a tensor-like object containing atom-level (x), bond-level
(edge_index, edge_attr), and global (u) features using the
DataLoader function. Labels (y) were optional for prediction
tasks but required for supervised learning.

The dataset class also retains metadata such as molecule
names and SMILES strings for traceability and debugging.
During debugging, we identified the terms “.[H+].[Cl-]” in
instances of the BACE dataset that were eliminated to bypass
errors during data processing.

The class imbalance (0 to 1 ratio in binary classes) for the
BACE dataset was 1.2:1 and 0.31:1 for the BBBP. For the
TRPAL1, we set a threshold of 100 nM to distinguish actives from
inactives, this limit yielded an imbalance of 0.63 : 1. In the case
of the Lipophilicity dataset the majority of the log D values were
in the range of 2.7-3.3 (total range is —1.5 to 4.5). We noticed
that several repeated SMILES were found in the TRPA1 dataset
that corresponded to same molecules with different reads of
IC50 values, we kept them all for reproducibility purposes. To
handle class imbalance, we generated alternative SMILES to
compensate for the less represented class in the BACE and
BBBP datasets. Additionally, we used the weighted random
sampling function to assign each label a probability for
compounds to be selected during training. Weights were
calculated using the reciprocal of their corresponding class
count.*®

3.7 GNN trainer functionalization

The training method executes multiple forward and
backward passes over the dataset for 50 epochs, producing
global binary predictions or scalar values depending on the task
specified: Classification or Regression. Optionally, node-level
outputs can be visualized as colormaps projected onto
molecular images.

The training process employs the Adam optimizer* to
update model parameters. A learning rate scheduler, Reduc-
eLROnPlateau, dynamically adjusts the learning rate. The loss is
computed using (BCEWithLogitsLoss) in the case of classifica-
tion and (MSELoss) for regression. Backpropagation optimizes

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

embeddings, incorporating gradient clipping (max norm = 1)
via torch.nn.utils.clip_grad_norm.

Each batch is processed independently using opti-
mizer.zero_grad to clear previous gradients. The loss is tracked
and plotted per batch, weighted by the number of graphs, and
accumulated into the total loss. The method ultimately returns
the average loss per graph for the entire dataset.

Performance evaluation for classification includes the F;
score, accuracy, and area under the receiver operating charac-
teristic curve (ROC-AUC) derived from a True-Positive-Rate
(TPR) vs. False-Positive-Rate (FPR) plot:

1

AUC = J TPR(FPR)d(FPR) (20)

0

The F; score is computed using the True Predictions (TP) and
the False Negatives (FN):

TP

1
TP+§WP+FM

Accuracy is calculated using the same inputs as F; and
adding True Negatives (TN) and False Positives (FP):

TP + TN
TP + TN + FP + FN

Accuracy = (22)

For assessing the error of prediction in the regression task,
we use the Root-Mean-Square Error to calculate the error
between predictions ypreq,;, and actual values yire,:

1 N
RMSE = N Z (ytrue,i - .ypre:d‘i)2

i=1

(23)

These metrics estimate predictive performance per epoch
during training and evaluation.

3.8 Feature selection and hyperparameter optimization

Feature selection employed the BMP architecture with pre-
defined hyperparameters: hidden channels = 250, learning rate
= 0.003, batch size = 32, epochs = 50, dropout rate = 0.25.

To identify the most relevant features based on validation F;
score contributions, we employed a hybrid backward/forward
elimination which combines all 16 initial features with the
resulting F; score, serving as cut-off for subsequent rounds of
elimination. Features whose removal improves the initial cut-
off are eliminated. A mini-forward selection adjustment was
applied to confirm optimal F; score improvement. From this,
features were re-added from the elimination list to assess their
impact. Features that did not enhance the model scoring were
removed. This process was repeated until no further improve-
ment was observed.

After feature selection, hyperparameter tuning was per-
formed separately for each of the five models on a per-dataset
basis, resulting in a total of 15 optimization procedures. The
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hyperparameter protocol was carried out using the Optuna
package,” the optimized function runs a cross-validation
protocol and works in a dual direction, including the minimi-
zation of the loss difference between validation and training to
fight overfitting and the maximization of the validation F;-
score. The exploration of the hyperparameter space utilized the
Tree-Structured Parzen Estimator (TPESampler).* TPE is
a Bayesian method that efficiently navigates the hyper-
parameter space by adapting modeling the likelihood of
achieving a high-performing configuration based on previous
trials. To accelerate the process, we introduced a pruning
protocol; after 30 epochs, if the validation F; score is below 0.65
the trial is terminated.

The optimized parameters were the number of hidden
channels, batch size, and the dropout rate.

3.9 Depiction of atom relevance in predictions

To analyze relevance across atoms during the node-block phase,
the rdkit.MolDraw2DCairo package was used for projecting
predictions onto molecular structure images. The generation of
the node-importance scores involved a linear transformation
that mapped the outcoming channels from previous processing
out to a single channel, followed by a sigmoid activation func-
tion to produce scalar values as scores. These scores quantify
the contribution of each node to the global prediction task.
Since the ongoing embeddings are extracted before the global
pooling operation, they capture a snapshot of the message
passed onto each atom, providing insights into the passed
message.

The generation of the node-relevance images starts with
a SMILES to 2D transformation adhering to how the molecules
were transformed into graphs for training, this ensures
obtaining the same stereochemistry and number of atoms as
the node embeddings resulted for each graph. Since the output
from the model is in the form of an array per batch processed,
a tracking of the number of atoms per graph helps to slice the
embedding per molecule. Finally, atom importance values are
normalized on a molecule basis using min-max scaling.

4 Results and discussion

This study evaluates the binary prediction performance of five
distinct message-passing-based models on three datasets
characterized by message decomposition, integration of atten-
tion and convolution factors and approaches to achieve undi-
rected graphs. To ensure a fair comparison, we optimized the
selection of features for each dataset and tuned hyper-
parameters for each model.

The dataset preparation code efficiently processes molecules
and excludes failed SMILES entries, while also logging where
each failure occurred to support debugging.

Computation time was a key consideration during code
development, as most drug discovery campaigns require
predictions for thousands to millions of compounds. To offer
a sense of computational efficiency, we performed one round of
training on approximately 3000 molecules for 150 epochs,
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followed by prediction on 1500 compounds. The entire process
completed in 14 minutes on a single NVIDIA GeForce RTX 4070
GPU.

Below, we present and discuss the results of the optimization
process, including both feature selection and hyperparameter
tuning. We then compare the performance of all tested models
internally, evaluating both global and node-level predictions.
Finally, we benchmark our best-performing models against
widely used machine learning methods in MoleculeNet
datasets.

4.1 Feature selection and the effect of 3D conformations in
predictive performance

The feature selection process was the first step towards adapt-
ing our models for each dataset. We chose the least count of
features to reduce noise or redundant information** imple-
menting an iterative hybrid feature selection approach that
combined backward elimination with a forward selection
process for refinement.

In each iteration, we temporarily removed one feature at
a time and ranked all features based on their validation F;
scores: the feature whose removal caused the largest drop in F;
score received the highest number of points, based on rank
positions, while those whose removal improved performance
were ranked lower. From this ranking, we identified a candidate
subset of features whose removal improved the F; score
compared to the baseline (using all features in the round
considered).

We then applied a forward-like refinement process, adding
features from the elimination list one by one. At the end of the
selection process, the feature with the largest cumulative of
points in the rounds was ranked at the top. In this manner, we
are able to rank the features that consistently benefited learning
for each dataset across all rounds, the results ranking tables are
summarized in Fig. 2.

The feature importance rank indicates that the Buried
Volume and Radius of Gyration, a node and global 3D features,
consistently achieved 1-5 places across all datasets. Ring size,
a 2D edge feature, also plays an important role in the prediction
of binding activity. In contrast, the atomic number, chiral
centers, conjugated, solubility and VAW radius had the lowest
importance ranks across the datasets.

Moreover, the list of eliminated features and the final
metrics are summarized in Table 2. The starting reference F;
values for the 16 features were 0.82, 0.92 and 0.80 for the BACE,
BBBP and TRPA1 datasets, respectively. While the validation
RMSE value for the 16 features included in the case of the
Lipophilicity was 0.866. We identified that some of the features
of the elimination list are correlated with each other. For
example, in the case of BBBP, solubility was correlated with H
balance (0.83), atomic number with electronegativity (0.98) and
conjugation feature with bond type (0.75) and bond length
(0.77). Either one of these was eliminated in the BACE and BBBP
and all of these in the TRPA1. This redundancy explains why
these features were discarded during feature selection.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.2 Ranked features based on the cumulative sum of their positions
across successive rounds of backward elimination. In each round,
features were ordered from lower to higher F; score upon removal,
and points were assigned accordingly. Final ranks were determined by
the total accumulated points, with higher scores indicating greater
importance. The heatmap visually highlights the consistency of feature
rankings across datasets.

Another possible explanation is an inherent problem when
working with element-like features, such as the atomic number
or the VdW radius, to represent organic compounds: they
contain more carbons than any other type of element. Hence,
using features that are invariant to the molecular context suffers
from a skewed distribution. To address this data limitation, we
propose incorporating environment-dependent 3D features,
such as the buried volume and radius of gyration, which were
top-ranked across all datasets. These features exhibit Gaussian-
like distributions (Fig. 3), which is desirable during training
because it helps prevent model bias and mitigates over-
smoothing. In addition, Table 2 shows that eliminating these
3D features along with the bond length reduces the F; score by
6-15%, which is a significant drop in the context of drug
discovery applications. For example, a screening pipeline that
evaluates 1 million drug candidates could result in approxi-
mately 60-150000 compounds being misclassified. These
findings highlight the critical role of spatial features in
capturing meaningful structural variation, which ultimately

View Article Online
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Fig. 3 Frequency histograms comparing single-valued features per
element with 3D features that are 3D-environment aware working
with the TRPAL set. In (A) the distribution for the normalized atomic
number, the highest frequency count corresponds to the carbon
element. Hydrogens were eliminated during data processing. (B) The
standardized buried volume node feature distribution shows
a Gaussian-like distribution.

increases the predictive performance of MPNN models for large-
scale drug discovery efforts.

We observed that incorporating 3D-derived features
improves predictive performance; however, generating accurate
3D molecular conformations is computationally expensive and
time consuming. To better understand the necessity of 3D
spatial information for predictive modeling, we conducted an
ablation study using the four datasets employed in this work
Fig. 4.

Table 2 Summary of eliminated features per dataset and obtained validation F; score during cross-validation

Dataset Eliminated features Val. No 3D
BACE Rot. bonds, solub., atomic N., bond L., conjug. F;: 0.83 F: 0.77
BBBP H-bal., electro F;: 0.93 F;: 0.78
TRPA1 Frac. SP3, electro., conjug., rot. bonds, atomic N., H-bal., hybrid., solub F;: 0.84 F;: 0.78
Lipo Atomic N. RMSE: 0.65 RMSE: 1.14

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Ablation study to address the influence of the spatial arrange-
ment of the molecules across the tested datasets (BACE, BBBP, TRPA1
and Lipophilicity). We included 3D conformations with added Gaussian
noise (0.5 A std. dev.) termed Noisy-3D, 2D conformations only and
spatial optimizations using the Merck Molecular Force-Field (MMFF)
and the Universal Force-Field (UFF). The plots are separated by clas-
sification metrics (AUC, accuracy, f;) and regression (RMSE). Error bars
represent margins of errors (95% confidence) over multiple runs.

In this study, we compared several scenarios: (1) models
using only 2D molecular representations with derived 3D
features, (2) models using perturbed 3D conformations created
by adding Gaussian noise (0.5 A std. dev.) to each atomic (X, ¥,
Z) coordinate, and (3) models using optimized 3D conforma-
tions generated with two force fields, the Merck Molecular Force
Field, designed and applied for a wide range of organic mole-
cules (MMFF),** and the Universal Force Field(UFF), a full
periodic table covered force field.**

This approach allowed us to assess the importance of accu-
rate 3D conformations in predictive performance. The results
for all datasets demonstrate that Noisy-3D structures, signifi-
cantly degraded performance, indicating that inaccurate 3D
geometries can be detrimental.

Interestingly, the predictive metrics were comparable
between models using only 2D features and those using opti-
mized 3D conformations (MMFF or UFF), suggesting that
incorporating 3D-derived features from 2D representations may
be sufficient for robust prediction. Furthermore, there was not
meaningful difference between the MMFF and the UFF force
fields for optimizing 3D configurations. Under this scenario the
dataset preparation for 2D molecules is 2.3 times faster
compared to including the MMFF based spatial optimization,
underscoring that 2D configurations not only keep predictive
accuracy intact but also significantly speed up computation,
making them a more practical and scalable option for high-
throughput screening.

Another aspect of the feature selection results is that the
number of total features was significantly lower for the TRPA1
dataset (8), followed by BACE (11), BBBP (14) and Lipophilicity
(15). Such behavior led us to hypothesize that underlying variety
in the chemical space might be influencing the dependency on
input features. In this sense, datasets with different chemotypes
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could require a wider feature set to capture the range of
variations.

Diversity is defined as to certain properties of a system that
contains items that are classified into types. Specifically, these
properties include the number of types, the way items are
assigned to those types, and the different types from each other.
In molecular analysis, this results in the classification of
chemical compounds (items) into chemotypes (types) based on
their structural features.* The diversity of a chemical library
can thus be analyzed with structural cluster analysis to obtain
how many chemotypes are present, via the number of clusters,
and how compounds are distributed among them through
Shannon entropy.**

We performed the structural clustering using the BitBIRCH
algorithm with a similarity threshold of 70% (diameter with
pruning mode, tolerance = 0.05)* working with RDKit finger-
prints (ngjs = 2048).*®

Based on the results (Table 3), where a higher number of
clusters and Shannon entropy means higher diversity, there
appears to be a correlation between diversity and the number of
features required to represent the data, confirming our
hypothesis: greater chemical diversity, exemplified with the
Lipophilicity case containing 52% clusters that were singletons,
would require more features, 15 out of 16 in this case, to help
the model learn the wide range of chemotypes within classes.

4.2 Hyperparameter optimization

After selecting the most relevant features, we proceeded with
a dual-goal process of hyperparameter tuning to refine model
performance utilizing 5-fold cross-validation. The optimization
strategy had a dual direction in the case of the classification
task: the first, minimizing the difference between validation
and training loss to address overfitting, a pervasive issue found
in this study; second, we sought to maximize the F; score, which
was selected due to its emphasis on positive label identification.

For optimizing hyperparameters in the case of regression we
minimized both the difference of the validation and the
training loss and the validation RMSE loss.

The optimization protocol effectively identified the ideal
parameter configurations for most models, demonstrating the
utility of the protocol (SI, Appendix B). Convergence was ach-
ieved for the four parameters of the TRPA1 after 200 trials and
only a 100 for the BACE case (Fig. 5A and B). The dual-
optimization protocol had difficulty converging to values that
balanced both objectives for the BBBP dataset, as seen in
a linear tendency to trade F; for an increased loss difference
(Fig. 5C). In the Lipophilicity trials, the model consistently

Table 3 Summary of dataset statistics and selected features after
feature elimination

Dataset Size Clusters Shannon E. fiFeatures
Lipo. 4200 2642 10.74 15
BBBP 2038 1143 9.46 14
BACE 1513 186 6.14 11
TRPA1 3014 305 6.03 8

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.5 Pareto plots for the BMP model showing the convergence of the dual-directed hyperparameter optimization protocol using TPE sampler
and run using the Optuna package. (A) TRPA1 dataset panel visualizing the relationships between the four features optimized, hidden channel
number (50-400), dropout date (0.05-0.5), batch size (20-180) with indicated ranges of optimization in the colormap bars, the closer to yellow
colors the higher the feature value. (B) Pareto plot for the BACE dataset showing two colors, the blue dots indicates tested trials, while the red one
corresponds to the trial we selected for our final models. (C) Pareto plot for the BBBP dataset, the optimization did not converged into the dual-
direction minimization, rather a trade-off between the two directions is observed.

achieved low loss values with acceptable RMSE values with
relative ease. However, an issue arose wherein negative loss
difference values were observed. To mitigate this, we imple-
mented a pruning criterion whereby, after 20 epochs, any trial
exhibiting an absolute loss difference greater than 0.15 was
discarded.

The non-convergence observed for the BBBP dataset may be
due to its poor diversity. In this scenario, there is a higher risk
for overfitting. Because of this reason, we gave preference for
a lower loss difference rather than the original dual direction for
optimization.

4.3 Testing directionality, self-node, convolution and
attention mechanism in the message-passing architecture

We evaluated five MPNN variants with modifications in the
node block. Each variation incrementally increased complexity
relative to the baseline model (BMP) but remained less complex
than the reference model, UMP. Model complexity, quantified
by parameter counts, is shown in Table 4. Starting from BMP,
which lacks node self-perception, we tested incorporating self-
nodes, attention, and convolution. The UMP model, used as
a reference and containing the higher count of parameters,
operates on undirected graphs achieved by duplicating node

© 2025 The Author(s). Published by the Royal Society of Chemistry

connections in the adjacency matrix and includes self-node
processing.”

The ABMP + SN architecture contains attention and self-
perception components added to the BMP. The overall results
for classification tasks are displayed in Fig. 6 and include the
average AUC, F; and accuracy metrics values on blind tests (20%
of the total dataset) averaged across five different random seeds
using the optimized hyperparameters for each model and
dataset.

In general, the metrics have subtle differences within each
dataset for the classification tasks. In the case of the BBBP

Table 4 Parameters counts per node and total count which considers
68 000 weights for the message block and 128 521 for the global.
Additionally, the training time for the model architectures working with
the BACE dataset is reported

Model Node Total Time (s)
BMP 189251 385502 8.39
CBMP 189251 385502 8.97
BMP + SN 190751 387002 8.52
ABMP 193 501 389752 9.99
ABMP + SN 195 001 391252 9.57
UMP 256 251 452 502 9.85
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Fig. 6 Performance comparison of the five models across three
datasets (BACE, BBBP, TRPAL). These values are averaged using five
random seeds on blind test sets (20% of the total dataset). Metrics
shown include AUC (top), F; score (middle), and accuracy (bottom)
with error bars indicating the margin of error with a confidence of 95%.
The datasets are color-coded for clarity, and the x-axis represents the
model indices.

dataset, either method achieved high performance in F; and
AUC scores specifically across all models. The BBBP data set
exhibits a strong class imbalance, with the positive label being
overrepresented by 82% according to the average class propor-
tion between clusters (Fig. 3B in SI, Appendix C) which explains
why the accuracy values were not as high as the F; scores. In
adittion, the TRPA1 dataset has higher F;-scores compared to
BACE dataset, this is because the class imbalance favors the
positive class for the TRPA1 case, making it easier for any model
to learn on this class. Since the F; score focuses on measuring
how well the model is doing at identifying actives, it was ex-
pected to obtain higher F; scores than BACE dataset.

In an attempt to balance classes, we tested whether dupli-
cating the less represented class would have a positive impact
on performance. To do this, we exploited the fact that SMILES
strings can have multiple valid representations along with the
weighted random sampling function, full protocol detail can be
found in SI, Appendix C. Based on the results of the confusion
matrix, we found that this duplication strategy is effective only
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when the primary objective is to improve the prediction of the
majority class, producing higher F; scores, but this comes at the
expense of reduced accuracy for misrepresented labels.

We previously assessed intra-dataset diversity, identifying
BBBP as more diverse than TRPA1 and BACE. However, the
distinctiveness of chemotypes within each dataset likely also
influences the ability of the model to distinguish between
classes. The higher performance observed on BBBP may be
attributed to greater structural dissimilarity among its chemo-
types, which facilitates learning discriminative features.

To evaluate this, we applied Uniform Manifold Approxima-
tion and Projection (UMAP) to reduce the high-dimensional
chemical space into a two-dimensional representation,
enabling visual inspection of structural relationships between
chemotypes (Fig. 7). The projection was generated using
a globally focused configuration with parameters n_neighbors
=50 and min_dist = 0.1, employing the Jaccard distance metric
to capture the dissimilarities of molecular fingerprints.

Among the classification datasets, the BBBP dataset repre-
sents an extreme case, exhibiting the lowest structural dissim-
ilarity despite its relatively high number of clusters and
singletons. This is evident in the UMAP projection, which shows
a more compact distribution across both dimensions compared
to the other datasets.

Interestingly, the simplest architecture tested, the BMP, with
the lowest parameter count, achieves the highest AUC scores
with low variance on this dataset. This suggests a relationship
between model complexity and dataset structural dissimilarity:
increasing architectural complexity does not necessarily
improve learning performance. Rather, when structural
dissimilarity is low, limiting the amount of information intro-
duced during message passing appears to promote both model
stability and sufficient representational power.

UMAP Visualization of Chemical Space Colored by Dataset, Sized by BitBIRCH Clusters
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Fig. 7 UMAP projection of RDKit fingerprints (2048 bits) for three
datasets (TRPAL, BACE, and BBBP), illustrating their respective chem-
ical space distributions. Each point represents a compound, colored by
dataset, where blue, orange and green correspond to TRPA1, BACE
and BBBP datasets respectively. Each points was re-dimensioned to
represent their respective BitBIRCH cluster sizes. The visualization
highlights the poor structural diversity within the BBBP case, while
TRPAL shows more spread and well-formed clusters.
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The model complexity analysis for small graphs, such as
molecules, provides insights into just how simple a model can
be while still performing well. Our findings support the
hypothesis that redundant feature amplification may be
unnecessary for small graphs, like molecules, which typically
contain only 20-70 heavy atoms."* Moreover, the upper bound
of effective complexity seems to be illustrated by the fact that
combining two top performing models (ABMP + SN) did not
yield significant improvement over their individual components
(ABMP and BMP + SN), further suggesting that added archi-
tectural complexity may not be beneficial for small, structurally
simple graphs.

In the CBMP, the use of convolution does not improve
performance on any of the models, discouraging the use of this
strategy in bidirectional MPNNs. Convolutional normalization
operates by penalizing nodes with higher degrees of connec-
tivity. However, this step appears unnecessary for applications
involving organic molecules, where the connectivity degree
typically ranges from 1 to 4. Moreover, degree imbalance has
already been addressed by removing hydrogen atoms during
graph pre-processing. Removing hydrogen atoms from molec-
ular graphs yields a degree distribution that is notably closer to
a Gaussian shape, as evidenced by a substantial reduction in
skewness, from 0.321 to —0.016, and an increase in kurtosis,
from 1.493 to 2.494, working with the Lipophilicity dataset as
example (see atom-degree distribution in SI, Appendix A, Fig. 2).

Comparing BMPs to UMP, the BMPs scores were consistently
higher in all metrics compared to their parent seed, the UMP.
We investigated if the pooling type could play a factor. We
replaced the mean-pooling operation with max-pooling and
evaluated the model on the BACE dataset. The results were
comparable to those of the BMP models (UMP with max-pooling
using BACE dataset: AUC = 88.0 £ 0.8, F; = 79.4 £ 1.4, accuracy
= 80.7 £ 1.4). One possible explanation is that max-pooling
enhances class separability by emphasizing dominant node or
edge embeddings. In this case, combining a synthetically
enlarged adjacency matrix with a mean pooling operation
would dilute the data since we are averaging over a larger tensor.
This offers an explanation to the lower performance of the UMP,
where irrelevant or noisy signals are retained rather than
filtered out when using max-pooling. Noteworthy, the UMP
architecture uses two MLP transformations in the node block,
while the BMPs use only one, yet the latter achieves same
scoring metrics highlighting that reduced data processing
could yield similar results. Overall, our results suggest that
bidirectional message-passing combined with max-pooling
yields stronger representations and that reduced data process-
ing achieves similar results to the UMP.

The ABMP model architecture, obtained the highest scores
in all metrics for TRPA1 and BACE indicating that our attention
mechanism benefits the bidirectional message-passing
architecture.

To analyze the ABMP classification capacity, we generated
a non-linear dimensionality reduction analysis using UMAP to
visualize the ability to discern between classes of these two
specific models. We projected the global-output embeddings
with highlighted classes in blue (1) and red (0) and included the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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identifiers of four molecules with a common scaffold to analyze
if these models are capable of distinguishing them by classes
(Fig. 8).

There is more class separation in the ABMP model compared
to the BMP, as observed in the UMAPs, suggesting that the
attention mechanism enriches the representations with infor-
mation useful for label separability. To ensure this improve-
ment was attributable to the attention mechanism itself rather
than any unrelated mathematical artifact, we applied the same
attention layer to three different base models: a single forward-
directed message-passing (MP), the UMP, and the BMP
(Table 5).

In the three cases tested the attention mechanism increase
predictive scores compared to their parent references, under-
scoring that it is indeed the attention mechanism which
enhances performance on the message-passing frameworks
studied. This naturally leads to the question: how does atten-
tion reshape message-passing to better capture relevant chem-
ical regions for the property prediction? We identify three main
distinctions from classical GAT that explain this behavior:

A) UMAP Global Embeddings for the BMP Model
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Fig. 8 Non-linear dimensionality reduction analysis (UMAP) for the
BMP and ABMP global embeddings of the BACE dataset. Red dots
belong to the class 0, representing the embeddings of BACE inhibitors,
while in blue are the non-inhibitors embeddings. BACE_614 and
BACE_657 are both active, while BACE_657 and BACE_965 and
BACE_986 are inactive. (A) UMAP Global embeddings for BMP. (B)
UMAP Global embeddings for ABMP.
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Table 5 Ablation study to analyze the influence of the attention
mechanism in message-passing with single, bidirected and undirected
(duplicated adjacency matrix) graphs. The working dataset was Bace

Attn. Dir. Model Fy (%) Acc. (%) AUC (%)

(+) Bi-dir. ABMP 81.1+24 81.6 2.4 88.6 1.4
) Bi-dir. BMP 77.8 £ 2.7 79.7 £ 1.7 88.2 +1.1
) Single  AMP 71.0+31 763 +1.9  856+1.2
() Single ~ MP 61.9+25 722408  83.5+2.3
@) Undir. AUMP 775422  79.7+26 873 +1.9
) Undir. UMP 75.6 £ 2.2 77.6 £ 2.2 86.0 = 1.0

First, we utilize edge-aware attention, which is wise since
bonds (edges) act as natural importance flags, by explicitly
encoding the relationship between a pair of atoms. Perhaps
a very intuitive example of this is the conjugation state, which
acts as an electronic gate that dictates m-electrons delocaliza-
tion. Moreover, bond features are interatomic descriptors that
allow us to describe many different aspects in one single value
that can be relevant for the property prediction task. For
example, the bond length is correlated with torsional angles
and resonance. By explicitly integrating these edge-derived
signals, the attention mechanism is better equipped to
capture how such subtle structural-electronic features between
atoms govern macroscopic molecular properties.

Second, our ABMP model applies independent linear trans-
formations to the edge, source, and target features before
combining them into an attention coefficient that acts as an
importance factor directly onto the message. By first processing
molecular components (bonds concatenated to source and
target nodes) independently within the attention mechanism,
we exploit the information available in each component prior to
integration. This design is particularly suitable for message-
level attention, as all components that constitute the message
are explicitly considered in the attention computation, ensuring
that the coefficient reflects the full context of the message it is
acting on.

Third, instead of summing attention-weighted messages as
in classical GAT, we use scatter-max pooling, which mitigates
the cardinality problem observed in GATs, where high-degree
nodes are overrepresented when neighbor embeddings are
summed.* While this issue is less pronounced when working
with organic molecules, it can still bias attention in standard
GAT formulations. Scatter-max instead emphasizes the stron-
gest, most predictive neighbor messages.

To finalize the ABMP model analysis, we tested if adding
a multi-head attention protocol would enhance the ABMP
model further (Fig. 9), but no significant improvement was
obtained using five heads and in fact, in the BBBP case showed
statistically higher AUC value than the 5-head ABMP model.
This finding reinforces our earlier observation regarding that
simpler models could be more beneficial than complex ones for
molecular property predictions. In small molecular graphs with
limited structural variation, adding multiple heads could mean
learning on redundant patterns and risking overfitting, espe-
cially if the dataset is not diverse or large.
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Fig. 9 Comparison of ABMP and 5-head ABMP across three classifi-
cation datasets (BACE, BBBP, TRPA1) and one regression dataset
(Lipophilicity). Across all classification datasets (BACE, BBBP, TRPA1),
5-head ABMP and ABMP exhibit comparable performance. The
subplots display performance metrics: area under the curve (AUC
comparison), F; score values, accuracy for classification tasks, and
Root Mean Square Error (RMSE) for regression. Bars represent the
mean values, and error bars indicate the margin of error (MOE) with
a confidence of 95%.

Comparing the two top performing models, ABMP vs. BMP +
SN, the best model is ABMP for all metric scores in the BACE
case, while BMP + SN had a higher AUC value for the TRPA1
dataset. We tried to adjust the classification threshold using the
Youden index (true positive rate — false positive rate) for both
models, but we obtained similar F; and accuracy scores, which
discarded the need for a threshold adjustment in these specific
cases.

Since the main distinction between the two models lies in
the node block, we analyzed the molecular colormaps, which
project node-level outputs onto corresponding atoms in each
molecule and compare these two top-performing architectures.
We focused on challenging cases of the TRPA1 dataset in
a family of oxadiazole purines, for example where activity is
dictated by a single chirality difference (BD-624 & BD-2480)
(Fig. 10).

Both ABMP and BMP + SN have a stable colormap patterns
for the pair of molecules, which is a good indication of
consistent learned embeddings at the node-level. In these cases,
the ABMP was able to identify the relevant moiety for activity
prediction in the samples, with higher node relevance assigned
to the pertinent chiral carbon that dictates activity.

However, the difference between node embeddings is prob-
ably more significant for distinguishing classes. Ideally, in the
(S)-enantiomer, the chiral carbon should receive lower node
relevance, with nearby atoms also affected due to the spatial
rearrangement caused by this subtle change in chirality. In fact,
both models showed that the largest differences in raw node-

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Colormaps for the normalized node-level outputs of two top performing models, ABMP and BMP + SN, corresponding to the chal-
lenging task of discriminating activity dictated by a chiral difference. The numerical highlighted values correspond to the top 5 highest min—max
normalized node-level outputs and those who have remarked difference between stereoisomers which are highlighted with an asterisk (¥). (A)
Molecular colormap of the TRPA-624 molecule derived from the ABMP model. This molecule is a class "1’ and is characterized by the presence of
an F(R) stereocenter. (B) ABMP prediction for TRPA-2480, a stereoisomer of TRPA-624, where F(s) makes this compound inactive. (C) BMP + SN
node-level output for TRPA-624. (D) BMP + SN node-level output for TRPA-2480.

level output occurred at the chiral carbon and its adjacent
connected carbons, consistent with this structural perturbation.

To further investigate differences in node-level predictions,
we aligned node outputs for pairs of molecules with the same
number of atoms that differed by class and subtle variations in
atomic position or element type. We then summed the node
outputs for each molecule and calculated the differences
between paired molecules to assess the ability of the two top
performing models to distinguish them. This analysis was
applied to four representative cases within the oxadiazole-
purines family. The resulting pairwise node-output differences
are summarized in Table 6. Across all four cases, ABMP shows
larger node-output differences compared to BMP + SN, sug-
gesting that it is more sensitive to subtle structural variations
such as chirality or positional isomerism.

GATs improve MPNNs by learning to differentially weight
neighboring nodes during message passing, allowing the model
to focus on the most informative connections rather than
treating all neighbors equally. This improves the ability to
capture important structural and feature-level differences,
manifested as increased differences in our node-level outputs.*’

© 2025 The Author(s). Published by the Royal Society of Chemistry

Also, learning can be stabilized by decoupling attention
computation from message embeddings, reducing dependency
on dynamically evolving latent features, while retaining inter-
pretability through weights grounded in the raw node features.

Considering node-level outputs and global predictions
together, we can conclude that the ABMP model is the most
accurate, with a robust capacity to identify the vast majority of
positive classes. The colormap results highlight this model for
future applications where node-level prediction could aid at
lead-optimization phases, identifying hot-spots for chemical
transformations.

Table 6 Comparison of node output differences between molecule
pairs with equal atom counts and associated structural variations for
the BMP + SN and ABMP models working with the TRPA1 dataset

Pair of molecules BMP + SN ABMP Structural difference
BD-2480/BD-624 10 x 10 30 x 10°° Single chiral carbon
BD-2415/BD-682 90 x 10 240 x 10°*  Halogen & position
BD-1279/BD-2038 30 x 107 70 x 107° Halogen position
BD-1280/BD-1903 110 x 10> 280 x 10°®  Methyl position
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4.4 Performance comparison

We contrasted our findings with 12 other studies falling into
three categories related to different aspects of our models and
offer a complete view of the state-of-the-art in molecular
predictions:

e Baseline and/or high scoring methods: graph attention
network (GAT),? graph convolutional networks (GCN),** MPNN,>
directed MPNN (D-MPNN)*® and dense neural networks working
with fingerprints (DNN).>!

e Advanced architectures: pharmacophoric-constrained
heterogeneous graph transformer (PharmHGT),* graph repre-
sentation from self-supervised message passing transformer
using the large version (GROVER)* and graph structure
learning molecular property prediction (GSL-MPP).**

e Attention mechanism with MPNN: DumplingGNN®* and
attentive-FP.**

e 3D geometrical GNNs: Uni-Mol** and 3DGCL.**

The (Fig. 11) summarizes the AUC values retrieved from
different sources and is compared with the values we obtained
from all our models using the two MoleculeNet benchmark
datasets. This comparison demonstrated that our top models

View Article Online
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have strong AUC values with reduced error margins compared
to other models reported elsewhere.

We then evaluated our models on the Lipophilicity dataset
and compared their performance against previously reported
models (Fig. 12).

Our results show that ABMP achieved performance compa-
rable to GAT in the case of BACE and Lipophilicity, and out-
performed it in the BBBP dataset. Additionally, both ABMP and
BMP + SN surpassed classical MPNN across all datasets, and all
our models achieved higher results for the classification tasks
in this same reference. For regression, ABMP achieved the best
score among our models, with an RMSE of 0.683 + 0.016,
comparable to D-MPNN, which similarly incorporates edge
features into message processing but has a different strategy for
the passing. However, in the classification tasks, most of our
models surpassed the D-MPNN. These findings demonstrate
that our bidirectional message-passing combined with edge-
aware attention outperforms their precursor architectures.

ABMP (BBBP) and BMP + SN (Lipophilicity) obtained similar
performance to GSL-MPP, a complex architecture. GSL-MPP
uses a dual-graph approach: one graph for molecular struc-
tures and another where molecules act as nodes connected via
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Fig. 11 Comparative plot of area under the curve (AUC) performance for different models on two datasets: BACE (top panel) and BBBP (bottom
panel). The models were selected for their significance in the field, showcasing foundational architectures, incorporation of attention mecha-
nisms, 3D embeddings, and novel architectural designs. The specific AUC values for each model were gathered from established sources:
AttentiveFP,5t D-MPNN, DNN,% GAT,5* GCN,* GROVER (large),®® GSL-MPP,5t MPNN,55 Uni-Mol®®, 3DGCL,5* DumplingGNN®2 and PharmHGT.*
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similarity matrices, effectively doubling the computational
complexity to match our single-graph models.** Similarly, our
models outperformed GROVER, a pre-trained transformer-
based MPNN trained on over 10 million compounds, particu-
larly on BBBP.* This aligns with prior findings that pre-trained
transformer-based models can be outperformed by MPNN-
based architectures in molecular property predictions.® This
reinforces that added architectural complexity, even the large-
scale pre-trained or 3D-intensive models, does not necessarily
yield better performance. This same observation can be made
comparing GAT and even descriptor-based models like DNN
outperforming more complex approaches such as Uni-Mol and
3DGCL in classification tasks.

Among related models, DumplingGNN most closely resem-
bles the ABMP. Both incorporate attention mechanisms and 3D
embeddings, and both achieved similar classification perfor-
mance. However, DumplingGNN employs sequential MPNN
layers followed by GAT with SAGEconv, while ABMP integrates
message passing directly with attention and uses simpler global
max-pooling. DumplingGNN lacks of 3D inputs for BACE, likely
explaining its lower performance, underscoring the importance
of 3D features, as supported by our feature selection and the
superior performance of UMP (with 3D features) over 2D-
featurized MPNN.

This results also support the notion that 3D coordinates
alone are insufficient to guarantee superior performance, as
demonstrated by Uni-Mol and 3DGCL underperforming relative
to DNN. These models leverage large-scale pretraining and
explicit geometric encoding but fail to outperform simpler
alternatives working with fingerprints. This suggests that, for
molecular property prediction, representing chemically relevant
features (e.g., buried volume or electronic effects) is often more
effective than full 3D coordinate modeling, particularly for
global property prediction tasks.

© 2025 The Author(s). Published by the Royal Society of Chemistry

5 Conclusion

In this study, we adopted a minimalist approach to message-
passing by deliberately excluding self-node representations
and incrementally adding key components from the three main
GNN paradigms. This step-by-step framework enabled us to
isolate and evaluate the contribution of each architectural
element to model performance, ensuring that only essential
features were retained in the final designs.

Our results indicate that the internal dataset structural
dissimilarity dictates the need for architectural complexity. For
instance, the BBBP dataset, which exhibits low structural
dissimilarity, achieved state-of-the-art performance using our
simplest model (BMP). This highlights that simpler architec-
tures can outperform more complex ones under the right
conditions, contrasting with the prevailing trend in GNNs that
often favors increased architectural depth and sophistication.

A central focus of this work was feature selection. We found
that element-like features (e.g., atomic number) often hurt
performance by overemphasizing certain atoms (e.g., carbon),
which are prevalent in organic molecules. Instead, we priori-
tized tailored spatial features over traditional 2D descriptors,
which consistently improved model performance across all
tasks. Notably, we showed that 3D-inspired features computed
from 2D molecular graphs can match the predictive power of
features derived from fully optimized 3D conformations,
offering a simpler and faster alternative for molecular
modeling.

We also explored two strategies for handling directionality in
message-passing. Our bidirectional model (BMPs) out-
performed the undirected variant (UMP), both in performance
and parameter efficiency. We attribute this to UMP's reliance on
mean-pooling, which tends to dilute informative signals when
averaging across duplicated edges.
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Across all models, we observed higher F; scores than accu-
racy on the TRPA1 and BBBP datasets, reflecting class imbal-
ance that favors the active class. Since F; prioritizes the quality
of positive class predictions, it provided a more realistic
assessment of model effectiveness in these cases. Additionally,
we found that the number of features to describe a dataset is
related to the structural diversity, where a highly diverse dataset
would require more descriptors to allow efficient learning
during training.

Finally, we evaluated the role of convolution and attention
mechanisms. The CBMP model showed no improvement over
simpler variants, likely because degree penalization was
unnecessary due to the low connectivity and exclusion of
hydrogens in our molecular graphs, which resulted in a normal-
like degree distribution. In contrast, the ABMP model showed
clear advantages in both classification and regression tasks. Its
attention mechanism improved node-level focus on function-
ally relevant atom groups, as confirmed by UMAP visualizations
and molecular node-outputs projections onto molecular heat-
maps. These results suggest that ABMP is the most promising
architecture for drug discovery applications among all models
tested.

6 Limitations and future work

Although the proposed framework achieves state-of-the-art
results with reduced complexity, there are inherent limita-
tions and scalability challenges that must be addressed to
extend its applicability to larger and more diverse datasets.

The cardinality problem in GATs arises because softmax-
based attention normalizes neighbor contributions through
exponential competition, followed by scatter-sum aggregation
that compounds the effect.*® For high-degree nodes, this dual
operation diminishes attention weights and weakens aggre-
gated signals, while also biasing the shared attention vector
toward patterns prevalent in densely connected nodes. This
ultimately underrepresents important neighbors in high-degree
nodes and overemphasizes low-degree nodes in certain cases. In
this work, we mitigated this issue by employing scatter-max
aggregation, which removes the normalization step. However,
this approach limits applicability for tasks requiring multiple
aggregated contributions, such as HOMO-LUMO gap predic-
tion. As part of future work, we plan to address this limitation by
using datasets tailored to quantum mechanical properties (e.g.,
HOMO-LUMO gap) and applying convolution-based normali-
zation directly on attention weights, thereby incorporating
degree information without resorting to relative softmax
normalization.

This study employs a single message-passing iteration across
all models, leaving the effect of multiple passes unexplored.
Treating the number of passes as a hyperparameter could
improve performance for tasks that require deeper information
propagation. Similarly, we used a fixed training schedule of 50
epochs, which may not be optimal. Future work could benefit
from tuning the number of epochs or incorporating early
stopping criteria to avoid overfitting and improve convergence
efficiency.
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Multi-headed attention did not outperform single-head
attention in this study, though only five heads were tested.
Further experiments are needed to evaluate whether the
number of attention heads significantly influences
performance.

While our results show that 2D molecular graphs supple-
mented with select 3D descriptors can maintain predictive
accuracy, our study relied on force-field-optimized conforma-
tions, which are approximations and may not fully capture true
experimental or quantum-optimized 3D geometries. Conse-
quently, we did not rigorously assess performance in scenarios
where highly reliable 3D structures are available. Future work
will involve testing on datasets with experimentally determined
or high-level QM-derived conformations to better evaluate the
benefits of accurate 3D geometries.

The dual-goal hyperparameter tuning strategy required
significant trials (e.g., 200 for TRPA1) and struggled with
convergence on low-diversity datasets such as BBBP. Exploring
alternative optimization objectives or simplifying the approach
to a single-direction strategy warrants further investigation.

Inspired by the success of ABMP and BMP + SN, the
continuation of this research project will involve building an
adaptive architecture that composes the right message for
a given dataset. Hence, the model should be capable of inter-
nally selecting the inclusion of self-nodes, edge/node/global
embeddings and attention mechanisms as part of the training
process. On a different aspect, while 3D features such as buried
volume and radius of gyration improved model performance,
further exploration into more advanced 3D descriptors or
spatial embeddings is warranted.

The ability of ABMP to highlight node-level relevance
suggests their potential for real-world applications in lead
optimization and drug design. In this work, we focus exclusively
on the message and use a single pass, leaving the optimization
of the number of passes unexplored. A potential continuation of
this work could involve treating the number of passes as
a hyperparameter to be optimized. Moreover, we are intrigued
to explore why the use of multi-headed attention in ABMP did
not yield better results than a single-head. A prospective study
could include whether the number of heads is a decisive factor
in performance.
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zenodo.17220154 (release v1.0) and is also available at https://
github.com/chemdesign-accl/BMPs.

All datasets analyzed in this work are derived from publicly
available sources, including BACE and BBBP from MoleculeNet
and TRPA1 from BindingDB.

Supplementary information: frequency histograms for rele-
vant descriptors in Appendix A, Pareto plots derived from the
hyperparameter optimization in Appendix B, an analysis of the
effects of data augmentation to fight class imbalance in
Appendix C and the final list of hyperparameters for each
combination of dataset and model tested in Appendix D. See
DOI: https://doi.org/10.1039/d5dd00193e.
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