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language models for enzymatic
reaction prediction and characterization

Lorenzo Di Fruscia a and Jana M. Weber *b

Predicting enzymatic reactions is crucial for applications in biocatalysis, metabolic engineering, and drug

discovery, yet it remains a complex and resource-intensive task. Large Language Models (LLMs) have

recently demonstrated remarkable success in various scientific domains, e.g., through their ability to

generalize knowledge, reason over complex structures, and leverage in-context learning strategies. In this

study, we systematically evaluate the capability of LLMs, particularly the Llama-3.1 family (8B and 70B),

across three core biochemical tasks: enzyme commission number prediction, forward synthesis, and

retrosynthesis. We compare single-task and multitask learning strategies, employing parameter-efficient

fine-tuning via LoRA adapters. Additionally, we assess performance across different data regimes to explore

their adaptability in low-data settings. Our results demonstrate that fine-tuned LLMs capture biochemical

knowledge, with multitask learning enhancing forward- and retrosynthesis predictions by leveraging shared

enzymatic information. We also identify key limitations, for example challenges in hierarchical EC

classification schemes, highlighting areas for further improvement in LLM-driven biochemical modeling.
1 Introduction

Biochemistry plays a fundamental role in nearly every aspect of
daily life, from medicine development to food production, from
the creation of fuels to personal care items, signicantly
contributing to improved quality of life. Developing novel bi-
ocatalysts and discovering and optimizing biochemical reac-
tions hold immense promise for addressing global challenges.
However, these discoveries are inherently complex, requiring
a deep understanding of enzyme-substrate relationships, and
they remain experimentally expensive and time-intensive.1–3

To mitigate these experimental costs, computational
approaches date back many decades: early Computer-Aided
Synthesis Planning (CASP) began with hand-craed expert
systems such as LHASA4 and SECS,5 that encoded chemistry
libraries of reaction transformation rules to propose synthetic
routes. These rules were applied to produce templates, specic
atom-mapping patterns describing the molecualr trans-
formations. These approaches evolved into more recent and
extensive methods such as SYNTHIA,6 ICSYNTH7 and RetroSim8

while still being primarily template-based. However, templates
require manual rule curation and heuristic atom-mapping,
which limits their scalability as reaction databases grew. To
overcome these limitations, the scientic community started
developing template-free methods. Data-driven at their core,
versity of Technology, Del 2629 HZ, The
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y the Royal Society of Chemistry
these approaches learn reaction patterns directly from molec-
ular strings or graphs with limited to no reliance on craed
rules. Early work applied motif- and prole-based statistical
learners such as PRIAM9 for enzyme detection and classica-
tion, and EFICAz10 for enzyme function inference. These
statistical methods have since been surpassed by deep archi-
tectures such as the CNN-based DEEPre11 and DeepEC12 for
enzyme function prediction, and RNN-based ones such as the
sequence-to-sequence model from ref. 13 for retrosynthetic
reaction prediction.

More recently transformers,14 architectures suited for appli-
cations like language translation, sentiment analysis and text
completion, have proven to be effective for tasks such as
chemical reaction product prediction with the molecular
transformer15 and for molecule optimization overall.16,17 In
biochemistry, several ML models have been tailored for
prediction tasks, including approaches where enzymes are
represented using natural language (e.g. the enzymatic trans-
former18), numerical classication schemes,19,20 or amino acid
sequences.21 Recent work has also shown that transformer
models trained on protein sequences only (also known as
Protein Language Models or PLMs) can be used on downstream
tasks such as predicting EC numbers from the amino-acid
sequence,22,23 usually obtained by adapting large protein
encoder-only models, e.g. ProteinBERT24 and ESM-2.25 While
these specialized models deliver impressive results, they are
typically constrained to specic tasks and require extensive
domain-specic data and expertise for their development and
for the incorporation of biochemical knowledge.
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We are now witnessing the emergence of foundation models
like Large Language Models (LLMs),26,27 that have found their
application in chemistry as well.28 These transformer-based
architectures consist of up to hundreds of billions of parameters
and are trained on text corpora comprising trillions of tokens.
Despite being trained for next token prediction, thesemodels have
shown emergent abilities that were not foreseeable for smaller
sized models:29 they are capable of more than just completing
phrases in natural language, as to some extent they are able to
answer questions, understand examples and reason over prob-
lems. Foundation models can be capable of solving multiple tasks
at once. Building on top of existing LLMs is straightforward to
implement and they require relatively little expertise to use, cir-
cumventing the need to train a multitude of specialized models.
LLMs excel in low-data regimes, adapting on the y from context
and examples such as in real-world lab scenarios. They can ground
their outputs via Retrieval Augmented Generation (RAG),30 or
knowledge-graph databases access,31 support agentic behaviour
through external tool integration,32 and can expose their step-by-
step reasoning to guide experimental workows.33,34

Efforts to integrate LLMs into chemistry generally fall into two
distinct categories. The rst focuses on building chemistry agents
that leverage the LLMs planning abilities to work with task-
specic tools and improve reasoning.35 For instance, in Bran
et al.,36 researchers augmented LLMs by providing access to
expert-designed tools for drug discovery, materials design and
organic synthesis. The second category involves using LLMs
directly for downstream tasks such as property prediction,
reagent selection and molecule captioning.37–40 In Guo et al.,37

they benchmarked LLMs in zero- and few-shot settings, demon-
strating their capabilities in explaining, understanding and
reasoning over chemistry. In Jablonka et al.,38 they show how by
ne-tuning GPT family models from OpenAI,41 they easily adapt
them to solve various tasks involving classication, regression,
inverse design of chemicals, andmanymore. Their model proved
to be useful especially in the low-data regime, where the LLM
performed at least as good as the conventional ML models.
Additionally, comprehensive instruction datasets for the chem-
ical and biochemical domains have been introduced.42,43 These
datasets, encompassing millions of examples across applications
like molecule generation, name conversion and reaction predic-
tion, enable small ne-tuned LLMs to surpass prompted SOTA
LLMs, demonstrating the role of high quality datasets in
enhancing performance in molecular domains.

While previous studies mainly focused on the investigation
of LLMs for chemical and materials tasks, we are interested in
understanding LLMs potential for biochemical reaction char-
acterization, discovery, and optimization. Specically, we are
interested in whether a single general-purpose LLM can be
adapted on multiple tasks with one interface, with little engi-
neering and limited labeled data. With such a model, scientists
would be able to query multiple aspects possibly under
changing conditions in natural language. This study investi-
gates to which extent one LLM is sufficient, and in which
aspects the connection to specialized models is still required.

The scientic community is building upon recent discoveries
that scaling up LLMs in size and training data leads to promising
Digital Discovery
zero- and few-shot capabilities for in-context learning.44 One key
problem of learning from context is the high variance in the
outputs returned by the model: slight changes in prompts can
greatly affect the model performance, ranging from barely above
chance, to near state-of-the-art (SOTA) level.45 Additionally, LLMs
may produce made-up or irrelevant content, a phenomenon
known as hallucinations. To address these instabilities, research
has explored advanced prompting strategies such as Chain-of-
Thought (CoT), a technique that guides the model to break
down answers as a series of connected thoughts. By explicitly
decomposing complex problems into step-by-step reasoning, CoT
reduces output variability and enhances accuracy, particularly for
tasks requiring logical progression or multi-step calculations. By
acting in a way that mimics human reasoning, CoT showed to
improve the reliability of responses and to therewith make LLMs
more robust.46

Another key task adaptation strategy is ne-tuning, which
modies the weights of the pretrained model. It offers the
advantage of not being constrained by a limited context window
for input data, but it typically results in a model specialized for
a single task. However, prior research47 showed that ne-tuning
outperforms in-context learning strategies in both in-domain
and out-of-distribution tasks for models of comparable size,
with performance gains increasing as more training data
becomes available. Fine-tuning limitations in principle include
the need for signicant training expertise and computational
resources, with a reduced reusability compared to in-context
learning strategies. These shortcomings are partially mitigated
by Parameter-Efficient Fine-Tuning (PEFT).48,49 PEFT techniques
selectively adjust only a small portion of parameters, leaving the
rest unchanged. This approach preserves the basemodel general-
purpose capabilities while adding task-specic expertise in
a modular way, enabling greater adaptability to new tasks.

We focus on enzymatic reactions represented using SMILES
(Simplied Molecular Input Line Entry System) notation50 for
chemicals and EC numbers for enzyme classication. Speci-
cally, we design tasks that test the model's ability to predict EC
numbers, reaction products (forward synthesis), and substrates
(retrosynthesis). By introducing a multitask learning setup, we
investigate whether training on multiple tasks simultaneously
makes use of shared biochemical knowledge compared to
single-task ne-tuning. Finally, we perform ablation studies to
examine the impact of several data regimes and ne-tuning
setups on different models' performance.

2 Methods
2.1 Tasks and dataset description

2.1.1 Task selection. We assemble a representative set of
biochemical prediction tasks. The selected tasks are designed to
evaluate the capabilities of Large Language Models (LLMs) in
understanding and predicting enzymatic reactions, when the
chemicals are presented in string format and the enzyme in the
EC numerical classication scheme. Specically:

� EC number prediction: we assess whether LLMs can
accurately assign EC numbers given the substrates and the
products of each reaction.
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00187k


Fig. 1 Distributions of samples across EC levels for the BRENDA
dataset. The innermost layer represents the main class (EC1 digit), and
the middle and outer layers represent levels EC2 and EC3 respectively.
The label for enzyme class 7 (translocases) is not visible due to the
limited data available (<20 samples).
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� Product prediction: here we explore the model's ability to
predict reaction products given substrates and the EC number
associated to the reaction (forward synthesis).
Fig. 2 Data preprocessing pipeline. Individual reactions sharing the same
are numbered from 1 to 9, first row). The dataset is split into training and
group is assigned to one of the three tasks on a rotating basis to bala
procedure, here we keep indices in order for visual clarity.

© 2025 The Author(s). Published by the Royal Society of Chemistry
� Substrate prediction: we test the model's capabilities of
predicting substrates based on reaction products and the EC
number (retrosynthesis).

Given the inherent similarities among the three tasks, we
investigate whether themodel can improve its performance when
trained on all tasks simultaneously, by leveraging shared infor-
mation in a synergistic manner. To test this, we introduce
a multitask (MT) setup, in which a single model is trained
concurrently on all three tasks, inspired by what has been done in
Yu et al.43 This setup allows us to evaluate whether a multitask-
trained model can outperform individually ne-tuned models
for each task (single-task, ST) producing a more general model
eventually capable of handling diverse biochemistry tasks
involving enzymes. The following sections explain data selection
and the data split suitable for both ST and MT experiments. To
ensure that the selected tasks are supported by high-quality data,
we preprocess the data to minimize biases and data leakage.

2.1.2 Dataset preparation. We make use of the ECREACT
dataset curated by Probst et al.19 This dataset results from the
combination of data coming from four different databases:
MetaNetX, Rhea, PathBank and BRENDA.51–54 The authors scre-
ened the enzymatic reactions, and determined the corresponding
Enzyme Commission (EC) number for each of them. Further
processing simplied and generalized the dataset. They removed
products also occurring as reactants in the same reaction, co-
enzymes, common by-products, and reactions without reactants
or multiple or missing products. In each reaction, substrates and
products are represented in SMILES, whereas EC numbers are
tags for the reaction in the form of a 4-digit tag ‘X.X.X.X’. The
digits follow a hierarchy, with the rst digit (EC1) representing
{product, EC} or {substrate, EC} pair are grouped together (here groups
test set, while keeping each group intact. Within training and test, each
nce the splits. Groups are randomly shuffled at the beginning of the
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the main class of the enzymatic reaction. From these databases,
we only focus on BRENDA, for a total of n = 8496 enzyme-
catalyzed reactions covering all seven different EC classes. This
is mainly due to computational constraints, as ne-tuning large-
scale LLMs on the full dataset without parallelized infrastructure
would require several weeks. The distribution of reactions
according to their respective EC numbers is shown in Fig. 1. We
include all four EC digits (thus up to EC4) in the dataset, but our
subsequent analyses will focus on up to sublevel EC3, as many
subcategories for EC4 consist of only a single enzyme-substrate
example. Class 7 will not be included as well due to the limited
sample size for the class (<20 samples).

2.1.3 Data splitting. We implement several preprocessing
steps: canonicalization of SMILES representations using the
RDKit library parsing functions to remove redundant entries,
grouping reactions that share the same {product, EC} or
Fig. 3 Distribution of reaction groups with repeating substrates and/or
equal to 1. Group sizes with a number of counts >10 closely follow the

Digital Discovery
{substrate, EC} pair, but differ in the remaining molecule, and
avoidance of task-specic leakage, ensuring that if e.g. a reac-
tion appears in forward synthesis, it must not appear in retro-
synthesis as well. More details about these steps are reported in
Appendix Section A.1.

These points imply that to maintain dataset integrity, each
above-mentioned reaction group is assigned exclusively to one
task and one dataset split (either training or test). By addressing
these issues preemptively, we also ensure a consistent random
dataset split for both single-task and multitask setups, enabling
fair comparisons between the two methodologies. Fig. 2 better
illustrates this approach.

We perform a 70–30 train–test split, ensuring that the frac-
tion of groups assigned to each of the two sets maintains
a balanced ratio. Of the train set, 10% is used for validation. The
test sets remain constant across all training regimes and varying
products. Unique reactions are included as elements with group size
required 70–30 split ratio between train and test set.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00187k


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

1/
7/

20
25

 3
:5

7:
51

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
training set sizes. EC prediction, forward synthesis and retro-
synthesis tasks have xed test sets of size 855, 857, and 837
examples respectively. The above-mentioned preprocessing
steps prevent basic information leakage that could articially
inate performance metrics, yet our similarity analysis shows
that substantial analogue overlap persists, that we report in
Appendix Fig. 12. It is also worth noting that by being public it is
likely that the LLM may have had access to this data during its
extensive pretraining. Fig. 3 illustrates the nal distribution of
groups across the train and test sets.

2.1.4 Instruction creation. We manually cra question–
answer textual pairs by converting reaction SMILES strings and
EC labels into clear natural language queries. Each reaction
data point is converted into a single question-answer pair, but
we generate multiple templates per task to avoid overtting on
a single prompt style. For EC number prediction, example
templates include:

�
�
�
The model is instructed to return only the answer (the EC

number in this case), without additional text. We vary synonyms
e.g. “EC number” vs. “Enzyme commission number”, and
qualiers such as “feasible” vs. “probable” across up to 14
unique templates per task.
2.2 LLM interaction and adaptation

2.2.1 In-context learning. In In-Context Learning (ICL), we
interact with a LLM solely through prompting. Prompting
means giving a set of instructions to the model in natural
language in order to make it perform a task: answering,
Fig. 4 Example of a zero-shot prompt for the EC number prediction tas
instructions that inform it about the task to perform. The [TASK] here is EC
EC number given only reactants and product in SMILES notation. Af
a [REQUEST], and the model associates an EC number to it as the [RESP

© 2025 The Author(s). Published by the Royal Society of Chemistry
reasoning, story-writing, conversation, tool-access and so on.
With ICL, the model is not retrained, so no parameters are
changed. Instead, the model uses its existing knowledge to
generalize “on the y” within that single interaction, which we
refer to as zero-shot. LLMs are powerful zero-shot learners and
can easily adapt to examples to improve their understanding,
which is called few-shot prompting.44 This approach is exible
and immediate, but its performance can vary signicantly with
prompt phrasing, the context provided and even the order of
words.

When interacting with the LLM, each data point is formatted
as a conversation between a user and an assistant (the model
itself), as follows:

� A general system prompt assigns the model the role of
a biochemically knowledgeable assistant.

� The user prompt species the task, phrasing it in a exible
way to ensure a certain degree of variability. As mentioned
above, diverse templates are used in order to prevent overtting
on specic question structures.

� The assistant provides a direct answer, formatted with
tagging elements such as hECi . h/ECi (for the EC number
prediction task), to enhance consistency and ease of parsing.

A visual example of this is shown in Fig. 4.
2.2.2 Fine-tuning. Fine-tuning refers to the process of

adapting a pretrained model to perform specic tasks by
updating its parameters on a new dataset. This approach allows
the model to specialize in a narrower domain while retaining its
general pretrained knowledge. As models sizes grow into tens or
hundreds of billions of parameters, retraining every weight for
each new task becomes prohibitively expensive in memory and
compute. To ne-tune our models efficiently, we use Parameter-
Efficient Fine-Tuning (PEFT) techniques that leave most of the
base model weights unchanged in the process. Specically, we
k. The model first receives the system prompt: a general prompt with
number prediction, and the [OBJECTIVE] is to assign the 4 digits of the
ter that, the model receives the reaction SMILES from the user as
ONSE].
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use Low-Rank Adaptation (LoRA).55 LoRA allows ne-tuning by
updating only a small subset of the model's parameters,
signicantly reducing computational demands. Instead of
directly updating a weight matrix of the pretrained model
W˛ℝn�m, LoRA models the update as the product DW = AB,
whereW˛ℝn�m and B˛ℝr�m are matrices with a rank r�min(n,
m). The rank determines the size of the two matrices, and
during forward passes the effective weight matrix becomes

W0 = W + DW = W + AB (1)

The small rank is what ensures that A and B contain far fewer
parameters than W and this drastically reduces memory foot-
print and ne-tuning time. An illustration of the algorithm is
shown in Fig. 5. While the model can be loaded in a quantized
format for efficient memory usage, ne-tuning occurs on
a limited percentage of parameters that are stored in full/half
precision. This approach has shown to yield performance
levels close to those of full model ne-tuning, while maintain-
ing the model's general reasoning abilities and core capabil-
ities.55,56 Importantly, during ne-tuning, the model is provided
with interrogation pairs in exactly the same way as in In-Context
Learning, using the same prompt template and tagging
conventions. Only now each question-answer pair is used to
adapt its internal parameters.

The use of LoRA adapters is particularly advantageous for
LLMs like ours. These adapters can be “plugged in” for domain-
specic tasks and subsequently removed to revert to the base
model, which remains unaffected by ne-tuning, thereby
keeping computational costs under control.

2.2.2.1 Model selection. In selecting a model for our
biochemical prediction tasks, our primary selection criteria are:

� Power: the model's ability to handle complex tasks and
achieve high accuracy;

� Flexibility: its ability to tackle diverse tasks both in in-
context learning and ne-tuning settings;
Fig. 5 Illustration of LoRA framework. The input vector xi at layer i is pass
and the i-th LoRA head. After both blocks process the input, the two rep
This procedure is repeated for all layers.

Digital Discovery
� Efficiency: the model's computational cost-effectiveness,
particularly in resource-constrained environments.

We aimed to use a LLM that balances computational power
with exibility, ensuring it can be customized for specialized
biochemical applications. We prioritize general-purpose LLMs to
evaluate their adaptability and scalability across multiple
biochemical tasks. Equally important was choosing an open-
source model to facilitate accessibility and enable further devel-
opment by other researchers. Given these requirements, we
selected models from Meta AI's Llama 3.1 family,57 specically
the 8B and 70B parameter versions. The smaller 8B model offers
a trade-off between efficiency and exibility for exploratory or
lower-resource settings, while the 70B model provides greater
power. Further, we employed the instruct versions of these
models, both for in-context learning and ne-tuning. These
variants are ne-tuned on instruction-response pairs, helping
them generate responses that align with the given instructions.
Lastly, we utilize both base models in the 4-bit quantized format
to reduce computational costs and inference time.
2.3 Evaluation metrics

For the EC prediction task, a prediction is correct if the digits
match exactly those of the ground truth. If only the rst digit is
correct, the model correctly predicted the EC class. If the rst
two digits are correct, the prediction is correct up to digit EC2,
and so on. For the accuracy, we always compute the macro-
average to show performance across classes, treating each
class as equally important. Additionally, for the main class we
report F1 score, precision and recall, as they help provide
a more complete picture especially with imbalanced datasets
such as ours. To evaluate product and substrate predictions, we
categorize predicted SMILES strings into ve distinct groups:

� Invalid (I): if the RDKit parsing fails, the prediction is not
a valid SMILES string, either because chemically implausible or
incorrectly formatted. If the parsing succeeds, the pipeline
proceeds to the next steps;
ed through both the frozen i-th weight matrix of the pretrained model,
resentations are summed together to obtain a new representation xi+1.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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� Non-canonical valid (NCV): the predicted SMILES does not
correspond to the ground truth molecule, but it represents
a plausible molecule in a non-canonical SMILES representation;

� Canonical valid (CV): the predicted SMILES does not
correspond to the ground truth molecule, but it represents
a plausible molecule in the canonical SMILES representation;

� Non-canonical match (NCM): the predicted SMILES does
represent the ground truth molecule, but in a non-canonical
SMILES format;

� Canonical match (CM): the predicted SMILES string does
represent the ground truth molecule in the canonical format:
the predicted string exactly matches the ground truth one.

For valid chemicals, we additionally examine molecular
similarity to determine the potential relevance of the generated
SMILES, using the Tanimoto similarity coefficient aer
computing daylight ngerprints58 for each molecule. A Tanimoto
similarity >0.85 is oen considered indicative of structurally
similar molecules, suggesting that even incorrect predictions
may still be chemically meaningful. High similarity scores could
for example suggest that the LLM-generated molecule might
serve as an alternative substrate in retrosynthetic applications,
potentially offering novel biochemical insights. It is important to
note that the SOTA results that we mention are taken from
existing studies and are based on models trained on the entire
ECREACT dataset, which comprises unique n= 62 222 enzymatic
reactions aggregated from four different databases. In contrast,
our experiments are conducted using only the reactions from the
BRENDA database. While this difference in training data size
limits direct comparisons with SOTAmodels, our setup allows for
a holistic experimental design within reasonable computational
limits. While this limits the comparison to certain extent, it
allows us to focus on a single well-curated database, we can
systematically evaluate different model sizes, ne-tuning strate-
gies, and data regimes, while still capturing a diverse range of
enzymatic reactions. All results are averaged over N = 3 experi-
ments to provide robust performance metrics, with standard
deviations reported where applicable.
2.4 Fine-tuning setup

All models are trained with a learning rate lr = 0.002 using
a linear decay scheduler, and {a = 32, r = 16} for the LoRA
adapter. Minimal hyperparameter tuning was performed (lr ˛
[0.0005, 0.005], a ˛ {32, 64}, r ˛ {16, 32}). We explore two new
LoRA setups in addition to the default one, to evaluate the trade-
off between ne-tuning parameter count and model perfor-
mance. We adopted the same setups choice by ref. 43, to ensure
consistency with prior LoRA ne-tuning literature in the
chemical domain. Here we list them, including in parenthesis
the number of trainable parameters and their percentage with
respect to the pretrained, base model:

� LoRA light (6.8 M, 0.09% for the 8B, 32.8 M, 0.05% for the
70B): we only ne-tune the query and key matrices within the
attention modules [qproj, kproj].

� LoRA attention (13.6 M, 0.17% for the 8B, 65.5 M, 0.09% for
the 70B): we extend ne-tuning to all matrices within the
attention mechanism [qproj, kproj, vproj, oproj].
© 2025 The Author(s). Published by the Royal Society of Chemistry
� LoRA (41.9 M, 0.52% for the 8B, 207 M, 0.29% for the 70B):
this is the basic setting and the one used throughout the paper.
The adapter tunes all the attention modules and the feed-
forward networks (FFN).

For training we use a single NVIDIA Tesla A100 80 GB GPU.
To isolate the effect of model size, we report single-task training
durations: the 8Bmodel takes∼30min per epoch, while the 70B
model takes ∼4 h per epoch with a batch size of 8. Inference
latency is ∼2.5 s per sample for the 8B model and ∼5.7 s per
sample for the 70B model on a Intel XEON E5-6448Y 32C 2.1
GHz CPU.
3 Results and discussion

In this section, we present the results of ne-tuning the selected
Llama models. The analysis encompasses ST and MT setups,
along with experiments designed to evaluate performance in
low-data regimes and across different ne-tuning schemes. For
each task, the performance is compared against baselines.
3.1 Single-task ne-tuning

Llama-3.1 models accurately predict the highest level of EC
number classication, yet show a decline when tasked with the
second and third digit. In a single-task settup, the Llama-3.1
model family exhibits some difficulties with exact product and
substrate prediction tasks. Interestingly, we nd that reason-
ably large percentages of uncorrect predictions show a high
Tanimoto similarity with the correct predictions, which can
potentially still be useful in biochemical workows.

3.1.1 EC prediction task. The 70B model accuracy for EC
class prediction is consistent across most classes, with an
average accuracy of 91.7%. This indicates that it is fairly simple
for the ne-tuned model to correctly assign the highest EC
number given any reactant, product pair as request. However,
class 4 exhibits a noticeable performance dip, despite not being
the least-represented class in the dataset. To explore the
model's misclassication patterns, we present the confusion
matrix for EC class prediction in Fig. 6. The matrix reveals that
classes 4 and 5 are sometimes wrongly assigned to each other.
In classes 1, 2 and 3 rare instances of misclassications either
happen between 1 and 2 or assign the reactions to class 4.

For EC2 predictions, we see that the model frequently
misclassies subclasses within the same main class. This
relates to the EC2 category distribution per main class. For
instance, class 1.X.X.X has numerous subclasses, whereas
classes 5.X.X.X and 6.X.X.X only have a few. Rare subclasses,
such as 2.2.X.X or 4.99.X.X, show clear exceptions with the
model misclassifying outside the main class, likely due to their
underrepresentation. Additionally, structural similarities
within main classes may further contribute to confusion,
independent of dataset imbalance. The confusionmatrix for the
EC2 level, alongside the test set distribution for that depth, is
shown in Fig. 7.

The accuracy of the model declines at deeper EC levels,
reecting the increasing challenge of capturing hierarchical
enzyme relationships. These difficulties also stem from
Digital Discovery
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Fig. 6 Confusionmatrix representing Llama-3.1 70B accuracy in predicting the enzyme class given reactants and substrates, for one experiment.
The out-of-diagonal elements show how examples are misclassified. The histogram on the right shows the test set distribution stratified by main
class, roughly following how training data is distributed.
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increased combinatorial complexity of sublevels and class
imbalance. In fact, at level EC2 the model performs best for
class 6 and worst for class 1, a result that aligns with the dataset
distribution shown in Fig. 1: EC class 1 has a highly branched
EC2 structure, with 1.1.X.X accounting for almost half of the
samples, introducing class imbalance. Conversely, class 6 has
a limited number of balanced subcategories (6.2.X.X and
6.3.X.X), simplifying subclass predictions. Fig. 8 illustrates the
model's performance in predicting EC numbers up to level EC3,
stratied by main class.

The ne-tuned 70B model comes on top of the ne-tuned 8B
model predicting EC digits at any depth. However, the
compared SOTA retains a signicant edge across all levels (EC1
accuracy: 96.2%, EC2 accuracy: 93.4.6%, EC3 accuracy:
91.6%).20 Please note that the authors have performed a micro-
average, while we perform a macro-average that takes class
imbalance into account. Macro-averaged accuracy at any EC
level depth is computed by rst calculating the accuracy within
each EC number class, and then taking the simple mean of
those per-class accuracies. In this way, each class contributes
equally regardless of its size. In contrast, micro-averaged accu-
racy is computed by averaging all test examples across classes,
Digital Discovery
so larger classes carry proportionally more weight, a limitation
noted by the SOTA authors.20 Extended metrics (F1 score,
precision, recall) for the EC class prediction task are reported in
Appendix Fig. 14. Additionally, we compare our ne-tuned
models with a zero-shot baseline with Llama-3.1 70B, in Table
1. We see that the zero-shot prompting approach lacks far
behind the ne-tuned models of this size and general capabil-
ities. This indicates that at present it seems inevitable to ne-
tune the general purpose model for a complex and domain-
specic task such as EC classication in biochemistry.

3.1.2 Product and substrate prediction tasks. The 70B
model generates a high proportion of chemically valid mole-
cules in canonical format, with canonical matches (the output
string matches the ground truth string as it is) accounting for
24.9% and 13.0% for products and substrates respectively.
While FS shows a higher percentage of canonical matches, RS
has a greater proportion of chemically valid but incorrect
predictions, indicating that retrosynthesis may involve more
complex structural reasoning. Chemically invalid predictions
are minimal (<5% of the total test set for both tasks), and wrong
generations due to e.g. formatting errors are rare (<2%). This
demonstrates that the LLMs can easily adhere to complex
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Confusion matrix representing Llama-3.1 70B accuracy in predicting the EC number up to the second digit (EC2), given reactants and
substrates, for one experiment. The out-of-diagonal elements show how examples are misclassified. Themisalignment in the diagonal elements
is due to the set of predicted classes having elements that are not present in the test set, like subclasses 3.3.X.X and 4.5.X.X, that the model
predicts in a few cases. The histogram on the right shows the test set distribution stratified by EC2 subclass.
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domain specic grammar like SMILES and to requested output
formats, which is a useful property for the analysis of model
results. However, these results are not yet competitive with the
SOTA model19 (49.6% and 60.0% accuracy for exact matches for
FS and RS respectively). Note that the dataset used for our
models is not exactly the same as the one from SOTA, making
the results not directly comparable. Pie charts in Fig. 9 display
the distribution of predictions across the ve categories for FS
and RS tasks, respectively, for Llama-3.1 70B.

When the model fails to predict the exact molecule, it gener-
ates relevant alternatives that may hold biochemical utility in
12% and 35% of the cases, for products and substrates respec-
tively. We classify such an output with biochemical utility if the
generated molecule shows a high Tanimoto similarity to the
correct output. Focusing on the set of valid chemicals, Tanimoto
similarity scores are computed and shown in Fig. 10. In the
dataset, SMILES for products are shorter than substrates on
average, and we also observe that for branching reactions, the set
of products that are possible from certain substrates in a forward
synthesis task, is generally smaller than the set of possible
substrates reachable from a product in a retrosynthesis task, as
© 2025 The Author(s). Published by the Royal Society of Chemistry
observed in the Appendix Fig. 11. Thus, for products, the model
either predicts a molecule very close to matching the ground
truth, or it gets the wrong chemical. For substrates on the other
hand, having longer strings and more options in the RS task
leads to generating many substrates that are not correct, but
show a relatively high Tanimoto score. Analyzing the highest
Tanimoto values, we see that 7.1% of chemically valid products,
and 6.7% of chemically valid substrates, report a score equal to 1.
Examples of these chemicals are reported in Appendix Fig. 17 and
18. We summarize the results for both Llama-3.1 8B and Llama-
3.1 70B on FS and RS tasks, including a baseline 0-shot perfor-
mance and comparison to SOTA in the Appendix Table 6.

3.1.3 Generalization over unseen tasks. When ne-tuned
on a single biochemical task, the model not only retains its
general capabilities on unseen, related tasks within the same
sub-domain but also improves its performance compared to its
zero-shot baseline. To evaluate this generalization effect, we test
each of the three single-task (ST) ne-tuned models on the two
tasks they were not trained on, comparing their performance to
the respective zero-shot baseline. Results show that ne-tuning
on either the FS or RS task signicantly improves EC class
Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00187k


Fig. 8 Llama-3.1 70B accuracy in predicting the EC number up to level EC3, organized by main class. Accuracy measures if the model correctly
matches the ground truth EC number up to the EC level specified on the x-axis. Accuracies are computed considering each (sub)class as equally
weighted. These distribution patterns influence model performance, irrespective of reaction complexity or SMILES grammar.

Table 1 Performance comparison between Llama-3.1 70B and Llama-3.1 8B models fine-tuned for the EC prediction task, from predicting level
EC1 only, to all digits up to EC3 included. A baseline 0-shot prompting approach with the 70B model is reported as well. We also show our
models performance in micro-average next to the SOTAmodel20 in micro-average. Note that the dataset is not exactly the same (see Subsection
2.1) and thus results are still not entirely comparable

Metric Llama 8B Llama 70B Llama 70B 0-shot Llama 70B micro-avg SOTA

EC1 accuracy (%) 86.4 � 0.6 91.7 �0.5 29.6 � 0.7 92.4 � 0.2 96.2
EC2 accuracy (%) 56.5 � 1.5 61.7 � 1.1 8.7 � 0.5 75.6 � 0.1 93.4
EC3 accuracy (%) 40.5 � 0.6 49.2 �0.7 5.7 � 0.4 68.1 � 0.1 91.6
Validity (%) >99.9 100.0 89.4 � 0.3 100.0 —

Fig. 9 Pie charts showing the average distribution of predictions for forward synthesis (FS, left) and retrosynthesis (RS, right) for Llama-3.1 70B.
The outer layer indicates the proportion of correctly generated (blue/green), invalid chemicals (red), and wrongly generated predictions (grey),
while the inner layer differentiates correct outputs from structurally valid but incorrect outputs. Invalid and wrongly formatted predictions remain
<5% and <2% for both tasks, respectively. Results for each category are obtained averaging over N = 3 experiments, with standard deviations
below 5% of each category value. Percentages are shown for >2% slices only.

Digital Discovery © 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Histograms of Tanimoto similarities of ground truths against products (left) and substrates (right), that the model predicts as chemically
possible but not corresponding to the ground truth.

Table 2 Generalization of ST fine-tuned Llama-3.1 70B models when tested on the unseen related biochemical tasks. The zero-shot baseline is
reported for comparison. Performance on the original fine-tuned task is omitted to emphasize cross-task generalization. The reported match
values are here considered regardless of canonicity. The invalid category includes both incorrect SMILES notation as well as wrongly formatted
output from the LLM

Fine-tuned on

EC FS RS

EC1 [ (%) Invalid Y (%) Match [ (%) Invalid Y (%) Match [ (%) Invalid Y (%)

EC — — 12.9 31.1 0.3 55.3
FS 54.3 0.3 — — 1.4 3.3
RS 42.1 6.3 0.6 5.5 — —
ICL 0-shot 29.6 10.6 <0.1 53.5 <0.1 82.4
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prediction accuracy, nearly doubling the zero-shot baseline
performance. Likewise, a model ne-tuned exclusively on EC
number prediction improves FS match accuracy from nearly 0%
to 12.9% while also reducing invalid predictions by half. Table 2
presents the generalization results, where each ne-tuned
model is tested on the two unseen tasks.

3.2 Multitask ne-tuning

Using a multitask setup we show that we can improve perfor-
mance through the use of synergistic information from the
related task, in particular for FS and RS tasks. For these the
model performance for matches (regardless of canonicity)
increases by 7.9% and 5.3% respectively. The three ST datasets
aremerged together to provide the dataset used for theMT setup.
The Llama 70B and 8B models are both ne-tuned, using the
best-performing conguration identied in the single-task
experiments. Performance is compared against single-task
setups to assess multitask learning benets, with the main
results reported in Table 3.

3.3 Exploring low-data regimes

Fine-tuned LLMs show promise in low data regimes: for Llama-
3.1 70B, we report almost double EC class accuracy when
comparing zero-shot prompting (29.6%) with the ne-tuned
version with only N = 200 training samples (55.3%). We repli-
cate low-data scenarios to evaluate how the models perform with
© 2025 The Author(s). Published by the Royal Society of Chemistry
signicantly reduced training samples. Specically, we analyze
performance degradation when the training set size is limited to
600 and 200 compared to our default training (∼1800 samples
per task). This analysis is conducted for both models, to provide
insights into their scalability when data availability becomes the
bottleneck. Both models show a steady performance increase
when training data is increased. The larger architecture holds an
edge over the smaller one regardless of data size across almost all
tasks, conrming again its greater capabilities.

For a fairer comparison, we include a simple XGBoost
baseline. XGBoost59 is a gradient boosting model that performs
well with structured data and does not rely on large-scale pre-
training, making it a suitable reference for evaluating whether
LLM ne-tuning truly adds value in data-limited biochemical
prediction tasks. We nd that across all tasks and for each data
scenario, our models outperform the XGBoost model. We report
our ndings in Table 4. More details on how XGBoost is trained
are reported in the Appendix in Subsection A.6.
3.4 Impact of different LoRA setups

We observe that adding more trainable parameters can lead to
performance improvement for most tasks. This indicates the
importance of parameter-efficient learning strategies in
domains where ne-tuning is essential. We see the trend that
LoRA default performs better than LoRA attention and LoRA
light in almost all settings. In most tested cases for the 8B
Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00187k


Table 3 Performance comparison between single-task and multitask
setups for Llama-3.1 8B and Llama-3.1 70B. Blue cells represent
performance improvement, orange cells represent performance
reduction. The reported match values are here considered regardless
of canonicity. The categories “Match + (TS = 1)” and “Match + (TS >
0.95)” add to the previous one the share of valid chemicals with
a Tanimoto score equal to 1 and greater than 0.95 respectively.
Numbers are presented in bold if the best performance improvement
does not fall within one standard deviation from the second-best

Task Metric (%)

Llama-3.1 70B

ST MT D

EC Accuracy EC1 [ 91.7 86.4

Accuracy EC2 [ 61.7 65.1

Accuracy EC3 [ 49.2 48.9 −0.3
FS Match [ 25.9 33.8

Match + (TS = 1) [ 33.0 44.4

Match + (TS > 0.95) [ 34.2 45.4

Invalid Y 4.8 4.9 +0.1
RS Match [ 13.9 19.2

Match + (TS = 1) [ 20.6 30.1

Match + (TS > 0.95) [ 36.1 45.4

Invalid Y 4.4 3.0
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model, LoRA attention performs slightly better than LoRA light,
while for the 70B model, LoRA light performs slightly better
than LoRA attention in most tested cases. Performance across
all tasks with different LoRA setups are reported in Table 5.
3.5 Context: where do LLMs t?

Computational tools for reaction prediction have progressed
from rule libraries to deep task-specic models, following waves
Table 4 Performance of Llama-3.1 8B and Llama-3.1 70B across all tasks
considered regardless of canonicity. Each task is trained on a slightly diffe
we report a reference number of 1800 samples in the corresponding row
within one standard deviation from the second-best. A baseline XGBoos

Model Train set size

EC

EC1 [ (%) EC2 [ (%) EC3 [ (

LLama-3.1 8B 200 43.5 15.5 8.5
600 65.6 30.1 17.4
∼1800 86.4 56.5 40.5

LLama-3.1 70B 200 55.3 28.5 17.7
600 73.5 45.8 33.1
∼1800 91.7 61.7 49.2

XGBoost 200 32.7 4.9 <0.1
600 40.9 6.0 1.7
∼1800 54.0 23.7 15.9

Digital Discovery
that traded interpretability for coverage. Below, we contrast the
historical approaches, explain how LLMs complement special-
ized tools, and how such generalist models currently t and will
evolve in the current tool landscape.

� Template-based models (LHASA,4 SYNTHIA6) are deter-
ministic and transparent. The outputs are easy to inspect, but
every new reaction type demands manual rule curation, leading
to rule explosion and limited ability to generalize.

�Data-driven statistical learners (EFICAz10) can exploit larger
databases, yet lose interpretability and can inherit the human
biases embedded in handcraed descriptors.

� Deep learning models (such as the molecular15 and enzy-
matic18 transformers) reach state-of-the-art accuracy by discov-
ering hidden patterns. They are, however, computationally
intensive, data hungry and largely less interpretable.

� LLMs require large-scale pretraining, yet could cover
a broad task spectrum.38,39 They offer tentative interpretability
via natural language interrogation, although hallucinations
remain a risk.

Our benchmarks conrm that pretrained LLMs still require
task-specic tuning before tackling complex biochemical pipe-
lines. Overall applicability depends on the goal: even aer ne-
tuning them, for high-precision tasks, specialized models win.
However for breadth, adaptability and human-centric interac-
tion, LLMs are compelling. Thanks to their fast repurposing and
unied conversational interface, they can work as control layers
for the existing toolbox. Compact code logic, plug-in nature and
access to legacy tools raise the bar for automation. Researchers
already query LLMs for literature, accessing collected knowl-
edge more effectively. It is important to note that the LLM
evaluation is not as reliable as human evaluation in chemical
reasoning. Practitioners should choose LLMs for exploratory or
hypothesis-generation stages, rapidly changing tasks, or
settings with sparse data, and stick to specialized models for
best accuracy.

Standard LLMs are not yet robust for complex zero- or few-
shot biochemical tasks, so for now they serve as sparring part-
ners rather than oracles. But progress is rapid: during this study
we saw multimodal LLMs emerge, along with reasoning
and for different training set sizes. The reported match values are here
rent amount of samples (±20) because of how data has been split, thus
s. Numbers are presented in bold if the best performance does not fall
t model is reported for comparison

FS RS

%) Match [ (%) Invalid Y (%) Match [ (%) Invalid Y (%)

2.6 4.6 0.2 11.2
8.3 6.4 2.8 10.2
18.4 9.4 15.1 4.3
7.7 7.7 2.9 7.3
11.0 4.4 4.1 7.2
25.9 4.8 13.9 4.4
<0.1 — <0.1 —
1.9 — 2.5 —
5.1 — 3.6 —

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 5 Performance of Llama-3.1 8B and Llama-3.1 70B across all tasks and for different fine-tuning setups. Perfomance for all tasks increases
with the number of fine-tuned parameters, the only exception being the attention fine-tuning for Llama-3.1 70B, where an increase in FS
performance comes with a degradation in RS and EC prediction tasks. The reported Match values are here considered regardless of canonicity.
Numbers are presented in bold if the best performance does not fall within one standard deviation from the second-best

Model LoRA type

EC FS RS

EC1 [ (%) EC2 [ (%) EC3 [ (%) Match [ (%) Invalid Y (%) Match [ (%) Invalid Y (%)

LLama-3.1 8B light 72.0 44.1 30.3 10.2 9.1 4.7 12.8
attention 82.0 48.4 31.9 11.3 7.9 6.9 10.1
default 86.4 56.5 40.5 18.4 9.4 15.1 4.3

LLama-3.1 70B light 85.8 58.5 45.2 21.4 6.0 13.7 3.9
attention 78.8 48.0 34.9 25.6 5.5 9.8 3.3
default 91.7 61.7 49.2 25.9 4.8 13.9 4.4
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variants that spend extra inference time or call external tools to
verify answers and surface their chain-of-thought. We therefore
expect future workows to resemble small teams of models: one
LLM engages the user, then hands off to specialist agents for
planning or calculation. As these guard-railed systems mature,
a single general-purpose LLM may absorb many routine tasks.
Until then, pairing a LLM with specialist tools remains the
safest and most productive path.
3.6 Limitations

While our study demonstrates the potential for researchers to
work with LLMs when studying biochemical reactions, several
limitations must be acknowledged. Addressing these will be key
to improving both model accuracy and applicability in real-
world biochemical workows.

� Potential data leakage: although we ne-tune the LLM to
evaluate performance in low-data regimes, it is possible that the
model has already been exposed to similar biochemical reaction
data during pretraining, as such datasets are available online.
For a fairer comparison, future evaluations should ensure that
test sets are composed of truly held-out reactions that cannot be
scraped or indirectly inferred from pretraining text on the
internet. This would provide a clearer measure of the model's
generalization ability beyond memorization. Moreover, our
similarity analysis (Appendix A.1) shows that, even aer
grouping branching reactions, substantial analogue overlap
remains between train and test substrates and products, indi-
cating that stricter split protocols are required.

� Data constraints: our study is based on the BRENDA subset
of the ECREACT dataset, which, while extensive, does not fully
cover the diversity of enzymatic reactions and does not allow
a direct comparison to current SOTA model. The limited
representation of certain EC subclasses affects generalization.
Expanding training to the full ECREACT dataset or integrating
additional reaction databases could mitigate this issue and
enhance model robustness, yet also here, ECREACT has been
preprocessed and simplies complex biochemical reaction
mechanisms to a certain degree.

� Computational constraints: ne-tuning LLMs is computa-
tionally expensive, even with PEFT strategies like LoRA, limiting
accessibility for resource-constrained environments.
© 2025 The Author(s). Published by the Royal Society of Chemistry
� Interpretability analysis: we focus on predictive metrics
only and do not analyze how the model assigns EC numbers
or predicts reaction outcomes, nor whether its intermediate
reasoning aligns with biochemical knowledge. SMILES
strings are not inherently human-readable, but can be con-
verted into molecular graphs for deeper analysis of the
model's prediction. Inspecting LLM-generated rationales
step-by-step via chain-of-thought prompts is a promising
direction for future work, both for user's interpretability and
to feedback them back into the model for more robust
responses.
4 Conclusions

In this study, we systematically evaluated the potential of
Large Language Models (LLMs) for biochemical reaction
prediction, focusing on enzyme commission classication,
forward synthesis, and retrosynthesis. By ne-tuning Llama-
3.1 models, we demonstrated that LLMs can answer
biochemical questions, although they are not yet fully
competitive with specialized models. Fine-tuning signi-
cantly improves performance over in-context learning, with
Llama-3.1 70B achieving 91.7% accuracy in EC class classi-
cation. Fine-tuning on a single task does not degrade the 70B
model capabilities on unseen related tasks, as we observe
performance improvement compared to zero-shot baselines
that use the base, pretrained model. Multitask learning
enhances forward synthesis and retrosynthesis predictions,
with a match accuracy of 33.8% and 19.2% respectively,
indicating that leveraging shared biochemical knowledge
improves generalization. Additionally, LLMs have potential in
low-data regimes, making them valuable for applications
where labeled data is scarce. The choice of ne-tuning
strategy impacts the performance, with LoRA offering an
efficient and scalable adaptation method. Despite these
strengths, several challenges remain: LLMs struggle with
handling rare EC subclasses and ensuring reliable predic-
tions. As LLM architectures continue to evolve, their integra-
tion into biochemical workows has the potential to
accelerate discoveries in enzyme-substrate prediction and
biocatalysis design.
Digital Discovery
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github.com/Intelligent-molecular-systems/
LLM_netuning_for_biochemistry. This study was carried out
using publicly available data at https://github.com/
rxn4chemistry/biocatalysis-model. DOI: https://doi.org/
10.5281/zenodo.17224080.
A Appendix
A.1 Data preprocessing and analysis

The original dataset comprises 8496 reaction examples,
distributed across the seven EC classes as follows: Class 1
(3361), Class 2 (1700), Class 3 (1596), Class 4 (964), Class 5 (504),
Class 6 (352), and Class 7 (19). We implemented a series of
preprocessing steps to ensure a fair split across training and test
set and across tasks:

� Canonicalization of SMILES representations: reactions
with substrates or products in different SMILES representations
are unied by converting all SMILES strings to their canonical
forms using the RDKit library. This ensures that duplicate
{substrate, product} pairs, differing only in molecular repre-
sentation, are identied and removed. In this step, 362 reac-
tions (4.2% of the total) are reformatted, and no reactions are
discarded.
Fig. 11 Histograms of group size for duplicate {substrate, EC} (left) and du
reactions branch into two possible products, substrates tend to branch

Digital Discovery
�Grouping of related reactions: reactions that represent the
same underlying biochemical process but differ slightly due to
variations in substrate or product representations are group-
ed: whenever a {substrate, EC} or {product, EC} pair maps to
multiple valid counterparts, we treat all those reactions as
a group that must stay together in any train/test split. A group
of size N contains N distinct reactions sharing the same
{substrate, EC} or {product, EC}. With this denition, a group
size of N = 1 indicates a unique reaction with no branching
alternatives. We refer to this as substratebranching and pro-
ductbranching respectively. All reactions within a group are
allocated to the same dataset split (training or test) to avoid
leakage.

� Avoidance of task-specic leakage: in forward synthesis
(FS) and retrosynthesis (RS), if a reaction appears in FS, then any
of its counterparts with the same product and EC number but
different substrates, must not appear in RS. This prevents the
model from gaining undue advantage by being exposed to
related information in the training phase.

Branching groups distribution varies a lot on whether we
look at the products or the substrates, as most of the
branching substrates only lead to 2 or 3 possible products, but
the reverse task has a wider spread. We report this in Fig. 11.
We further analyze the substrates and products to assess
whether overlapping reactions across groups are present. This
is needed because e.g. a substrate, while branching into
multiple products, may also be part of a set of substrates
reachable from a specic product. We follow this by merging
those overlapping groups together and removing redundant
entries.

A.1.1 Similarity check across splits. To determine whether
our cold substrate and cold product splits still leak informa-
tion through highly similar molecules, we compute the pair-
wise Tanimoto similarity between the training and test sets,
separately for substrates and products. For each training
molecule, we compute the mean of its ten most similar test set
neighbours. The resulting distributions reveal that 38% of
training products and 67% of training substrates have a Tani-
moto score >0.85. Such extensive overlap persists despite our
grouping of duplicate {substrate, EC} and {product, EC}
plicate {product, EC} (right). We can observe that while most duplicate
into larger groups.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 12 Histogram of mean top-10 Tanimoto similarities between training and test molecules. Substrates are shown in green and products in
blue. Each bar aggregates training molecules whose average similarity to their ten closest test set analogues falls in that interval. The dashed line
at 0.85 marks the high-similarity regime, that includes 67% of substrates and 38% of products.

Fig. 13 Scatterplots of SMILES-length correlations. Top: forward synthesis (Pearson r = 0.39). Bottom: retrosynthesis (Pearson r = 0.38). This
shows that true input and output lengths are weakly correlated. On the plots is further reported the correlation coefficient between predictions
and ground truths length, showing strong correlation for both tasks.
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reactions, highlighting that exact-match splitting alone is
insufficient to eliminate analogue leakage in enzyme reaction
datasets.

A.1.2 Input-output SMILES length correlation. To quantify
the intrinsic relationship between substrate and product
© 2025 The Author(s). Published by the Royal Society of Chemistry
SMILES lengths in our test set, we rst compute the Pearson
correlation coefficient r between true substrate and true product
lengths, obtaining r ∼ 0.39, which indicates only a weak linear
association. We then evaluate how well our model reproduces
that trend by correlating predicted with true lengths: for
Digital Discovery
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Fig. 14 Left: radar plot showing accuracy, precision, recall and F1 score for Llama-3.1 70B and Llama-3.1 8B averaged over N = 3 experiments.
The plot demonstrates consistent outperformance of the larger model over the 8B variant across all metrics. For comparison, we also show the
70Bmodel perforsmance when it is not fine-tuned, in a zero-shot format. Right: EC class accuracy for the fine-tuned Llama-3.1 70B stratified by
the class.

Table 6 Performance comparison between Llama-3.1 8B and Llama-3.1 70B models for forward- and retrosynthesis. All values for our fine-
tunedmodels are obtained averaging overN= 3 experiments, with standard deviations below 5% of each category value. A zero-shot baseline on
the pretrained 70B model is reported for comparison. We also report the SOTA model19 performance at the end. Note that the dataset is not
exactly the same (see Subsection 2.1) and thus results are still not entirely comparable. Numbers are presented in bold if the best performance
does not fall within one standard deviation from the second-best. NCM, CV, and NCV categories taken alone do not reflect model improvement,
thus we do not bold them. CM:canonical matching, NCM:non-canonical matching, CV:canonical calid, NCV:non-canonical valid

Model Task CM [ (%) NCM (%) CV (%) NCV (%) Invalid Y (%)

Llama-3.1 8B FS 17.6 0.8 53.8 14.0 9.4
RS 14.0 1.1 67.8 11.7 4.3

Llama-3.1 70B FS 24.9 1.0 58.8 10.5 4.8
RS 13.0 0.9 65.1 16.6 4.4

Llama-3.1 70B 0-shot FS <0.1 0 40.5 5.9 53.5
RS 0 <0.1 12.7 4.9 82.4

SOTA FS 49.6 — — — —
RS 60.0 — — — —
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forward synthesis we observe r= 0.64, and for retrosynthesis r=
0.82. We report our results in Fig. 13.

A.2 EC class prediction radar plots

Computing precision, recall and F1 score alongside accuracy, we
observe that these four metrics are all consistent with each other
for both of our ne-tunedmodel sizes, with Llama-3.1 70B beating
Llama-3.1 8B in every metric. We compare them to a 0-shot
prompting setup with the pretrained Llama-3.1 70B as a baseline,
observing the clear performance gap between in-context learning
with the larger model, against the ne-tuned 8B version. Focusing
on the ne-tuned 70B model, a stratication by main class shows
us again that the values for the four metrics are consistent with
each other, per class, with class 4 being the most unbalanced.
These ndings are reported in Fig. 14.
Digital Discovery
A.3 Forward- and retrosyntesis comparison with ne-tuned
llama 8B

The 70B model performs better than the 8B one for forward
synthesis, and are both comparable when it comes to retro-
synthesis. We report the main results in Table 6, alongside the
SOTA model.
A.4 Average Tanimoto scores in ground truth branching

We observe that for the equally valid ground truths that the
database stores for a given reaction, many examples show
a relatively low similarity score. Focusing on the product
prediction only, some of the reasons this happen can be due to
having a co-factor recorded in place of the main product, or
some entries may report products that correspond to different
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 16 Average Tanimoto score computed across a ground truth substrate and each of its ground truth branching counterparts, for all groups
and stratified by group size. For branching groups of size 2, no standard deviation is shown as we only have one Tanimoto score computed
between the reference ground truth and its alternative option.

Fig. 15 Average Tanimoto score computed across a ground truth product and each of its ground truth branching counterparts, for all groups
and stratified by group size. For branching groups of size 2, no standard deviation is shown as we only have one Tanimoto score computed
between the reference ground truth and its alternative option.
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reaction intermediates, a problem that strictly relates to the
presence of branching reactions in the dataset. We compute the
average Tanimoto score across ground truth chemicals that
belong to the same set of branching product/substrates, to get
insights over the chemical diversity of alternatives products/
substrates that are reported in the dataset.

Given a group of size N, we compute the Tanimoto scores
between one element of the set and the remaining N − 1
© 2025 The Author(s). Published by the Royal Society of Chemistry
chemicals. Then, we compute the average Tanimoto score and
its standard deviation for that group. If the chemicals are all
similar to each other, we observe a high average with a relatively
small standard deviation. On the other end, if the chemicals
present more variability, we expect to see a lower average with
a wider spread in the standard deviation. We report the ndings
in Fig. 15 and 16.
Digital Discovery
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A.5 Predictions with Tanimoto score equal to 1 for products
and substrates
Fig. 17 Examples of predicted (left) vs. ground truth (right) products, when the prediction is not correct but produces a Tanimoto score equal to
1. We see that some predictions have an additional hydrogen (resulting in an OH group) while the ground truth recorded an oxygen ion (O–)
(rows 1, 3), while some others have a mismatch in chirality (rows 2 and 4).

Digital Discovery © 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 18 Examples of predicted (left) vs. ground truth (right) substrates, when the prediction is not correct but produces a Tanimoto score equal to
1. We see that some predictions have a missing hydrogen (resulting in an oxygen ion O–) while the ground truth recorded an OH group (row 1),
while some others have a mismatch in chirality (e.g. rows 2 and 3).

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery
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A.6 XGBoost data preprocessing and training

For each task, we encode the biochemical inputs into a struc-
tured format that XGBoost can process efficiently. Given its
reliance on tabular data, molecular and enzymatic information
is transformed into numerical feature vectors before being fed
into the model:

� Molecular representation: for the product and substrate
prediction tasks, we represent molecules using Morgan nger-
prints to encode molecular structures into a xed-length binary
vector. Each molecule is transformed in a 256-bit binary vector,
where each bit represents the presence or absence of a specic
chemical substructure.

� Reaction representation: for the EC number prediction
task, the entire biochemical reaction (substrates + products) is
encoded as a 1024-bit reaction ngerprint. This representation
captures reaction-specic features, such as changes in molec-
ular structures and functional groups.

� EC number representation: we encode them in a way that
preserves their hierarchical relationships. Instead of treating
whole EC numbers as simple categorical labels, which would
ignore relationships between enzymes within the same cate-
gory, we encode them as four separate numerical features, one
for each EC digit. Each of these four digits is rst label-encoded,
then converted into a continuous representation via standard-
ization, approaching it as a regression task where similar EC
numbers remain closer in feature space.

For all tasks, EC number label encoding is done on the full
set of EC numbers, while standardization is performed using
only the training set statistics, preventing information leakage
from the test set.

A.6.1 Training and evaluation. XGBoost models are trained
separately for each task using the same training and test splits
as the LLM experiments. We run the model for 100 boosting
rounds and include early stopping to avoid overtting. For the
EC number prediction task, the problem is framed as a regres-
sion task with a squared loss, whereas for the other two tasks we
use a logistic regression for the output bit-vector.

� EC prediction task: the 1024-bit reaction ngerprint and
the standardized, 4D vector of the encoded EC number, repre-
sent input and output respectively. Evaluation is done by
reverting the standardization process for the prediction and
checking whether the categorical encoding of the predicted EC
digits matches the true labels exactly.

� Product and substrate prediction: the input is represented
by a concatenation of the 256-bit Morgan ngerprint with the
4D encoding of the EC number, and the output is a 256-bit
Morgan ngerprint. Since the ngerprints are binary, the
output is considered correct if the generated ngerprint exactly
matches the ground truth ngerprint, as an upper bound proxy
of our “molecule matching” prediction task.

Since the EC number contributes with only four features to
an input vector of hundreds of dimensions, we conducted
additional experiments to explore its impact. Specically we
inated the relative importance of the EC number by multi-
plying its four components by factors ranging from 5 to 100. We
also completely removed the EC number from the input to test
Digital Discovery
its effect on performance. Our tests show that the best perfor-
mance is achieved by including the EC number with the default
scaling factor of 1, conrming that enzymatic information
contributes meaningfully to reaction prediction, even when it
constitutes a small fraction of the feature space.
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M. Schürmann, R. A. Sheldon and R. Wohlgemuth,
Biocatalysis as key to sustainable industrial chemistry,
ChemSusChem, 2022, 15(9), e202102709.

3 R. A. Sheldon, Green chemistry and biocatalysis:
Engineering a sustainable future, Catal. Today, 2024, 431,
114571.

4 W. T. Wipke and E. J. Corey, Computer-assisted design of
complex organic syntheses, Science, 1969, 166(3905), 178–
192.

5 W. T. Wipke, et al., Secs—simulation and evaluation of
chemical synthesis: Strategy and planning, Computer
Representation and Manipulation of Chemical Information,
1977.
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