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This work presents a generalisable process that transforms unstructured synthesis descriptions of metal–

organic polyhedra (MOPs) – a class of organometallic nanocages – into machine-readable, structured

representations, integrating them into The World Avatar (TWA), a universal knowledge representation

encompassing physical, abstract, and conceptual entities. TWA makes use of knowledge graphs and

semantic agents. While previous work established rational design principles for MOPs in the context of

TWA, experimental verification remains a bottleneck due to the lack of accessible and structured

synthesis data. However, synthesis information in the literature is often sparse, ambiguous, and

embedded with implicit knowledge, making direct translation into structured formats a significant

challenge. To achieve this, a synthesis ontology was developed to standardise the representation of

chemical synthesis procedures by building on existing standardisation efforts. We then designed an LLM-

based pipeline with advanced prompt engineering strategies to automate data extraction and created

workflows for seamless integration into a knowledge representation within TWA. Using this approach, we

extracted and uploaded nearly 300 synthesis procedures, automatically linking reactants, chemical

building units, and MOPs to related entities across interconnected knowledge graphs. Over 90% of

publications were processed successfully through the fully automated pipeline without manual

intervention. The demonstrated use cases show that this framework supports chemists in designing and

executing experiments and enables data-driven retrosynthetic analysis, laying the groundwork for

autonomous, knowledge-guided discovery in reticular chemistry.
1 Introduction

Metal–organic polyhedra (MOPs) represent an intriguing class
of materials owing to their distinctive structural and chemical
characteristics.1–4 MOPs are porous, highly ordered structures
incorporating metallic or multi-metallic centres, whose prop-
erties can be precisely tailored for specic applications such as
gas separation and catalysis.4,5 These functionalities align with
increasing demands for materials that address global chal-
lenges such as greenhouse gas mitigation, with MOPs showing
promise in carbon capture6 and utilisation.7 The symmetrical
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polyhedral structures and well-dened pore sizes of MOPS
enable a modular approach to material design, wherein
complex materials are systematically constructed from simpler,
clearly dened building blocks.8 The self-assembly process of
MOPs is driven by the coordination preferences of metal ions
and inuenced signicantly by synthesis conditions; however,
current synthesis practices still rely largely on empirical, trial-
and-error methods.1,5,9

Our recent work has shown that algorithms leveraging
explicit knowledge representation can signicantly facilitate the
design and prediction of novel materials. Kondinski et al.10

introduced a geometric assembly model for MOPs, enabling the
systematic prediction of over 1400 previously undocumented
structures. This algorithm and its associated data form part of
The World Avatar (TWA), a platform supporting semantic
representation and interactions between data and computa-
tional agents. Additionally, this approach allows for preliminary
estimation of the geometric structures and derived properties of
these predicted MOPs, such as pore and cavity dimensions.11

Although knowledge-based models have successfully pre-
dicted novel MOP structures, their experimental validation
remains a critical bottleneck, highlighting the necessity for
Digital Discovery
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more efficient and systematic approaches to synthesis planning
and execution.10 Despite their potential, MOP syntheses
currently face substantial challenges. Traditional synthesis
approaches typically rely on trial-and-error methods, which are
both time-consuming and resource-intensive.1 Moreover,
synthesis procedures reported in the literature are oen pre-
sented in unstructured formats, complicating standardisation
and automation. The absence of structured, machine-readable
data signicantly restricts the integration of advanced compu-
tational tools and limits the scalability of MOP research.12

Large language models (LLMs) have shown signicant
promise in extracting detailed synthesis information from
scientic literature. For example, Zhu et al.13 demonstrated an
“AI chemist” capable of inferring novel synthesis routes. LLMs
and prompt engineering methods have evolved substantially,
progressing from basic response-guidance techniques to
sophisticated strategies that optimise model performance.
Specically, in-context learning (ICL) enhances outcomes by
strategically embedding examples. Techniques such as zero-
shot and few-shot prompting enable complex tasks with
minimal training examples.14–16 Furthermore, role prompting
and chain-of-thought (CoT) prompting improve logical
reasoning through step-by-step guidance.17,18 Finally, retrieval-
augmented generation (RAG) integrates external knowledge,
enriching model outputs, while schema-aligned prompting
ensures outputs conform precisely to structured data formats.19

Despite notable progress in applying LLM-driven techniques
for chemical data extraction20,21 and even efforts to construct
structured knowledge representations such as knowledge
graphs (KGs) from extracted information,22,23 the integration of
such data into comprehensive, existing knowledge ecosystems
comprising multiple interconnected KGs, such as TWA,
remains largely unexplored. This underutilisation restricts
opportunities to combine LLM-based information extraction
with semantic structuring capabilities inherent in KGs and
TWA, potentially limiting signicant improvements in the
accessibility, interoperability, and automation of chemical
knowledge. Increasing the adoption of these advanced meth-
odologies could bridge this gap, enabling streamlined work-
ows that convert unstructured scientic literature into
structured, actionable data, seamlessly integrated within
dynamic knowledge systems.24

The purpose of this paper is to build on these advances by
developing an integrated family of computational agents that
not only extract synthesis information from scientic literature
by utilising LLMs but also embed this information within the
semantic framework of TWA, as introduced by Kondinski et al.10

Our focus is on integrating synthesis data for MOPs into TWA to
augment knowledge of experimentally known structures and
enable automated generation of synthesis routes for newly
predicted MOPs. This addresses three critical challenges:
automating the extraction of chemical knowledge from
unstructured texts, embedding it into a pre-existing knowledge
base, and establishing a semantic framework that enables
computational agents to process, interpret, and propose novel
synthesis pathways. Aligning this ontology with established
frameworks further enhances interoperability.
Digital Discovery
2 Background

This section introduces background on three key areas. First, we
review the rational design of MOPs, focusing on chemical and
geometric principles for structure prediction, and introduce
The World Avatar. Second, we discuss current challenges in
documenting synthesis procedures and present standardisation
frameworks such as XDL, CML, and SiLA. Third, we examine
how large language models support information extraction
from scientic literature, highlighting advanced prompt-
engineering techniques, including in-context learning, chain-
of-thought prompting, retrieval-augmented generation, and
structured output generation.
2.1 Rational metal–organic polyhedra design in the World
Avatar

MOPs are hybrid nanomolecules composed of repeating
organic and inorganic units, forming highly symmetrical,
supramolecular cage-like structures.8 Their intrinsic porosity
and internal cavities enable applications in molecular sensing,
carbon capture, and synthesis of metal organic frameworks
(MOFs).1,10 In addition, owing to their discrete and well-dened
architectures, MOPs exhibit extensive internal and external
functionalisation, enhancing their adaptability for biomedical
applications, catalysis, and gas separation.5

Given the vast number of potential MOP structures,
a systematic design approach is essential.4 Kondinski et al.10

designed MOPs by leveraging chemical and geometric principles
to systematically predict novel structures. This work was con-
ducted within The World Avatar, a dynamic collection of virtual
knowledge graphs and semantic agents that enables seamless
cross-domain data integration and automated knowledge
discovery.24–26 TWA employs a containerised technology stack,
including Blazegraph and a Python-based twa library.27,28

In a previous work, MOPs were designed using geometric
and chemical rules.10 The approach hinges on chemical
complementarity, ensuring stable bonds between organic and
inorganic components, and topological compatibility, which
governs spatial arrangement. This was implemented via
a framework (for details, see SI) consisting of chemical building
units (CBUs) and their geometric counterparts, generic building
units (GBUs). CBUs represent chemical entities (e.g., metal
clusters and ligands), while GBUs dene geometric roles (e.g., 2-
linear or 5-pyramidal). Assembly models then serve as blue-
prints for constructing MOPs from GBUs: for each GBU a cor-
responding set of CBUs was identied, and MOPs were
generated by systematically recombining those CBUs according
to the GBUs contained in the assembly models. Through this
approach more than 1000 unreported MOPs were generated.

MOPs exemplify niche research areas where large datasets
for bespoke model training or ne-tuning are scarce. The World
Avatar specically addresses such challenges by leveraging
modular, lightweight ontologies that encode expert knowledge
suitable for smaller datasets, supporting rule-based or hybrid
agent workows, as demonstrated by recent work on question-
answering systems for MOPs.29
© 2025 The Author(s). Published by the Royal Society of Chemistry
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2.2 Synthesis procedures and standardisation

Extracting the desired information and data from these publi-
cations is time-consuming and automating the process is
therefore highly desirable. The unstructured nature of synthesis
descriptions, embedded with domain-specic language and
inconsistencies in reporting styles, units, and naming conven-
tions, complicates machine readability.12,30 Standardised digital
formats, such as XDL,31 Chemical Markup Language (CML),32

and SiLA standards,33 have been developed to address this issue
and to improve data interoperability in laboratory automation.
Moreover, efforts like Suvarna et al.12 emphasise structured
reporting to enhance synthesis extraction, fostering advance-
ments in chemistry automation. However, non-semantic
approaches still face challenges in data linking and prove-
nance tracking.34

Ontology-based approaches have emerged as a robust
framework for addressing the limitations of traditional stand-
ardisation methods in chemistry, offering semantic interoper-
ability through structured, machine-readable
representations.35,36 Ontologies such as Allotrope Foundation
Ontology (AFO), Chemical Entities of Biological Interest
(ChEBI),37 and Royal Society of Chemistry's name reaction
ontology (RXNO)38 facilitate data organisation and retrieval by
focusing on entities, reactions, or laboratory instrumentation.
However, to our knowledge, no ontology currently exists that is
specically designed to represent stepwise, lab-scale synthesis
procedures.39 As a result, synthesis ontologies remain under-
developed and underutilised in laboratory automation and
digital chemistry workows.24 KGs, built upon Semantic Web
principles, enhance data integration by linking heterogeneous
datasets through ontologies.40–42 Key technologies such as
Resource Description Framework (RDF), Web Ontology
Language (OWL), and SPARQL query language underpin these
frameworks, ensuring interoperability and reasoning
capabilities.43–45 At the core of these technologies are triples –

subject-predicate-object statements – that dene relationships
between entities, each uniquely identied by an Inter-
nationalised Resource Identier (IRI).
2.3 Information extraction with large language models

Information extraction (IE) involves converting unstructured
text into structured data, crucial for chemical analyses by
identifying chemical entities and reaction conditions.46–48

Traditional methods (rule-based and statistical) have limita-
tions in scalability and adaptability,48,49 highlighting the need
for more exible solutions. Large language models offer
signicant advancements due to their adaptability across
diverse text formats.15,50,51 However, unlike traditional IE
systems, LLMs generate structured outputs that are not neces-
sarily direct substrings of the input text. Following recent
community conventions and the success of generative infor-
mation extraction,22,49,52 we refer to this approach as informa-
tion extraction throughout this work.

Ensuring structured, consistent outputs from LLMs remains
challenging, emphasising the necessity of advanced prompt
engineering techniques.53 Effective prompt engineering
© 2025 The Author(s). Published by the Royal Society of Chemistry
includes targeted content classication, modular retrieval, error
mitigation, and ICL (zero- and few-shot prompting), which
enhances adaptability without extensive retraining14,16,50,54 and
tackles the challenge of data scarcity for training in areas such
as chemical synthesis.21 Several advanced prompting strategies
can further enhance LLM performance such as role prompt-
ing,17,55 chain-of-thought prompting18,54 and retrieval-
augmented generation.19,54 In addition, enforcing ‘constrained
output generation’ ensures adherence to predened schemas,
a critical capability for structured data extraction.49,56

While LLMs have successfully been applied to extract struc-
tured data from tables in scientic papers and populate KGs,22

extracting detailed information from completely unstructured
free text and integrating it into highly structured representa-
tions like KGs remains challenging.49 Recent studies demon-
strate the potential yet indicate that iterative prompt renement
and validation are necessary to achieve reliable, ontology-
aligned outputs.23,57,58 OpenAI's introduction of Structured
Outputs signicantly addresses these issues, enabling
responses to strictly adhere to developer-dened JSON schemas,
thus enhancing the integration and robustness of AI-driven
systems.53,59 Nonetheless, context window limitations continue
to restrict the amount of information that can be processed in
a single inference, which is particularly relevant when extract-
ing synthesis data from lengthy procedures or full-text articles.
3 Developing a novel ontology for
chemical synthesis

In this section, we present our approach to overcoming afore-
mentioned challenges by creating a modular, lightweight, and
XDL-compatible ontology for synthesis procedures. This
includes an analysis of synthesis procedures in the literature,
the design of a structured ontology for synthesis workows, its
integration with existing ontologies such as OntoMOPs and
OntoSpecies, and the implementation of semantic frameworks
to facilitate machine-readable data representation and
interoperability.
3.1 Preliminary data analysis

A preliminary analysis of the data used in this work helps us to
develop competency questions outlining the scope and range of
the ontology.60 As the existing OntoMOPs domain in TWA
includes MOPs from 75 publications curated by Kondinski
et al.,10 these were also chosen as a test case in this work for
extracting synthesis information from and integrating these
with existing knowledge in TWA. In a rst step, a subset of these
publications were screened manually to identify the informa-
tion stored in the publications. Aer dening the information
that is required, a second analysis using the OpenAI API eval-
uated what data can be possibly extracted and to identify
potential issues. The resulting ontology competency questions
are presented in the SI.

In the XDL standard, synthesis information is represented
via markup language describing mainly three categories:31

reagents, procedure, and equipment. As the purpose of the
Digital Discovery
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synthesis ontology developed in this work goes beyond the
execution of synthesis recipe, characterisation data – which is
commonly included in synthesis reports – becomes equally
important, e.g. to verify reproduction or compare potential
yields. For this reason, product characterisation was included as
a forth category. This organisation into four categories became
a fundamental principle for the ontology and pipeline design,
ensuring comprehensive coverage of all relevant synthesis
information. Each of the four categories presents distinct
challenges and oen necessitates additional contextual infor-
mation for accurate interpretation.

These challenges include inconsistent reagent nomenclature,
non-standardised procedural descriptions, and insufficiently
detailed equipment reporting. Ambiguous references, such as
using “1” for MOP product names,61 hinder automated linkage
with OntoMOPs. Customised entity matching strategies will be
therefore necessary. Moreover, publications oen describe
multiple synthesis procedures, including those for precursors,
and a single MOP may have several distinct synthesis routes.
Therefore, the ontology must support multiple procedures per
MOP, include detailed information on precursor synthesis, and
accurately track the provenance of each procedure.
3.2 Ontology design

The ndings from the preliminary analysis were distilled into
the design of the OntoSyn ontology. The OntoSyn ontology
models the transformation of input chemicals into their
respective outputs, capturing synthesis procedures through
structured steps. Fig. 1 shows a simplied version of the new
ontology, highlighting key concepts and important connections
with other ontologies. This diagram serves as a structural
reference for how experimental synthesis data are semantically
represented and integrated within TWA. The full ontology can
be found in the SI.

Each ChemicalTransformation corresponds to a unique
output and may be associated with multiple ChemicalSynthesis
instances, as different synthesis procedures can exist for the
same transformation across publications. Each ChemicalSyn-
thesis instance captures essential synthesis details, including
provenance information, which links experimental procedures
to source documents using the bibo ontology.62 Input chemicals
are annotated according to the OntoCAPE ontology,24 ensuring
standardised representation. The synthesis steps detail process
conditions and methodologies, while yield data is systemati-
cally represented using the “Ontology of units of Measure”
(OM)63 as AmountOfSubstanceFraction. The ontology supports
synthesis procedures for MOPs and other materials, linking
outputs to the OntoMOPs KG when applicable.10 Since MOPs
are assembled from CBUs – which are technically speaking
fragments or moieties and not chemical species – OntoSyn
establishes links between CBUs and the corresponding chem-
ical species used as reactant in OntoSpecies via the predicate
isUsedAsChemical. It should be noted that these are the only
two links specic to the MOP use case; aside from this, the
ontology is agnostic to material class and can be adapted to
other reticular materials or general synthesis workows.
Digital Discovery
The synthesis procedure itself is structured as a sequence of
unit operations, each classied as a SynthesisStep, with specic
step types implemented as subclasses. The ontology allows to
specify a vessel, atmosphere, and duration independent of step
type, while additional properties specic to certain step types
allow the representation of customised information on the
performed action. Where possible, step types align with existing
XDL step categories to facilitate future interoperability. The
predened subclasses are: Add, HeatChill, Separate, Evaporate,
Dry, Crystallize, Transfer, Filter, Stir, Sonicate, and Dissolve,
which cover all synthesis procedures considered in this work.
All of these sub classes, except Sonicate, correspond to XDL-
dened actions.64 In summary, the ontology builds on XDL's
robust framework for describing unit operations for automa-
tion purposes,31 extends it by concepts relevant for reproduc-
ibility and reticular chemistry while ensuring clarity for
information extraction with LLMs and integration with the
overall TWA knowledge base.

The interlinked OntoSpecies ontology includes concepts for
Nuclear Magnetic Resonance (NMR) and mass spectrometry
data,26 yet lacks representation for infrared (IR) spectroscopy and
elemental analysis, commonly reported in MOP synthesis proce-
dures. To address this, we extended OntoSpecies with IR spec-
troscopy concepts derived from the Chemical Methods Ontology
(CHMO),65 introducing FourierTransformSpectrum as a subclass
of AbsorptionSpectrum which refers to SpectralInformation. This
structure enables IR spectra representation akin to NMR, utilising
the existing Spectra Graph concept to dene axes, units, and peak
coordinates. Given OntoSpecies' original focus on emission spec-
troscopy, the term “peaks” was generalised to CharacteristicPeak,
encompassing both peaks and absorption bands. Additionally, we
integrate elemental analysis by distinguishing between calculated
and experimental data, aligning ElementalAnalysis with
subclasses CalculatedElementalAnalysis – derived from molecular
formulae – and ExperimentalElementalAnalysis, which includes
device specications. This extension ensures OntoSpecies accom-
modates themost common characterisation techniques forMOPs:
IR and elemental analysis data alongside existing characterisation
methods, facilitating more comprehensive material property
representation.
4 Building an automated pipeline:
transforming scientific literature into
structured knowledge

In this work, we introduce a structured pipeline developed to
extract, process, and integrate synthesis data into TWA. We
utilised OpenAI's GPT-4o model (gpt-4o-2024-08-06) to support
information extraction and transformation tasks. This section
details prompt engineering strategies and how they are
employed to transform unstructured text to KG-compatible
triples. Moreover, strategies for uploading and linking extrac-
ted information are discussed, which ensure the seamless
integration of extracted data with existing knowledge in TWA
while avoiding duplication and promoting an interconnected
graph.
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00183h


Fig. 1 Overview of the core classes and selected properties defined in the OntoSyn ontology, which formalises key concepts involved in
synthetic chemistry workflows. The figure highlights relationships between the most important concepts as well as links to domain-specific
classes from external ontologies such as OntoSpecies and OntoMOPs. Dashed lines represent indirect relationships, indicating intermediary
concepts that have been omitted in this figure.
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4.1 Pipeline overview

The information extraction pipeline was developed in
a modular fashion for a variety of reasons, including:

� The complexity of simultaneous data extraction and KG
integration.

� The restrictions on JSON schema size by the OpenAI model
used in this work59

� Better control over the input and output of each module for
debugging and adapting the pipeline.

Moreover, research by Sahoo et al.54 has shown that breaking
down tasks into smaller substeps can signicantly improve the
quality of LLM outputs, a core principle applied in this pipeline
design. Based on this principle, the ontology was segmented
into three prompting domains with each domain's data being
extracted, uploaded, and linked separately. These domains
chemicals, step types, and characterisation were selected based
on the ontology design outlined in Subsection 3.2. Integrating
each domain's data within the existing TWA knowledge base
required different upload protocols and necessitated subse-
quent re-linking of separate data elements. These strategies are
discussed in detail in Subsection 4.3.
© 2025 The Author(s). Published by the Royal Society of Chemistry
In order to enforce this modularity throughout the pipeline
while ensuring consistency of data extracted, every piece of
information related to a specic synthesis procedure needs to
be associated with a single unique attribute – a so-called
primary key.66 Therefore, extracted product names were imme-
diately associated with each synthesis, serving as a pseudo-
primary key in this structure to link and connect the les
when they are uploaded. Linking the extracted data in the
different les is an essential step for achieving meaningful
integration within TWA. Without this linkage, unconnected
subgraphs would be uploaded and the stored data holds limited
value. To support the linking process, existing information
within TWA was leveraged through RAG: querying pre-existing
concepts and prompting the LLM to match exact string speci-
cations signicantly enhanced the reliability of these
connections. A high-level overview of the transformation from
synthesis text in PDF format to instantiated knowledge in TWA
is depicted in Fig. 2. The key strategies of ICL, RAG, structured
output, and CoT form the pillars of this LLM-based pipeline and
are the basis for a reliable, targeted and hallucination-free data
extraction and linkage with an LLM.
Digital Discovery
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Fig. 2 Overview of the LLM-based pipeline for synthesis data extraction and TWA integration visualised as abstract process from top to bottom.
The modular pipeline calls the LLM seven times and thereby uses different prompt engineering techniques to extract synthesis information from
manuscripts or SI Files, of which the four main ones are illustrated in the centre of the figure. Each box representing a key prompting strategy
defines the main use case in the pipeline and provides an example below for the specific prompt engineering technique.
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While Fig. 2 illustrates the prompt engineering strategies
deployed throughout the pipeline, it does not indicate exact
sequence or content of prompts used. Fig. 3 presents the
complete pipeline workow as a UML diagram, illustrating the
interactions among four primary actors: the user, the pipeline
agent, the LLM, and TWA. The user initiates the data extraction
process by providing the synthesis text in PDF format. The
pipeline agent iteratively constructs prompts for the LLM,
incorporating both preexisting knowledge from the TWA and
information obtained from earlier prompts. Each prompt is
passed to the LLM, which returns structured responses, but not
all responses are ultimately integrated into TWA. For example,
Digital Discovery
Prompts 2 and 3 specically serve to condense the synthesis
text, isolating the segments pertinent to the current task, while
Prompt 4 identies and classies the types of synthesis steps
involved in the procedure.
4.2 Prompt strategies

In LLM-based synthesis data extraction, prompt engineering
has proven essential, showcasing models' ability to generalise
effectively to unseen data through the use of well-designed
prompts.67 The most important strategies used in this
synthesis extraction pipeline are ICL, RAG, and CoT prompting.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Detailed UML activity diagram, illustrating the interactions between the four main actors: the user, the pipeline agent, the LLM, and TWA.
The flowchart outlines the step-by-step process for uploading data, extracting chemical and synthesis information via prompt-based LLM
interactions, and integrating the structured outputs into TWA. On the left side, a short synopsis on the purpose of each prompt is provided.
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Furthermore, the structured output mode of the OpenAI API
allows to reliable generate output that complies with a given
JSON schema.59 While ICL and CoT improve the reliability of
information extraction from text, RAG and JSON schema-
constrained outputs are critical for aligning that information
with KG integration workows.

As discussed in Subsection 2.3, in-context learning leverages
examples placed within the prompt to guide the LLM in
generating the desired response.16,54 In this pipeline, each
prompt incorporates examples to dene the output structure.
For text-generating prompts (Prompt 2 and Prompt 3), examples
shape the expected format of free-text outputs, ensuring
a consistent and structured response. Since plain text is inher-
ently more ambiguous than structured formats, ICL plays
© 2025 The Author(s). Published by the Royal Society of Chemistry
a crucial role in maintaining uniformity in output format and
structure. For structured output prompts that return JSON les,
examples clarify the format and expectations of specic entries.
An example of text formatting for ICL is shown in Fig. 2, while
examples of JSON-formatted ICL are shown for most prompts in
the SI. CoT prompting is used for prompts that require multiple
reasoning steps, as it has been shown to improve the output
quality in such instances.54 In all three prompting domains we
make use of this strategy to a degree, describing the informa-
tion extraction procedure step by step – usually, by guiding the
model from recognising certain text passages to categorising
them and lling in specic parameters dependent on it. Fig. 2
includes an excerpt of Prompt 6 demonstrating CoT prompting.
A chain of thought can also be established across multiple
Digital Discovery
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prompts: Prompt 3 for example groups, orders, and assigns step
types in preparation for subsequent Prompts 4 and 5, which
extract details on equipment, parameters, and reactants
involved based on the step type.

The structured output mode introduced by OpenAI ensures
compliance with predened JSON schemas, providing a robust
framework for data extraction and integration into KGs.59 JSON
inherently organises data in a hierarchical tree structure, where
objects and arrays form nested parent–child relationships.
Although effective for capturing hierarchical data, tree struc-
tures impose constraints that limit the representation of
complex interconnections.68 In contrast, graph structures,
composed of nodes and edges, better model intricate, inter-
connected data.69 The synthesis information in this case is used
to populate KGs, but generating graphs data directly remains
challenging:57 while graph extraction as RDF model directly
(e.g., in “Turtle” le format) is possible and has previously been
demonstrated by Caueld et al.,70 integrating such outputs into
a KG using multiple predened ontologies and correctly linking
entities is extremely difficult. The LLM-generated output likely
is not perfectly formatted and still needs to be post-processed,
there is no guarantee that the output complies with a given
schema, and the output le structure may vary and potentially
be wrong. Furthermore, the IRIs used in the extracted Turtle le
still need to be mapped to previously instantiated instances to
avoid duplicates. The pipeline circumvents these problems by
relying on the structured output mode of the OpenAI API to
generate reliable JSON les that follow the provided schema.
These JSON les are designed to closely match the ontology in
their structure and contain the values used to populate TWA.
The entity linkages that transform the tree-like JSON le into
a graph are xed by the ontology and applied during the upload
process, which ensures proper linking and instantiation.

RAG improves LLM responses by querying external data and
adding it to the prompt.19 This is especially helpful for knowl-
edge extraction with TWA, where an existing and constantly
updated knowledge base can be queried to improve prompts. In
this case, the pipeline connects three different triplestores and
even more ontologies. Five out of seven prompts are extended
by existing data from either OntoMOPs or previously uploaded
data from OntoSyn, allowing semantic knowledge to predict
links and connect multiple outputs. Fig. 2 highlights how the
chemical names are queried, saved to the variable chem-
ical_names, and embedded in the prompt. Four specialised
prompt strategies were developed to integrate knowledge from
TWA, leverage information from the designed ontology, and
tune prompts based on previous responses:

1. Knowledge-augmented prompting: Supplements prompts
with relevant information queried from TWA, which serve as
a set of reference values to guide the model. For instance,
chemical names from input data can be matched with existing
entries, such as in the OntoMOPs KG, or with newly generated
information derived from extracted and uploaded data in
OntoSyn.

2. Response-adaptive prompting: Dynamically adjusts
prompts based on prior LLM outputs, without uploading
intermediate data to TWA. Sub-prompts and schemas are
Digital Discovery
composed on-the-y using information from preceding
prompts. For example, the LLM is instructed to generate a JSON
le with boolean entries for each present step type in Prompt 4,
based on which Prompt 5 is constructed from predened sub-
prompts for every step type, incorporating only relevant infor-
mation to ensure efficient and targeted extraction.

3. Lookup table-driven extraction: Uses predened value sets
(via the enum keyword in JSON schemas) to restrict LLM
responses. This forces selection from a xed list including
“unknown”, reducing hallucinations and improving extraction
reliability.

4. Prompt-based link generation: Queries instances from
different classes and tasks the LLM with identifying specic
links between them. Unlike knowledge-augmented prompting,
this approach incorporates multiple KGs and focuses on
generating connections. For example, Prompt 7 uses pre-
queried instances from OntoMOPs (e.g., CBUs) and OntoSpe-
cies (e.g., chemical species) KGs to establish links between
them.

In addition to prompt design, the architecture of the pipeline
itself plays a key role in overcoming limitations imposed by
LLM context windows. Experimental sections are isolated from
irrelevant content in Prompt 2, and different information
categories are processed in a modular, sequential fashion. This
allows long documents to be handled in smaller, coherent
chunks and ensures that context-sensitive reasoning can still be
performed effectively, even when full-text input exceeds model
limits.
4.3 Uploading strategies

Transforming JSON data into a graph structure is critical for
enabling exible and interconnected data analysis. JSON
inherently follows a hierarchical treemodel, which, while useful
for structured data, limits complex relationship representa-
tions.68 In contrast, graph structures facilitate the modelling of
complex, interconnected data beyond hierarchical limitations.69

Converting JSON data into a graph structure involves mapping
JSON objects and arrays to graph nodes, and their relationships
to edges, thereby preserving the original data's semantics while
enabling richer interconnections. As detailed in the SI, the JSON
les closely resemble the ontology. Using the TWA Python
package, those JSON objects and hierarchy are instantiated
within the program logic and seamlessly pushed to their
respective knowledge graphs via the object-graph mapper.28

This structured approach allows us to programmatically link
the different entities with each other beyond the tree structure.

As detailed in Subsection 4.1, the pipeline extracts and
integrates synthesis data from three general domains, with
information for each domain stored in separate JSON les. This
results in the creation of multiple JSON les per literature
source, necessitating the linkage of subgraphs across these
domains. Within each domain, the chemical output name is
extracted and serves as a primary key, enabling the integration
of subgraphs corresponding to specic chemical trans-
formations. By connecting each domain-specic subgraph
through the chemical output class, these fragments are
© 2025 The Author(s). Published by the Royal Society of Chemistry
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effectively linked. Previously extracted names and information
on uploaded output chemicals are added to the prompt with
RAG and serve as selectable options during language model
extraction. Providing a selection of possible names for a certain
chemical increases the chance of assigning the name used in
the paper to the previously extracted name. For example, if
a paper describes a synthesis using the abbreviation “DMF”, the
previously instantiated entity with the label “N,N-di-
methylformamide” can be leveraged so that the LLM is able to
recognise that they are the same chemical and extracts both
names. This allows to further expand the “N,N-di-
methylformamide” instance with the new label “DMF”. Another
helpful tool is the existing OntoSpecies TWA subgraph that
stores information on commonly used species.26 Even when the
LLM does not correctly assign the name “DMF” in the text to
TWA instance with label “N,N-dimethylformamide”, the Onto-
Species KG is queried while uploading the species. Querying
“DMF” in OntoSpecies retrieve the stored knowledge on it being
the abbreviation for “N,N-dimethylformamide” and the
instances will be linked during uploading.

Beyond inter-le linkages, avoiding duplicate entity creation
is crucial. Three uploading strategies are employed based on
instance characteristics. Fig. 4 illustrates these strategies. Uni-
que instance upload is the simplest case, where each extracted
instance is newly instantiated, independent of the source
ontology. No duplicate checking is required, as instances do not
Fig. 4 Illustrative example of uploading a JSON-formatted output of
instantiation, predefined entry linking, and cross TWA-subgraph entity m
new graph patterns and establishes links between newly instantiated en

© 2025 The Author(s). Published by the Royal Society of Chemistry
recur. Scalar values are good examples of this, as they uniquely
represent a number-unit combination within a paper as shown
for the two values representing chemical amounts in Fig. 4.

Certain ontology classes contain a nite, predened set of
instances, oen derived from OntoSyn and originally dened
through manual literature review. Examples include JSON
entries from “lookup-table driven extraction” (Subsection 4.2)
such as atmospheres (e.g., “air”) and temperature units. These
predened instances guide LLM outputs by restricting extrac-
tions to known values – e.g., a predened set of vessel types.
Predened entry linking requires these instances to be uploa-
ded to TWA at the start of the pipeline. When extracted, values
are matched against stored IRIs via a lookup table, ensuring
consistency and preventing duplicates.

Some classes have an open set of possible values, allowing
for an innite number of variations, yet certain values recur
throughout the data. To avoid duplicates they need to be
uploaded only the rst time and linked otherwise. The right-
most uploading workow depicted in Fig. 4 named cross-KG
entity matching and linking handles these cases. When
uploading such instances, it is essential to rst check the
OntoSyn KG to verify whether an instance of the same entity
already exists, thereby avoiding duplicate entries. A signicant
challenge arises when the same entity is extracted with different
labels, making consistent linking difficult. To address this, we
include alternative labels and attempt to extract as many
LLM-based IE, demonstrating three key techniques: unique instance
atching and linking. The figure shows how each technique generates
tities and existing.
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variants and relevant data as possible. The process becomes
more complex when handling instances from external ontol-
ogies with entries outside the TWA stack. To avoid duplicates –
where the same entity may have different IRIs – it is necessary to
query all relevant KGs via their SPARQL endpoints to check for
existing instances of the entity. This ensures consistent repre-
sentation and minimises duplicate entries.
4.4 Performance evaluation

The pipeline presented in this work does not just extract
synthesis information and convert it into a structured data
format – it integrates it within a body of pre-existing knowledge.
This makes quantitative performance evaluation inherently
challenging, as results depend not only on extraction quality but
also on the current state of related knowledge in TWA. To assess
the pipeline's effectiveness in extracting relevant information,
we manually curated schemas for a test set of 9 papers and
compared both the schemas and the resulting knowledge
graphs to those produced automatically by the pipeline.
Comparison was based on exact value matches, yielding stan-
dard performance metrics (precision, recall, F1 score), detailed
in the SI.

Analysing the JSON schema results, the pipeline achieves an
overall F1 of 84.7% with 4224 true positives and only 768 false
negatives. A breakdown by category shows strong performance
in extracting chemical entities, synthesis steps, and character-
isation details, but somewhat lower performance for CBU
components. This discrepancy is primarily due to integration
challenges: the pipeline oen extracts initial reagents, while
OntoMOPs expects curated CBU formulas—highlighting that
the main difficulty lies not in extraction per se, but in aligning
extracted data with structured domain knowledge. For the
knowledge graph comparison, which is based on exact
predicate-literal matches, performance is even higher, with an
F1 score of 94.2%. This reinforces the reliability of the pipeline
in both extracting and linking meaningful information. Unlike
the JSON schema comparison, this does not depend on the
order of data and thus we observe higher performance. These
results are on par with state-of-the-art literature extraction
methods,23,58 underscoring the effectiveness and reliability of
the pipeline to accurately extract and link information from the
papers.

In this work, a total dataset of 75 publications was analysed,
based on the selection by Kondinski et al.,10 with few exclusions
due to access restrictions and data processing errors. Of the 75
initially selected articles, 69 were successfully processed
without manual intervention. One of the main achievements in
this dataset is the linkage of 102 out of 151 MOPs present in
TWA to chemical outputs, with 78 of the total 127 CBUs
successfully linked to reactants. This connectivity is crucial for
future developments and an understanding of the relations
between OntoMOPs concepts and actual chemical species and
provides the foundation for future synthesis predictions. Of 565
unique species instantiated within the synthesis procedures, 88
were detected in the OntoSpecies KG and linked accordingly.
Digital Discovery
5 Applications

In this work, we used the OpenAI API59 for prompting tasks
when running the pipeline presented in section 4 on 75 pre-
selected articles.10 It is important to emphasise that the pipe-
line itself is largely independent of the LLM used and could be
changed to any general purpose LLM API. In this section we
demonstrate the extracted knowledge's practical applications
and explore broader implications for the eld.
5.1 Knowledge graph-based assembly of synthesis
procedures

Unlike traditional static synthesis procedure formats, the pre-
sented TWA-based framework provides a exible and dynamic
structure that can adapt to both human and machine require-
ments. As shown in Fig. 5, this adaptability ensures that
synthesis data can be easily interpreted by researchers while
simultaneously offering the structured, queryable format
necessary for automation and computational analysis. Custom-
tailored synthesis recipes or other output formats can now be
generated by querying all steps and characterisation data of
a specic synthesis and reassembling it into a new “synthesis
generation prompt” that gets again fed to an LLM API. Similar
to the pipeline prompts described in section 4, these prompts
would employ RAG and ICL techniques.

This workow allows chemists to query the TWA and retrieve
synthesis protocols in a semi-structured, readable, and stand-
ardised format. Due to the TWA's structured nature, outputs
can be exibly formatted based on specic requirements. An
exemplary output is illustrated on the le side of Fig. 5b while
the original synthesis text as well as an excerpt of the repre-
sentation in TWA can be found in Fig. 5a for comparison. The
overall workow of pipeline extraction and reassembling the
synthesis procedure worked very well and even outperformed
the original text by presenting the information in a more
concise and structured manner. The data in TWA correctly
resembles the used vial, the chemicals, and even captured the
mixing relationship of methanol and DMF and adjusted the
specied amount, yet failed to add them in one step. Even
though the output is well-structured and captures most of the
important information presented in the literature procedure,
there are minor aws in the LLM-generated description.

In the structured output shown on the le side of Fig. 5b,
data are categorised into the four main categories identied in
Subsection 3.1: chemicals, equipment, step types, and charac-
terisation. This organised approach differs from traditional
documentation of synthesis procedures, where these domains
are oen intertwined, requiring additional reading and inter-
pretation. The text is written in a generalised and consistent
style, eliminating ambiguities and minimising room for inter-
pretation. For example, implicit details such as “room temper-
ature” are explicitly stated in the new format, providing clarity.
The structured output also offers a signicant advantage by
concisely listing chemicals and equipment before the synthesis
process begins, aiding chemists in identifying essential mate-
rials more efficiently.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Illustration of different stages of synthesis knowledge representation – from instructions in PDF article to instances in a KG to tailor-made
output formats – demonstrate the flexibility and versatility of the TWA-based synthesis representation developed in this work. (a) Original
synthesis text from journal article PDF and illustration of corresponding instantiated triples in TWA after synthesis extraction. (b) Exemplary output
formats: one human-readable (bill of materials and recipe-style instructions), one machine-readable (i.e. XDL).

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery
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Alternatively, given the strong alignment between the
ontology and XDL format detailed in section 3.2, KG data can be
translated into an XDL le. Most synthesis steps share class
attributes with XDL properties (see SI for details), allowing for
programmatic population of a template XDL le from corre-
sponding triples. This offers a major advantage over previous
approaches, where the creation of XDL schemes from literature
remained largely manual due to the linguistic challenges of
parsing free-text procedures.71 Because of the fact that XDL was
developed with a focus on organic chemistry and lately ow
chemistry in particular while OntoSyn is for reticular material
synthesis, minor differences in step types and attributes require
future harmonisation. The sonication step, unique to OntoSyn,
is absent in XDL.64 Additionally, some information is not reli-
ably extractable using the LLM approach, though advancements
in XDL and LLMs will mitigate this. Key step types such as Add,
HeatChill, and Filter are already supported. Extracting vessel
information remains challenging. OntoSyn currently represents
only the main vessel per step, except in transfer steps, whereas
XDL requires explicit details for all involved vessels. Lastly,
some XDL steps, such as Separate, necessitate both target and
waste vessels. However, synthesis texts seldom specify vessels,
complicating perfect alignment.
5.2 Data analysis and retrosynthesis

The collection of highly structured and interlinked MOP
synthesis information opens up a unique opportunity for ana-
lysing procedures, parameters, equipments, and yields to
identify trends that can inform future synthesis planning. Such
a structured and comprehensive knowledge base has been
envisioned as a critical enabler for digital reticular chemistry, as
suggested by Lyu et al.72. Particularly, linking synthesis proce-
dures to the building units and assembly models of the result-
ing MOP structures allows us to uncover design rules. These
rules can be applied for retrosynthesis – working backword
from a desired MOP structure to suggest plausible synthetic
routes as suggested by Kondinski et al.10. Fig. 6 illustrates two
examples of our preliminary data analysis that provides insights
potentially applicable to the retrosynthesis of novel MOPs.

As shown in Fig. 6a, the mapping between reactants and
CBUs is not always one-to-one. This is particularly true for
transition metals such as vanadium, which can form various
complexes depending on their oxidation states and spin
congurations. In such cases, the choice of solvent and the
heating regime have a substantial impact on determining the
nal CBU as well. Multiple reactant combinations are typically
possible and even multiple reactants are sometimes used as
vanadium source, making synthesis prediction for these
systems especially complex. For closed-shell metal CBUs, the
mapping is generally more straightforward and oen follows
a one-to-one pattern. In contrast, organic CBUs can be usually
mapped to a specic single reactant, simplifying predictive
modelling.

Fig. 6b demonstrates a strong correlation between the type of
metal CBU and the heating regime employed during synthesis.
Specic metal centres are consistently associated with distinct
Digital Discovery
thermal proles, leading to visible clustering patterns in the
analysis. Interestingly, when the same analysis is performed
using organic CBUs as the categorisation criterion, no such
correlation is observed. This observation aligns well with
chemical intuition: heating primarily serves to activate the
metal complex, aer which the self-assembly of the structure
takes place. From a retrosynthesis standpoint, this suggests
a useful heuristic: when designing a novel MOP based on
a known structure, retaining the metal core while substituting
the organic ligand is likely to preserve the required thermal
conditions for synthesis.

Lastly, analysis of the extracted synthesis data can also reveal
insights into common reporting practices of such procedures
apart from retrosynthesis applications. For example, the struc-
tured data enables analysis of characterisation trends across the
synthesis literature. Among 272 documented chemical outputs,
elemental analysis is the most frequently used verication
method, appearing in 213 cases. Other techniques, such as IR
spectroscopy and NMR, are comparatively less common.
Furthermore, synthesis yield is reported in only 115 of the 291
documented procedures, highlighting a general lack of
emphasis on quantitative output in the literature. These
insights not only inform future synthesis reporting practices
but also guide data prioritisation for predictive modelling and
automated synthesis planning.
5.3 Discussion

Despite segmenting the workow into seven prompts (see
Fig. 3), synthesis data extraction remains challenging. There-
fore, as suggested by prior work,12,31 a standardised way of
reporting synthesis procedures could greatly benet the
computational community by facilitating more efficient and
precise data extraction. Even small changes – such as the
standardisation of the language used to describe certain actions
performed in the lab, or structuring the synthesis procedure in
a generally agreed-upon clear and compact way – could reduce
ambiguity and improve LLMs ability to parse this data. In the
longer term, such standardisation could even enable reliable
data extraction without the need for large language models,
reducing computational cost and environmental impact. At the
moment, the way synthesis procedures are reported is oen
constrained by the formatting guidelines and section structures
imposed by the journals in which articles are published.
Therefore, publishers play a critical role and should take the
lead in developing and promoting unied standards for
reporting experimental procedures.

In the synthesis example of MOP
[Zr3O(OH)3(C5H5)3]8[(C5H5)(CH3)3(CO2)2]2 partially illustrated
in Fig. 5, TWA data correctly resembles the used vial, the
chemicals, and even captured the mixing relationship of
methanol and DMF. It adjusted the specied amounts, yet
failed to add them in one step. Even though the output is well-
structured and captures most of the important information
presented in the literature procedure, there are minor aws in
the LLM-generated description: Water and deionised water are
confused in the uploading process as the same entity causing
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Exemplary data analyses of the recorded MOP synthesis procedures reveal correlations between building units and synthesis conditions
that might be used for retrosynthesis. (a) Sankey diagram of metal CBUs on the right and their corresponding reactants on the left used in
recorded synthesis procedures for selected vanadium-based MOPs. Reactant mixtures are indicated in the middle where applicable. (b) Heating
temperature and duration used for crystallisation of selected MOPs in recorded synthesis procedures. Data points are colour-coded by themetal
CBU present, larger points indicate multiple MOPs with a certain metal CBU are synthesised with the same heating regime.
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the confusion in the output text. Furthermore, the LLM oen
extracted isStirred as required even though the text does not
explicitly mention it. While it is oen sensible to imply stirring
© 2025 The Author(s). Published by the Royal Society of Chemistry
in synthesis steps, even when not explicitly mentioned,
instructions that involve stirring a single reactant or mixture of
powders might confuse researchers. As ontology complexity
Digital Discovery
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increases, rening prompts will be critical. Restricting outputs
to predened values effectively mitigates hallucination, though
human oversight in data screening remains a bottleneck.

RAG prompting worked well and guided the LLM to the ex-
pected values in the desired format. In this context, data quality
was found to be tremendously important as wrongly extracted
and uploaded values that are reused later on propagate through
the RAG approach. One example of this we encountered once
was a mixture that the LLM did not properly recognise as such
and instead instantiated a single new species of the name
“[“Ethanol”, “Water”]”. As a result, all the synthesis steps that
were connected to either ethanol or water were connected to the
mixture instance even though only either of the species was
used. To address this issue, the JSON schema responsible for
chemical name extraction and the uploading procedure were
updated, and the extraction process was repeated to ensure
accuracy. Expanding RAG to integrate IRI queries during
prompt generation could further streamline entity mapping,
potentially allowing direct JSON-to-triple conversion. The
current approach delays IRI mapping until data upload, avoid-
ing LLM misinterpretation of lengthy IRIs with random char-
acter sequences.

Designing JSON schemas that closely align with the ontology
and subdividing the ontology into different JSON les allows to
extend the data pipeline to very large ontologies as previously
observed by Meyer et al.57. In our experience, joining different
extracted JSON les as described in Subsection 4.3 works well
but still occasionally fails and generates disconnected
subgraphs that are of little value. The more the ontology is split
up into different les, the more linking is required which
increases the risk of faulty links or uploads. Therefore, nding
the right balance between modularising ontology subdomains
for the pipeline and preserving overall integrity and inter-
linkedness remains a critical design challenge. Overall, rening
standardisation, ontology expansion, and prompt engineering
will enhance pipeline efficiency and extraction accuracy while
minimising manual intervention.

While this work focuses on MOPs, the OntoSyn ontology is
designed to generalise across other material classes, particu-
larly reticular materials. With minor adjustments to prompts
and program logic, and by linking to a material-specic
ontology, the pipeline can be adapted for broader applica-
tions. Nonetheless, some limitations remain. The ontology does
not yet capture complex experimental setups, and handling very
large datasets may introduce scalability challenges. Despite
prompt engineering and schema constraints, occasional hallu-
cinations persist and require human oversight.

6 Conclusion

Building on advancements in reticular chemistry and LLMs
while leveraging the capabilities of TWA, a universal digital twin
based on interlinked dynamic KGs, this work demonstrates
a comprehensive framework to automate synthesis procedure
extraction. One major contribution of this work lies in devel-
oping the OntoSyn ontology and verifying its utility for repre-
senting and comparing chemical synthesis procedures. By
Digital Discovery
addressing the drawbacks of traditional synthesis documenta-
tion, this ontology aims to bridge the gap between unstructured
textual data and rigidly structured, machine-readable formats.
The ontology's alignment with standards such as XDL and its
integration with existing domain ontologies, including Onto-
MOPs and OntoSpecies, exemplies its interoperability. The key
achievement was the creation of a fully automated pipeline for
the extraction of synthesis information from scientic literature
and integration within a dynamic system of pre-existing
knowledge and structure requirements.

Through systematic prompting strategies, such as chain-of-
thought reasoning, retrieval-augmented generation, and in-
context learning, the pipeline successfully extracts and struc-
tures detailed synthesis information, demonstrating high
accuracy and consistency. Four strategies were developed to
leverage TWA to support the synthesis data extraction:
knowledge-augmented prompting integrates existing knowl-
edge into prompts to rene data selection; response-adaptive
prompting helps designing iterative prompts and schemas to
systematically analyse publication content and guide future
prompt construction; lookup table-driven extraction leverages
JSON schema capabilities for structured data extraction; lastly,
prompt-based link generation employs LLMs to establish entity
linking by embedding instances directly into prompts, enabling
seamless integration and alignment within the TWA
framework.

Applying this LLM-based pipeline to a considerable number
of MOP synthesis publications provided several unique
insights. First, the highly structured and detailed representa-
tion of synthesis procedures enables the creation of tailor-made
lists and protocols that are more practical and efficient for
various stakeholders in chemistry labs. Notably, the alignment
of the OntoSyn ontology with robotic execution standards such
as XDL emphasises its potential to support autonomous labo-
ratories and machine-executable chemistry. Second, the ability
to semantically link experimental synthesis procedures with
corresponding MOP structures allows for the exploration of
correlations between structure and synthesis conditions. These
correlations can be leveraged to predict synthesis pathways for
novel MOPs with desirable properties, reinforcing the impor-
tance of knowledge–driven approaches in hypothesis genera-
tion and experimental design. Finally, promoting greater
consensus among researchers and publishers on how synthesis
instructions should be structured and documented would
signicantly advance the eld. Beyond improving reproduc-
ibility, such standardisation would enable more accurate and
efficient data extraction, potentially reducing reliance on large
language models and facilitating the development of large-scale
knowledge bases essential for uncovering complex relation-
ships between molecular structure and synthetic strategy.

Looking ahead, this work lays the foundation for a range of
promising developments. From enhancing automation by
enabling autonomous literature discovery and data extraction,
to leveraging structured formats like XDL for more streamlined
knowledge integration, many directions remain open. The
interoperability built into OntoSyn allows not only for broader
data sourcing but also for generating predictive models to
© 2025 The Author(s). Published by the Royal Society of Chemistry
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support synthesis planning. Continued advances in large
language models—including improved reasoning and larger
context windows—are expected to further enhance extraction
accuracy and may enable simpler, more efficient workows.
Expanding the ontology to new chemical domains and inte-
grating with robotic platforms could further unlock applica-
tions in autonomous laboratories. Moreover, rening the
pipeline and establishing connections with other autonomous
agents will be key to building more cohesive and intelligent
systems. For instance, automatically running the PubChem
agent26 on newly instantiated species within the knowledge
graph would retrieve additional physico- and thermochemical
properties, enriching the contextual information available for
synthesis planning and validation.

In conclusion, this publication provides a robust framework
for automating synthesis discovery and material design beyond
reticular chemistry, addressing key challenges in scalability,
reproducibility, and data integration. By combining AI-driven
automation, semantic knowledge representation, and data
modelling, it lays a solid foundation for a future transformation
of synthetic chemistry from an empirical to a data- and
knowledge-driven discipline.
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