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1 Introduction

Extraction of chemical synthesis information using

The World Avatar'

Simon D. Rihm,¥“ Fabio Saluz,¥# Aleksandar Kondinski,? Jiaru Bai,® Patrick W. V. Butler,?
Sebastian Mosbach,® Jethro Akroyd,® and Markus Kraft*ede

This work presents a generalisable process that transforms unstructured synthesis descriptions of
metal-organic polyhedra (MOPs) — a class of organometallic nanocages — into machine-readable,
structured representations, integrating them into The World Avatar (TWA), a universal knowledge
representation encompassing physical, abstract, and conceptual entities. TWA makes use of knowl-
edge graphs and semantic agents. While previous work established rational design principles for
MOPs in the context of TWA, experimental verification remains a bottleneck due to the lack of
accessible and structured synthesis data. However, synthesis information in the literature is often
sparse, ambiguous, and embedded with implicit knowledge, making direct translation into structured
formats a significant challenge. To achieve this, a synthesis ontology was developed to standardise
the representation of chemical synthesis procedures by building on existing standardisation efforts.
We then designed an LLM-based pipeline with advanced prompt engineering strategies to automate
data extraction and created workflows for seamless integration into a knowledge representation within
TWA. Using this approach, we extracted and uploaded nearly 300 synthesis procedures, automati-
cally linking reactants, chemical building units, and MOPs to related entities across interconnected
knowledge graphs. Over 90% of publications were processed successfully through the fully auto-
mated pipeline without manual intervention. The demonstrated use cases show that this framework
supports chemists in designing and executing experiments and enables data-driven retrosynthetic
analysis, laying the groundwork for autonomous, knowledge-guided discovery in reticular chemistry.

and well-defined pore sizes of MOPS enable a modular approach

Metal-organic polyhedra (MOPs) represent an intriguing class of
materials owing to their distinctive structural and chemical char-
acteristicsT™. MOPs are porous, highly ordered structures incor-
porating metallic or multi-metallic centres, whose properties can
be precisely tailored for specific applications such as gas sepa-
ration and catalysis®®. These functionalities align with increas-
ing demands for materials that address global challenges such as
greenhouse gas mitigation, with MOPs showing promise in carbon
capture and utilisation”. The symmetrical polyhedral structures
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to material design, wherein complex materials are systematically
constructed from simpler, clearly defined building blocks®. The
self-assembly process of MOPs is driven by the coordination pref-
erences of metal ions and influenced significantly by synthesis
conditions; however, current synthesis practices still rely largely
on empirical, trial-and-error methods1®%,

Our recent work has shown that algorithms leveraging explicit
knowledge representation can significantly facilitate the design
and prediction of novel materials. Kondinski et al.** introduced a
geometric assembly model for MOPs, enabling the systematic pre-
diction of over 1,400 previously undocumented structures. This
algorithm and its associated data form part of The World Avatar
(TWA), a platform supporting semantic representation and in-
teractions between data and computational agents. Additionally,
this approach allows for preliminary estimation of the geometric
structures and derived properties of these predicted MOPs, such
as pore and cavity dimensions™L.,

Although knowledge-based models have successfully predicted
novel MOP structures, their experimental validation remains a
critical bottleneck, highlighting the necessity for more efficient
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and systematic approaches to synthesis planning and execu-
tion'!?. Despite their potential, MOP syntheses currently face
substantial challenges. Traditional synthesis approaches typically
rely on trial-and-error methods, which are both time-consuming
and resource-intensive. Moreover, synthesis procedures re-
ported in the literature are often presented in unstructured for-
mats, complicating standardisation and automation. The absence
of structured, machine-readable data significantly restricts the in-
tegration of advanced computational tools and limits the scalabil-
ity of MOP research'2,

Large language models (LLMs) have shown significant promise
in extracting detailed synthesis information from scientific liter-
ature. For example, Zhu et al.9 demonstrated an “Al chemist”
capable of inferring novel synthesis routes. LLMs and prompt en-
gineering methods have evolved substantially, progressing from
basic response-guidance techniques to sophisticated strategies
that optimise model performance. Specifically, in-context learn-
ing (ICL) enhances outcomes by strategically embedding exam-
ples. Techniques such as zero-shot and few-shot prompting en-
able complex tasks with minimal training examplesi4ie, Fuyr-
thermore, role prompting and chain-of-thought (CoT) prompting
improve logical reasoning through step-by-step guidanceZ18,
Finally, retrieval-augmented generation (RAG) integrates exter-
nal knowledge, enriching model outputs, while schema-aligned
prompting ensures outputs conform precisely to structured data
formats'?,

Despite notable progress in applying LLM-driven techniques

20211 and even efforts to construct

for chemical data extraction
structured knowledge representations such as knowledge graphs
(KGs) from extracted information?223 the integration of such
data into comprehensive, existing knowledge ecosystems com-
prising multiple interconnected KGs, such as TWA, remains
largely unexplored. This underutilisation restricts opportuni-
ties to combine LLM-based information extraction with seman-
tic structuring capabilities inherent in KGs and TWA, potentially
limiting significant improvements in the accessibility, interoper-
ability, and automation of chemical knowledge. Increasing the
adoption of these advanced methodologies could bridge this gap,
enabling streamlined workflows that convert unstructured scien-
tific literature into structured, actionable data, seamlessly inte-
grated within dynamic knowledge systems2%.,

The purpose of this paper is to build on these advances by
developing an integrated family of computational agents that
not only extract synthesis information from scientific literature
by utilising LLMs but also embed this information within the se-
mantic framework of TWA, as introduced by Kondinski et al.'%,
Our focus is on integrating synthesis data for MOPs into TWA to
augment knowledge of experimentally known structures and en-
able automated generation of synthesis routes for newly predicted
MOPs. This addresses three critical challenges: automating the
extraction of chemical knowledge from unstructured texts, em-
bedding it into a pre-existing knowledge base, and establishing
a semantic framework that enables computational agents to pro-
cess, interpret, and propose novel synthesis pathways. Aligning
this ontology with established frameworks further enhances in-
teroperability.

2| Journal Name, [year], [vol.], 1
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2 Background

This section introduces background on three key areas. First, we
review the rational design of MOPs, focusing on chemical and
geometric principles for structure prediction, and introduce The
World Avatar. Second, we discuss current challenges in docu-
menting synthesis procedures and present standardisation frame-
works such as XDL, CML, and SiLA. Third, we examine how
large language models support information extraction from scien-
tific literature, highlighting advanced prompt-engineering tech-
niques, including in-context learning, chain-of-thought prompt-
ing, retrieval-augmented generation, and structured output gen-
eration.

2.1 Rational metal-organic polyhedra design in The World
Avatar
MOPs are hybrid nanomolecules composed of repeating organic
and inorganic units, forming highly symmetrical, supramolecular
cage-like structures®. Their intrinsic porosity and internal cavi-
ties enable applications in molecular sensing, carbon capture, and
synthesis of metal organic frameworks (MOFs)10, In addition,
owing to their discrete and well-defined architectures, MOPs ex-
hibit extensive internal and external functionalisation, enhancing
their adaptability for biomedical applications, catalysis, and gas
separation®.

Given the vast number of potential MOP structures, a system-
atic design approach is essential®. Kondinski et al.l? designed
MOPs by leveraging chemical and geometric principles to system-
atically predict novel structures. This work was conducted within
The World Avatar, a dynamic collection of virtual knowledge
graphs and semantic agents that enables seamless cross-domain
data integration and automated knowledge discovery2428. TWA
employs a containerised technology stack, including Blazegraph
and a Python-based twa library2728,

In a previous work, MOPs were designed using geometric and
chemical rules'l?, The approach hinges on chemical complemen-
tarity, ensuring stable bonds between organic and inorganic com-
ponents, and topological compatibility, which governs spatial ar-
rangement. This was implemented via a framework (for details,
see ESI) consisting of chemical building units (CBUs) and their
geometric counterparts, generic building units (GBUs). CBUs rep-
resent chemical entities (e.g., metal clusters and ligands), while
GBUs define geometric roles (e.g., 2-linear or 5-pyramidal). As-
sembly models then serve as blueprints for constructing MOPs
from GBUs: for each GBU a corresponding set of CBUs was
identified, and MOPs were generated by systematically recom-
bining those CBUs according to the GBUs contained in the assem-
bly models. Through this approach more than 1000 unreported
MOPs were generated.

MOPs exemplify niche research areas where large datasets for
bespoke model training or fine-tuning are scarce. The World
Avatar specifically addresses such challenges by leveraging modu-
lar, lightweight ontologies that encode expert knowledge suitable
for smaller datasets, supporting rule-based or hybrid agent work-
flows, as demonstrated by recent work on question-answering
systems for MOPs2,
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2.2 Synthesis procedures and standardisation

Extracting the desired information and data from these publica-
tions is time-consuming and automating the process is therefore
highly desirable. The unstructured nature of synthesis descrip-
tions, embedded with domain-specific language and inconsisten-
cies in reporting styles, units, and naming conventions, com-
plicates machine readability'!#3?, Standardised digital formats,
such as XDL®L, Chemical Markup Language (CML)"2, and SiLA
standards=2, have been developed to address this issue and to im-
prove data interoperability in laboratory automation. Moreover,
efforts like Suvarna et al. 12/ emphasise structured reporting to en-
hance synthesis extraction, fostering advancements in chemistry
automation. However, non-semantic approaches still face chal-
lenges in data linking and provenance tracking=%,

Ontology-based approaches have emerged as a robust frame-
work for addressing the limitations of traditional standardisation
methods in chemistry, offering semantic interoperability through
structured, machine-readable representations>2%. Ontologies
such as Allotrope Foundation Ontology (AFO), Chemical Enti-
ties of Biological Interest (ChEBI)®Z, and Royal Society of Chem-
istry’s name reaction ontology (RXNO)8 facilitate data organisa-
tion and retrieval by focusing on entities, reactions, or laboratory
instrumentation. However, to our knowledge, no ontology cur-
rently exists that is specifically designed to represent stepwise,
lab-scale synthesis procedures=2. As a result, synthesis ontologies
remain underdeveloped and underutilised in laboratory automa-
tion and digital chemistry workflows2#, KGs, built upon Seman-
tic Web principles, enhance data integration by linking heteroge-
neous datasets through ontologies4%2. Key technologies such
as Resource Description Framework (RDF), Web Ontology Lan-
guage (OWL), and SPARQL query language underpin these frame-
works, ensuring interoperability and reasoning capabilities#342|
At the core of these technologies are triples — subject-predicate-
object statements — that define relationships between entities,
each uniquely identified by an Internationalised Resource Iden-
tifier (IRI).

2.3 Information extraction with large language models

Information extraction (IE) involves converting unstructured text
into structured data, crucial for chemical analyses by identify-
ing chemical entities and reaction conditions4048,
methods (rule-based and statistical) have limitations in scalabil-
ity and adaptability*®? | highlighting the need for more flexible
solutions. Large language models offer significant advancements
due to their adaptability across diverse text formats124220, How-
ever, unlike traditional IE systems, LLMs generate structured out-
puts that are not necessarily direct substrings of the input text.
Following recent community conventions and the success of gen-
erative information extraction?#>1? _we refer to this approach as
Information Extraction throughout this work.

Traditional

Ensuring structured, consistent outputs from LLMs remains
challenging, emphasising the necessity of advanced prompt en-
gineering techniques®?. Effective prompt engineering includes
targeted content classification, modular retrieval, error mitiga-
tion, and ICL (zero- and few-shot prompting), which enhances
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adaptability without extensive retraining1#1649>3 and tackles

the challenge of data scarcity for training in areas such as chem-
ical synthesis2l. Several advanced prompting strategies can
further enhance LLM performance such as role prompting 1724,
chain-of-thought prompting'83 and retrieval-augmented gener-
ation2>3 In addition, enforcing ‘constrained output generation’
ensures adherence to predefined schemas, a critical capability for
structured data extraction>>* .

While LLMs have successfully been applied to extract struc-
tured data from tables in scientific papers and populate KGs%%, ex-
tracting detailed information from completely unstructured free
text and integrating it into highly structured representations like
KGs remains challenging? . Recent studies demonstrate the po-
tential yet indicate that iterative prompt refinement and vali-
dation are necessary to achieve reliable, ontology-aligned out-
puts232657 OpenAl’s introduction of Structured Outputs signif-
icantly addresses these issues, enabling responses to strictly ad-
here to developer-defined JSON schemas, thus enhancing the in-
tegration and robustness of Al-driven systems®228, Nonetheless,
context window limitations continue to restrict the amount of in-
formation that can be processed in a single inference, which is
particularly relevant when extracting synthesis data from lengthy
procedures or full-text articles.

3 Developing a novel ontology for chemical synthe-
sis

In this section, we present our approach to overcoming these
aforementioned challenges by creating a modular, lightweight,
and XDL-compatible ontology for synthesis procedures. This in-
cludes an analysis of synthesis procedures in the literature, the de-
sign of a structured ontology for synthesis workflows, its integra-
tion with existing ontologies such as OntoMOPs and OntoSpecies,
and the implementation of semantic frameworks to facilitate
machine-readable data representation and interoperability.

3.1 Preliminary data analysis

A preliminary analysis of the data used in this work helps us to de-
velop competency questions outlining the scope and range of the
ontology=2. As the existing OntoMOPs domain in TWA includes
MOPs from 75 publications curated by Kondinski et al.l?, these
were also chosen as a test case in this work for extracting synthe-
sis information from and integrating these with existing knowl-
edge in TWA. In a first step, a subset of these publications were
screened manually to identify the information stored in the pub-
lications. After defining the information that is required, a sec-
ond analysis using the OpenAl API evaluated what data can be
possibly extracted and to identify potential issues. The resulting
ontology competency questions are presented in the ESI.

In the XDL standard, synthesis information is represented via
markup language describing mainly three categories=!: reagents,
procedure, and equipment. As the purpose of the synthesis ontol-
ogy developed in this work goes beyond the execution of synthe-
sis recipe, characterisation data — which is commonly included in
synthesis reports — becomes equally important, e.g. to verify re-
production or compare potential yields. For this reason, product

Journal Name, [year], [vol.], 1 |3
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characterisation was included as a forth category. This organisa-
tion into four categories became a fundamental principle for the
ontology and pipeline design, ensuring comprehensive coverage
of all relevant synthesis information. Each of the four categories
presents distinct challenges and often necessitates additional con-
textual information for accurate interpretation.

These challenges include inconsistent reagent nomenclature,
non-standardised procedural descriptions, and insufficiently de-
tailed equipment reporting. Ambiguous references, such as using
“1” for MOP product names®?, hinder automated linkage with
OntoMOPs. Customised entity matching strategies will be there-
fore necessary. Moreover, publications often describe multiple
synthesis procedures, including those for precursors, and a sin-
gle MOP may have several distinct synthesis routes. Therefore,
the ontology must support multiple procedures per MOP, include
detailed information on precursor synthesis, and accurately track
the provenance of each procedure.

3.2 Ontology design

The findings from the preliminary analysis were distilled into the
design of the OntoSyn ontology. The OntoSyn ontology models
the transformation of input chemicals into their respective out-
puts, capturing synthesis procedures through structured steps.
Fig. 1) shows a simplified version of the new ontology, highlight-
ing key concepts and important connections with other ontolo-
gies. This diagram serves as a structural reference for how ex-
perimental synthesis data are semantically represented and inte-
grated within TWA. The full ontology can be found in the ESI.

Each ChemicalTransformation corresponds to a unique out-
put and may be associated with multiple ChemicalSynthesis in-
stances, as different synthesis procedures can exist for the same
transformation across publications. Each ChemicalSynthesis in-
stance captures essential synthesis details, including provenance
information, which links experimental procedures to source doc-
uments using the bibo ontology®Y. Input chemicals are anno-
tated according to the OntoCAPE ontology2%, ensuring standard-
ised representation. The synthesis steps detail process condi-
tions and methodologies, while yield data is systematically rep-
resented using the “Ontology of units of Measure” (OM) 62| a5
Amount0fSubstanceFraction. The ontology supports synthesis
procedures for MOPs and other materials, linking outputs to the
OntoMOPs KG when applicable'l?. Since MOPs are assembled from
CBUs — which are technically speaking fragments or moieties
and not chemical species — OntoSyn establishes links between
CBUs and the corresponding chemical species used as reactant
in OntoSpecies via the predicate isUsedAsChemical. It should
be noted that these are the only two links specific to the MOP use
case; aside from this, the ontology is agnostic to material class
and can be adapted to other reticular materials or general syn-
thesis workflows.

The synthesis procedure itself is structured as a sequence of
unit operations, each classified as a SynthesisStep, with specific
step types implemented as subclasses. The ontology allows to
specify a vessel, atmosphere, and duration independent of step
type, while additional properties specific to Certain step types

4 Journal Name, [year], [vol.], 1
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allow the representation of customised information on the per-
formed action. Where possible, step types align with existing XDL
step categories to facilitate future interoperability. The prede-
fined subclasses are: Add, HeatChill, Separate, Evaporate, Dry,
Crystallize, Transfer, Filter, Stir, Sonicate, and Dissolve,
which cover all synthesis procedures considered in this work.
All of these sub classes, except Sonicate, correspond to XDL-
defined actions®?. In summary, the ontology builds on XDL’s
robust framework for describing unit operations for automation
purposes=L extends it by concepts relevant for reproducibility
and reticular chemistry while ensuring clarity for information ex-
traction with LLMs and integration with the overall TWA knowl-
edge base.

The interlinked OntoSpecies ontology includes concepts
for Nuclear Magnetic Resonance (NMR) and mass spec-
trometry data?® yet lacks representation for infrared (IR)
spectroscopy and elemental analysis, commonly reported
in MOP synthesis procedures. To address this,
tended OntoSpecies with IR spectroscopy concepts de-
rived from the Chemical Methods Ontology (CHMO)®4,
introducing FourierTransformSpectrum as a subclass of
AbsorptionSpectrum which refers to SpectralInformation.
This structure enables IR spectra representation akin to NMR,
utilising the existing SpectraGraph concept to define axes,
units, and peak coordinates.
focus on emission spectroscopy, the term “peaks” was gen-
eralised to CharacteristicPeak, encompassing both peaks
and absorption bands. Additionally, we integrate elemen-
tal analysis by distinguishing between calculated and exper-
imental data, aligning ElementalAnalysis with subclasses
CalculatedElementalAnalysis — derived from molecular for-
mulae — and ExperimentalElementalAnalysis, which includes
device specifications. This extension ensures OntoSpecies ac-
commodates the most common characterisation techniques for
MOPs: IR and elemental analysis data alongside existing char-
acterisation methods, facilitating more comprehensive material
property representation.

we ex-

Given OntoSpecies’ original

4 Building an automated pipeline: transforming sci-
entific literature into structured knowledge

In thiw sork, we introduce a structured pipeline developed to ex-
tract, process, and integrate synthesis data into TWA. We utilised
OpenATI's GPT-40 model (gpt-40-2024-08-06) to support informa-
tion extraction and transformation tasks.
prompt engineering strategies and how they are employed to
transform unstructured text to KG-compatible triples. Moreover,
strategies for uploading and linking extracted information are dis-
cussed, which ensure the seamless integration of extracted data
with existing knowledge in TWA while avoiding duplication and
promoting an interconnected graph.

This section details

4.1 Pipeline overview
The information extraction pipeline was developed in a modular
fashion for a variety of reasons, including:

* the complexity of simultaneous data extraction and KG inte-
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Fig.

1 Overview of the core classes and selected properties defined in the OntoSyn ontology, which formalises key concepts involved in synthetic

chemistry workflows. The figure highlights relationships between the most important concepts as well as links to domain-specific classes from external
ontologies such as OntoSpecies and OntoMOPs. Dashed lines reperesent indirect relationships, indicating intermediary concepts that have been omitted

in this figure.

gration

* the restrictions on JSON schema size by the OpenAl model
used in this work>8

* better control over the input and output of each module for
debugging and adapting the pipeline

Moreover, research by Sahoo et al.53 has shown that breaking
down tasks into smaller substeps can significantly improve the
quality of LLM outputs, a core principle applied in this pipeline
design. Based on this principle, the ontology was segmented
into three prompting domains with each domain’s data being ex-
tracted, uploaded, and linked separately. These domains chemi-
cals, step types, and characterisation were selected based on the
ontology design outlined in subsection Integrating each do-
main’s data within the existing TWA knowledge base required dif-
ferent upload protocols and necessitated subsequent re-linking of
separate data elements. These strategies are discussed in detail
in subsection

In order to enforce this modularity throughout the pipeline
while ensuring consistency of data extracted, every piece of infor-
mation related to a specific synthesis procedure needs to be asso-
ciated with a single unique attribute — a so-called primary key@.
Therefore, extracted product names were immediately associated
with each synthesis, serving as a pseudo-primary key in this struc-
ture to link and connect the files when they are uploaded. Link-
ing the extracted data in the different files is an essential step for
achieving meaningful integration within TWA. Without this link-
age, unconnected subgraphs would be uploaded and the stored
data holds limited value. To support the linking process, exist-
ing information within TWA was leveraged through RAG: query-
ing pre-existing concepts and prompting the LLM to match exact
string specifications significantly enhanced the reliability of these
connections. A high-level overview of the transformation from
synthesis text in PDF format to instantiated knowledge in TWA
is depicted in Fig. [2| The key strategies of ICL, RAG, structured
output, and CoT form the pillars of this LLM-based pipeline and
are the basis for a reliable, targeted and hallucination-free data
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extraction and linkage with an LLM.

While Fig. [2] illustrates the prompt engineering strategies de-
ployed throughout the pipeline, it does not indicate exact se-
quence or content of prompts used. Fig. [3|presents the complete
pipeline workflow as a UML diagram, illustrating the interactions
among four primary actors: the user, the pipeline agent, the LLM,
and TWA. The user initiates the data extraction process by provid-
ing the synthesis text in PDF format. The pipeline agent iteratively
constructs prompts for the LLM, incorporating both preexisting
knowledge from the TWA and information obtained from earlier
prompts. Each prompt is passed to the LLM, which returns struc-
tured responses, but not all responses are ultimately integrated
into TWA. For example, Prompts 2 and 3 specifically serve to con-
dense the synthesis text, isolating the segments pertinent to the
current task, while Prompt 4 identifies and classifies the types of
synthesis steps involved in the procedure.

4.2 Prompt strategies

In LLM-based synthesis data extraction, prompt engineering has
proven essential, showcasing models’ ability to generalise effec-
tively to unseen data through the use of well-designed prompts©®.
The most important strategies used in this synthesis extraction
pipeline are ICL, RAG, and CoT prompting. Furthermore, the
structured output mode of the OpenAl API allows to reliable gen-
erate output that complies with a given JSON schema®8. While
ICL and CoT improve the reliability of information extraction
from text, RAG and JSON schema-constrained outputs are crit-
ical for aligning that information with KG integration workflows.

As discussed in subsection[2.3] in-context learning leverages ex-
amples placed within the prompt to guide the LLM in generating
the desired response®33. In this pipeline, each prompt incorpo-
rates examples to define the output structure. For text-generating
prompts (Prompt 2 and Prompt 3), examples shape the expected
format of free-text outputs, ensuring a consistent and structured
response. Since plain text is inherently more ambiguous than
structured formats, ICL plays a crucial role in maintaining uni-
formity in output format and structure. For structured output
prompts that return JSON files, examples clarify the format and
expectations of specific entries. An example of text formatting
for ICL is shown in Fig. 2] while examples of JSON-formatted ICL
are shown for most prompts in the ESI. CoT prompting is used
for prompts that require multiple reasoning steps, as it has been
shown to improve the output quality in such instances =3
all three prompting domains we make use of this strategy to a de-
gree, describing the information extraction procedure step by step
— usually, by guiding the model from recognising certain text pas-
sages to categorising them and filling in specific parameters de-
pendent on it. Fig. [2]includes an excerpt of Prompt 6 demonstrat-
ing CoT prompting. A chain of thought can also be established
across multiple prompts: Prompt 3 for example groups, orders,
and assigns step types in preparation for subsequent Prompts 4
and 5, which extract details on equipment, parameters, and reac-
tants involved based on the step type.

In

The structured output mode introduced by OpenAl ensures
compliance with predefined JSON schemas, providing a robust

6 | Journal Name, [year], [vol.], 1
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framework for data extraction and integration into KGs=%. JSON
inherently organises data in a hierarchical tree structure, where
objects and arrays form nested parent-child relationships. Al-
though effective for capturing hierarchical data, trees structures
impose constraints that limit the representation of complex in-
7. In contrast, graph structures, composed of
nodes and edges, better model intricate, interconnected data®g.
The synthesis information in this case is used to populate KGs,
but generating graph data directly remains challenging®: while
graph extraction as RDF model directly (e.g., in “Turtle” file for-
mat) is possible and has previously been demonstrated Caufield
et al.'®? integrating such outputs into a KG using multiple prede-
fined ontologies and correctly linking entities is extremely diffi-
cult. The LLM-generated output likely is not perfectly formatted
and still needs to be post-processed, there is no guarantee that the
output complies with a given schema and the output file structure
may vary and potentially be wrong. Furthermore, the IRIs used
in the extracted Turtle file still need to be mapped to previously
instantiated instances to avoid duplicates. The pipeline circum-
vents these problems by relying on the structured output mode
of the OpenAl API to generate reliable JSON files that follow the
provided schema. These JSON files are designed to closely match
the ontology in their structure and contain the values used to pop-
ulate TWA. The entity linkages that transform the tree-like JSON
file into a graph are fixed by the ontology and applied during the
upload process, which ensures proper linking and instantiation.

terconnections

RAG improves LLM responses by querying external data and
adding it to the prompt!2. This is especially helpful for knowl-
edge extraction with TWA, where an existing and constantly up-
dated knowledge base can be queried to improve prompts. In this
case, the pipeline connects three different triplestores and even
more ontologies. Five out of seven prompts are extended by exist-
ing data from either OntoMOPs or previously uploaded data from
OntoSyn, allowing semantic knowledge to predict links and con-
nect multiple outputs. Fig.[2]highlights how the chemical names
are queried, saved to the variable chemical_names, and embed-
ded in the prompt. Four specialised prompt strategies were de-
veloped to integrate knowledge from TWA, leverage information
from the designed ontology, and tune prompts based on previous
responses:

1. Knowledge-augmented prompting: Supplements prompts
with relevant information queried from TWA, which serve as
a set of reference values to guide the model. For instance,
chemical names from input data can be matched with ex-
isting entries, such as in the OntoMOPs KG, or with newly
generated information derived from extracted and uploaded
data in OntoSyn.

2. Response-adaptive prompting: Dynamically adjusts
prompts based on prior LLM outputs, without uploading in-
termediate data to TWA. Sub-prompts and schemas are com-
posed on-the-fly using information from preceding prompts.
For example, the LLM is instructed to generate a JSON file
with boolean entries for each present step type in Prompt
4, based on which Prompt 5 is constructed from predefined
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includes
synthesis text

< Provide input

In-context learning

Provide examples of how to
format output at inference
time (together with prompt).

prompt = " Objective:
Extract [..] synthesis procedures [..]
Example Output Format:
[..] Carbazole (5 g, ©.03 mol), potassium
hydroxide (10.5 g, 187mmol) and N,N’-
dimethylformamide (50 mL) were added to a
100 mL round bottom flask. [..]

Structured output

Use abstracted ontology in a
tree structure to extract data,
easily transformed into graph.

schema = { [..]
"name" :"chemicalSynthes
"schema":

o

Extract and process information with the LLM

"properties": {"mopCCDCNumber"

AL-]

<

A
@PDF

Chain-of-thought prompting
Advise on how to solve the
task step-by-step in a way
that was shown to work.

if dynamic_prompt["Add"]:
category_spec += f" [..] If multiple
reagents or solvents are added, group
each separately. Assign the chemicals
added to one of the following and use
the name of the chemical as follows:
chemical_names}. [..]"

Retrieval-augmented generation

.I »#» Add existing information on
-t from TWA to the prompt or
- use it to adapt it otherwise.

mop_formula = kgq.get_literature(doi)
mop_names g.query_mop_names(doi)
prompt = Objective: [..]
Fill productNames with names that match
best from th 11 mop_names } .
Make sure to extract the pea

bands for all {len(mop_formula)} MOPs.

©
o
=
o Structured Integrated
IS data within instantiate information in
predefined cross-domain
N schemas interlink knowledge model

The World Avatar

Fig. 2 Overview of the LLM-based pipeline for synthesis data extraction and TWA integration visualised as abstract process from top to bottom. The
modular pipeline calls the LLM seven times and thereby uses different prompt engineering techniques to extract synthesis information from manuscripts
or supporting information (Sl) files, of which the four main ones are illustrated in the centre of the figure. Each box representing a key prompting
strategy defines the main use case in the pipeline and provides an example below for the specific prompt engineering technique.

sub-prompts for every step type, incorporating only relevant
information to ensure efficient and targeted extraction.

3. Lookup table-driven extraction: Uses predefined value sets
(via the enum keyword in JSON schemas) to restrict LLM re-
sponses. This forces selection from a fixed list including “un-
known”, reducing hallucinations and improving extraction
reliability.

4. Prompt-based link generation: Queries instances from
different classes and tasks the LLM with identifying spe-
cific links between them. Unlike knowledge-augmented

prompting, this approach incorporates multiple KGs and fo-
cuses on generating connections. For example, Prompt 7
uses pre-queried instances from OntoMOPs (e.g., CBUs) and
OntoSpecies (e.g., chemical species) KGs to establish links
betwen them.

In addition to prompt design, the architecture of the pipeline
itself plays a key role in overcoming limitations imposed by LLM
context windows. Experimental sections are isolated from irrel-
evant content in Prompt 2, and different information categories
are processed in a modular, sequential fashion. This allows long
documents to be handled in smaller, coherent chunks and ensures
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ExperimentalSection.txt
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Return orderedAndGroupedSteps.txt

Prompt 4: Get structured

Construct Prompt 4 including
orderedGroupedSteps.txt
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Return boollnfoStepType.json

of certain step types
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full details on synthesis

Construct Prompt 5, including chem.
information & results of prompt 3+4

Send prompt 5 to LLM

procedure steps

Return SynthesisSteps.json

Upload synthesis steps information

Prompt 6: Get structured
info on characterisation

Construct Prompt 6, including output
chemical names & result of prompt 3

Send prompt 6 to LLM

results and measurements

Return characterisation.json

_-___..-____‘__-___-___-_.--____________

Upload characterisation information

Query OntoSyn

Prompt 7: Get structured
map linking CBUs with

Return input chemical names

corresponding reactants

Construct Prompt 7 including input
chemical names and MOP information

Return linkedCBU.json
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1
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Query OntoSyn -
I
1
I
1
I
1
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I

Send prompt 7 to LLM I

~Link CBUs and upload CBU information ‘
1

Fig. 3 Detailed UML Activity Diagram, illustrating the interactions between the four main actors: the user, the pipeline agent, the LLM, and TWA.
The flowchart outlines the step-by-step process for uploading data, extracting chemical and synthesis information via prompt-based LLM interactions,
and integrating the structured outputs into TWA. On the left side, a short synopsis on the purpose of each prompt is provided.

that context-sensitive reasoning can still be performed effectively,
even when full-text input exceeds model limits.

4.3 Uploading strategies

Transforming JSON data into a graph structure is critical for en-
abling flexible and interconnected data analysis. JSON inher-
ently follows a hierarchical tree model, which, while useful for
structured data, limits complex relationship representations.
In contrast, graph structures facilitate the modelling of complex,
interconnected data beyond hierarchical limitations®8. Convert-
ing JSON data into a graph structure involves mapping JSON ob-
jects and arrays to graph nodes, and their relationships to edges,
thereby preserving the original data’s semantics while enabling
richer interconnections. As detailed in the ESI, the JSON files

8 | Journal Name, [year], [vol.], 1

closely resemble the ontology. Using the TWA Python package,
those JSON objects and hierarchy are instantiated within the pro-
gram logic and seamlessly pushed to their respective knowledge
graphs via the object-graph mappe. This structured approach
allows us to programmatically link the different entities with each
other beyond the tree structure.

As detailed in subsection the pipeline extracts and inte-
grates synthesis data from three general domains, with informa-
tion for each domain stored in separate JSON files. This results in
the creation of multiple JSON files per literature source, necessi-
tating the linkage of subgraphs across these domains. Within each
domain, the chemical output name is extracted and serves as a
primary key, enabling the integration of subgraphs corresponding
to specific chemical transformations. By connecting each domain-
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specific subgraph through the ChemicalOutput class, these frag-
ments are effectively linked. Previously extracted names and in-
formation on uploaded output chemicals are added to the prompt
with RAG and serve as selectable options during language model
extraction. Providing a selection of possible names for a certain
chemical increases the chance of assigning the name used in the
paper to the previously extracted name. For example, if a pa-
per describes a synthesis using the abbreviation “DMF”, the previ-
ously instantiated entity with the label “N,N-Dimethylformamide”
can be leveraged so that the LLM is able to recognise that they are
the same chemical and extracts both names. This allows to further
expand the “N,N-Dimethylformamide” instance with the new la-
bel “DMF”. Another helpful tool is the existing OntoSpecies TWA
subgraph that stores information on commonly used species2®.
Even when the LLM does not correctly assign the name “DMF” in
the text to TWA instance with label “N,N-Dimethylformamide”,
the OntoSpecies KG is queried while uploading the species.
Querying “DMF” in OntoSpecies retrieve the stored knowledge
on it being the abbreviation for “N,N-Dimethylformamide” and
the instances will be linked during uploading.

Beyond inter-file linkages, avoiding duplicate entity creation is
crucial. Three uploading strategies are employed based on in-
stance characteristics. Fig. [ illustrates these strategies. Unique
Instance Upload is the simplest case, where each extracted in-
stance is newly instantiated, independent of the source ontol-
ogy. No duplicate checking is required, as instances do not recur.
Scalar values are good examples of this, as they uniquely repre-
sent a number-unit combination within a paper as shown for the
two values representing chemical amounts in Fig.

Certain ontology classes contain a finite, predefined set of
instances, often derived from OntoSyn and originally defined
through manual literature review. Examples include JSON en-
tries from “lookup-table driven extraction” (subsection such
as atmospheres (e.g., “air”) and temperature units. These pre-
defined instances guide LLM outputs by restricting extractions to
known values - e.g., a predefined set of vessel types. Predefined
entry linking requires these instances to be uploaded to TWA at
the start of the pipeline. When extracted, values are matched
against stored IRIs via a lookup table, ensuring consistency and
preventing duplicates.

Some classes have an open set of possible values, allowing for
an infinite number of variations, yet certain values recur through-
out the data. To avoid duplicates they need to be uploaded only
the first time and linked otherwise. The rightmost uploading
workflow depicted in Fig. [4] named cross-KG entity matching
and linking handles these cases. When uploading such instances,
it is essential to first check the OntoSyn KG to verify whether an
instance of the same entity already exists, thereby avoiding dupli-
cate entries. A significant challenge arises when the same entity
is extracted with different labels, making consistent linking diffi-
cult. To address this, we include alternative labels and attempt to
extract as many variants and relevant data as possible. The pro-
cess becomes more complex when handling instances from ex-
ternal ontologies with entries outside the TWA stack. To avoid
duplicates — where the same entity may have different IRIs - it is
necessary to query all relevant KGs via their SPARQL endpoints to
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check for existing instances of the entity. This ensures consistent
representation and minimises duplicate entries.

4.4 Performance Evaluation

The pipeline presented in this work does not just extract synthesis
information and convert it into a structured data format — it inte-
grates it within a body of pre-existing knowledge. This makes
quantitative performance evaluation inherently challenging, as
results depend not only on extraction quality but also on the cur-
rent state of related knowledge in TWA. To assess the pipeline’s
effectiveness in extracting relevant information, we manually cu-
rated schemas for a test set of 9 papers and compared both the
schemas and the resulting knowledge graphs to those produced
automatically by the pipeline. Comparison was based on exact
value matches, yielding standard performance metrics (precision,
recall, F1 score), detailed in the ESI.

Analysing the JSON schema results, the pipeline achieves an
overall F1 of 84.7% with 4,224 true positives and only 768 false
negatives. A breakdown by category shows strong performance in
extracting chemical entities, synthesis steps, and characterisation
details, but somewhat lower performance for CBU components.
This discrepancy is primarily due to integration challenges: the
pipeline often extracts initial reagents, while OntoMOPs expects
curated CBU formulas—highlighting that the main difficulty lies
not in extraction per se, but in aligning extracted data with struc-
tured domain knowledge. For the knowledge graph comparison,
which is based on exact predicate-literal matches, performance is
even higher, with an F1 score of 94.2%. This reinforces the reli-
ability of the pipeline in both extracting and linking meaningful
information. Unlike the JSON schema comparison, this does not
depend on the order of data and thus we observe higher perfor-
mance. These results are on par with state-of-the-art literature
extraction methods?37 underscoring the effectiveness and reli-
ability of the pipeline to accurately extract and link information
from the papers.

In this work, a total dataset of 75 publications was analysed,
based on the selection by Kondinski et al.1Y, with few exclu-
sions due to access restrictions and data processing errors. Of
the 75 initially selected articles, 69 were successfully processed
without manual intervention. One of the main achievements in
this dataset is the linkage of 102 out of 151 MOPs present in TWA
to chemical outputs, with 78 of the total 127 CBUs successfully
linked to reactants. This connectivity is crucial for future develop-
ments and an understanding of the relations between OntoMOPs
concepts and actual chemical species and provides the foundation
for future synthesis predictions. Of 565 unique species instan-
tiated within the synthesis procedures, 88 were detected in the
OntoSpecies KG and linked accordingly.

5 Applications

In this work, we used the OpenAI API®® for prompting tasks when
running the pipeline presented in section [4| on 75 pre-selected
articles1Y, It is important to emphasise that the pipeline itself is
largely independent of the LLM used and could be changed to
any general purpose LLM API. In this section we demonstrate the
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Fig. 4 lllustrative example of uploading a JSON-formatted output of LLM-based |IE, demonstrating three key techniques: unique instance instantiation,
predefined entry linking, and cross TWA-subgraph entity matching and linking. The figure shows how each technique generates new graph patterns

and establishes links between newly instantiated entities and existing.

extracted knowledge’s practical applications and explore broader
implications for the field.

5.1 Knowledge graph-based assembly of synthesis proce-
dures

Unlike traditional static synthesis procedure formats, the pre-
sented TWA-based framework provides a flexible and dynamic
structure that can adapt to both human and machine require-
ments. As shown in Fig. [5] this adaptability ensures that synthe-
sis data can be easily interpreted by researchers while simultane-
ously offering the structured, queryable format necessary for au-
tomation and computational analysis. Custom-tailored synthesis
recipes or other output formats can now be generated by query-
ing all steps and characterisation data of a specific synthesis and
and reassembling it into a new “synthesis generation prompt” that
gets again fed to an LLM API. Similar to the pipeline prompts de-
scribed in section [4] these prompts would employ RAG and ICL
techniques.

This workflow allows chemists to query the TWA and retrieve
synthesis protocols in a semi-structured, readable, and standard-
ised format. Due to the TWA’s structured nature, outputs can be
flexibly formatted based on specific requirements. An exemplary
output is illustrated on the left side of Fig. [5b while the original
synthesis text as well as an excerpt of the representation in TWA

10| Journal Name, [year], [vol.], 1

can be found in Fig. for comparison. The overall workflow
of pipeline extraction and reassembling the synthesis procedure
worked very well and even outperformed the original text by pre-
senting the information in a more concise and structured manner.
The data in TWA correctly resembles the used vial, the chemi-
cals, and even captured the mixing relationship of methanol and
DMF and adjusted the specified amount, yet failed to add them in
one step. Even though the output is well-structured and captures
most of the important information presented in the literature pro-
cedure, there are minor flaws in the LLM-generated description.

In the structured output shown on the left side of Fig. data
are categorised into the four main categories identified in subsec-
tion[3.1} chemicals, equipment, step types, and characterisation.
This organised approach differs from traditional documentation
of synthesis procedures, where these domains are often inter-
twined, requiring additional reading and interpretation. The text
is written in a generalised and consistent style, eliminating am-
biguities and minimising room for interpretation. For example,
implicit details such as “room temperature” are explicitly stated
in the new format, providing clarity. The structured output also
offers a significant advantage by concisely listing chemicals and
equipment before the synthesis process begins, aiding chemists in
identifying essential materials more efficiently.

Alternatively, given the strong alignment between the ontology
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Synthesis of HCCF-1: 14 mg of D-camphoric acid and 50 mg of bis(cyclopentadienyl) zirconium
dichloride were dissolved in a 2 mL mixed solution of N, N'-dimethyl acetamide and methanol solution
(VIV = 2/1), and then eight drops of H20 were added. The mixture was sealed in a glass vial and heated
at 65 °C for 48 h, after cooling to room temperature, colorless crystals were obtained and dried in air.
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(a) Original synthesis text from journal article and corresponding PDF and illustration of corresponding instantiated triples in TWA after synthesis extraction.

Synthesis of [Zr30(OH)3(C5H5)3]8[(C5H5)(CH3)3(C02)2]2
Provenance: DOI = 10.1002/chem.201/00786 CCDC = 1528352

Materials

D-camphoric acid (14.0mg)
Bis(cyclopentadienyl)zirconium
dichloride (50.0 mg)
N,N’-dimethylacetamide (1.33mL)
Methanol (0.67 mL)

Deionized water (8 drops)

Equipment

Vessel 1 (glass vial)
Nicolet Magna 750 FT-IR
Bruker AVANCE 400
NMR

German Elementary
Vario EL IlI

Procedure

1. In a glass vial (vessel 1) under ambient air atmosphere add 14.0 mg of D-
camphoric acid.

2. Add 50.0 mg of bis(cyclopentadienyl)zirconium dichloride to the vial.

3. Introduce 1.33 mL of N,N’-dimethylacetamide into the vial. Stir continuously
to ensure even distribution.

4. Add 0.67 mL of methanol to the mixture, continue stirring ...

<Synthesis>

<Hardware>
<Vessel id=“Vessel 1”
type=“Glass Vial” />

</Hardware>

<Reagents>
<Reagent name=“D-camphoric
acid” amount=“14 mg” />

</Reagents>
<Procedure>
<Add
vessel = “vessell”
reagent = “D-camphoric acid”
mass = “14 mg”
stir = “True” />

(b) Examplary output formats: one human-readable (bill of materials and recipe-style isntructions), one machine-readable (i.e. XDL)

Fig. 5 lllustration of different stages of synthesis knowledge representation — from instructions in PDF article to instances in a KG to tailor-made
output formats — demonstrate the flexibility and versatility of the TWA-based synthesis representation developed in this work.
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and XDL format detailed in section 3.2} KG data can be translated
into an XDL file. Most synthesis steps share class attributes with
XDL properties (see ESI for details), allowing for programmatic
population of a template XDL file from corresponding triples. This
offers a major advantage over previous approaches, where the
creation of XDL schemes from literature remained largely man-
ual due to the linguistic challenges of parsing free-text proce-
dures?%, Because of the fact that XDL was developed with a focus
on organic chemistry and lately flow chemistry in particular while
OntoSyn is for reticular material synthesis, minor differences in
step types and attributes require future harmonisation. The son-
ication step, unique to OntoSyn, is absent in XDL®3, Addition-
ally, some information is not reliably extractable using the LLM
approach, though advancements in XDL and LLMs will mitigate
this. Key step types such as Add, HeatChill, and Filter are al-
ready supported. Extracting vessel information remains challeng-
ing. OntoSyn currently represents only the main vessel per step,
except in transfer steps, whereas XDL requires explicit details for
all involved vessels. Lastly, some XDL steps, such as separate, ne-
cessitate both target and waste vessels. However, synthesis texts
seldom specify vessels, complicating perfect alignment.

5.2 Data analysis and retrosynthesis

The collection of highly structured and interlinked MOP synthesis
information opens up a unique opportunity for analysing proce-
dures, parameters, equipments, and yields to identify trends that
can inform future synthesis planning. Such a structured and com-
prehensive knowledge base has been envisioned as a critical en-
abler for digital reticular chemistry, as suggested by Lyu et al. 7L,
Particularly, linking synthesis procedures to the building units and
assembly models of the resulting MOP structures allows us to un-
cover design rules. These rules can be applied for retrosynthesis —
working backword from a desired MOP structure to suggest plau-
sible synthetic routes as suggested by Kondinski et al.'l?. Fig. E]
illustrates two examples of our preliminary data analysis that pro-
vides insights potentially applicable to the retrosynthesis of novel
MOPs.

As shown in Fig. the mapping between reactants and CBUs
is not always one-to-one. This is particularly true for transition
metals such as Vanadium, which can form various complexes de-
pending on their oxidation states and spin configurations. In such
cases, the choice of solvent and the heating regime have a sub-
stantial impact on determining the final CBU as well. Multiple re-
actant combinations are typically possible and even multiple reac-
tants are sometimes used as Vanadium source, making synthesis
prediction for these systems especially complex. For closed-shell
metal CBUs, the mapping is generally more straightforward and
often follows a one-to-one pattern. In contrast, organic CBUs can
be usually mapped to a specific single reactant, simplifying pre-
dictive modelling.

Fig. [6b] demonstrates a strong correlation between the type
of metal CBU and the heating regime employed during synthe-
sis. Specific metal centres are consistently associated with dis-
tinct thermal profiles, leading to visible clustering patterns in the
analysis. Interestingly, when the same analysis is performed us-
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ing organic CBUs as the categorisation criterion, no such corre-
lation is observed. This observation aligns well with chemical
intuition: heating primarily serves to activate the metal complex,
after which the self-assembly of the structure takes place. From
a retrosynthetis standpoint, this suggests a useful heuristic: when
designing a novel MOP based on a known structure, retaining the
metal core while substituting the organic ligand is likely to pre-
serve the required thermal conditions for synthesis.

Lastly, analysis of the extracted synthesis data can also re-
veal insights into common reporting practices of such proce-
dures apart from retrosynthesis applications. For example, the
structured data enables analysis of characterisation trends across
the synthesis literature. Among 272 documented chemical out-
puts, elemental analysis is the most frequently used verification
method, appearing in 213 cases. Other techniques, such as IR
spectroscopy and NMR, are comparatively less common. Further-
more, synthesis yield is reported in only 115 of the 291 docu-
mented procedures, highlighting a general lack of emphasis on
quantitative output in the literature. These insights not only in-
form future synthesis reporting practices but also guide data pri-
oritisation for predictive modelling and automated synthesis plan-
ning.

5.3 Discussion

Despite segmenting the workflow into seven prompts (see Fig. [3),
synthesis data extraction remains challenging. Therefore, as sug-
gested by prior work1221 a standardised way of reporting syn-
thesis procedures could greatly benefit the computational com-
munity by facilitating more efficient and precise data extraction.
Even small changes — such as the standardisation of the language
used to describe certain actions performed in the lab, or struc-
turing the synthesis procedure in a generally agreed-upon clear
and compact way — could reduce ambiguity and improve LLMs
ability to parse this data. In the longer term, such standardisa-
tion could even enable reliable data extraction without the need
for large language models, reducing computational cost and envi-
ronmental impact. At the moment, the way synthesis procedures
are reported is often constrained by the formatting guidelines and
section structures imposed by the journals in which articles are
published. Therefore, publishers play a critical role and should
take the lead in developing and promoting unified standards for
reporting experimental procedures.

In the synthesis example of MOP
[Zr;0(0OH);(CsHs);]5[(CsHs) (CH;5)5(CO,),],  partially  illus-
trated in Fig. TWA data correctly resembles the used vial,
the chemicals, and even captured the mixing relationship of
methanol and DMF. It adjusted the specified amounts, yet
failed to add them in one step. Even though the output is
well-structured and captures most of the important information
presented in the literature procedure, there are minor flaws in
the LLM-generated description: Water and deionised water are
confused in the uploading process as the same entity causing
the confusion in the output text. Furthermore, the LLM often
extracted isStirred as required even though the text does
not explicitly mention it. While it is often sensible to imply
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(a) Sankey diagram of metal CBUs on the right and their corresponding reactants on the left used in recorded synthesis procedures for selected Vanadium-based MOPs.

Reactant mixtures are indicated in the middle where applicable.
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(b) Heating temperature and duration used for crystallisation of selected MOPs in recorded synthesis procedures. Data points are colour-coded by the metal CBU present,

larger points indicate multiple MOPs with a certain metal CBU are synthesised with the same heating regime.

Fig. 6 Examplary data analyses of the recorded MOP synthesis procedures reveal correlations between building units and synthesis conditions that

might be used for retrosynthesis.
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stirring in synthesis steps, even when not explicitly mentioned,
instructions that involve stirring a single reactant or mixture
of powders might confuse researchers. As ontology complexity
increases, refining prompts will be critical. Restricting outputs
to predefined values effectively mitigates hallucination, though
human oversight in data screening remains a bottleneck.

RAG prompting worked well and guided the LLM to the ex-
pected values in the desired format. In this context, data quality
was found to be tremendously important as wrongly extracted
and uploaded values that are reused later on propagate through
the RAG approach. One example of this we encountered once was
a mixture that the LLM did not properly recognise as such and in-
stead instantiated a single new species of the name “["Ethanol",
"Water"]”. As a result, all the synthesis steps that were connected
to either ethanol or water were connected to the mixture instance
even though only either of the species was used. To address this
issue, the JSON schema responsible for chemical name extrac-
tion and the uploading procedure were updated, and the extrac-
tion process was repeated to ensure accuracy. Expanding RAG
to integrate IRI queries during prompt generation could further
streamline entity mapping, potentially allowing direct JSON-to-
triple conversion. The current approach delays IRI mapping until
data upload, avoiding LLM misinterpretation of lengthy IRIs with
random character sequences.

Designing JSON schemas that closely align with the ontology
and subdividing the ontology into different JSON files allows to
extend the data pipeline to very large ontologies as previously
observed by Meyer et al.®®. In our experience, joining different
extracted JSON files as described in subsection works well
but still occasionally fails and generates disconnected subgraphs
that are of little value. The more the ontology is split up into dif-
ferent files, the more linking is required which increases the risk
of faulty links or uploads. Therefore, finding the right balance
between modularising ontology subdomains for the pipeline and
preserving overall integrity and interlinkedness remains a critical
design challenge. Overall, refining standardisation, ontology ex-
pansion, and prompt engineering will enhance pipeline efficiency
and extraction accuracy while minimising manual intervention.

While this work focuses on MOPs, the OntoSyn ontology is
designed to generalise across other material classes, particularly
reticular materials. With minor adjustments to prompts and pro-
gram logic, and by linking to a material-specific ontology, the
pipeline can be adapted for broader applications. Nonetheless,
some limitations remain. The ontology does not yet capture com-
plex experimental setups, and handling very large datasets may
introduce scalability challenges. Despite prompt engineering and
schema constraints, occasional hallucinations persist and require
human oversight.

6 Conclusion

Building on advancements in reticular chemistry and LLMs while
leveraging the capabilities of TWA, a universal digital twin based
on interlinked dynamic KGs, this work demonstrates a com-
prehensive framework to automate synthesis procedure extrac-
tion. One major contribution of this work lies in developing
the OntoSyn ontology and verifying its utility for representing
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and comparing chemical synthesis procedures. By addressing
the drawbacks of traditional synthesis documentation, this on-
tology aims to bridge the gap between unstructured textual data
and rigidly structured, machine-readable formats. The ontology’s
alignment with standards such as XDL and its integration with ex-
isting domain ontologies, including OntoMOPs and OntoSpecies,
exemplifies its interoperability. The key achievement was the cre-
ation of a fully automated pipeline for the extraction of synthe-
sis information from scientific literature and integration within a
dynamic system of pre-existing knowledge and structure require-
ments.

Through systematic prompting strategies, such as chain-of-
thought reasoning, retrieval-augmented generation, and in-
context learning, the pipeline successfully extracts and structures
detailed synthesis information, demonstrating high accuracy and
consistency. Four strategies were developed to leverage TWA
to support the synthesis data extraction: knowledge-augmented
prompting integrates existing knowledge into prompts to refine
data selection; response-adaptive prompting helps designing it-
erative prompts and schemas to systematically analyse publica-
tion content and guide future prompt construction; lookup table-
driven extraction leverages JSON schema capabilities for struc-
tured data extraction; lastly, prompt-based link generation em-
ploys LLMs to establish entity linking by embedding instances di-
rectly into prompts, enabling seamless integration and alignment
within the TWA framework.

Applying this LLM-based pipeline to a considerable number
of MOP synthesis publications provided several unique insights.
First, the highly structured and detailed representation of synthe-
sis procedures enables the creation of tailor-made lists and pro-
tocols that are more practical and efficient for various stakehold-
ers in chemistry labs. Notably, the alignment of the OntoSyn on-
tology with robotic execution standards such as XDL emphasises
its potential to support autonomous laboratories and machine-
executable chemistry. Second, the ability to semantically link ex-
perimental synthesis procedures with corresponding MOP struc-
tures allows for the exploration of correlations between structure
and synthesis conditions. These correlations can be leveraged to
predict synthesis pathways for novel MOPs with desirable proper-
ties, reinforcing the importance of knowledge—driven approaches
in hypothesis generation and experimental design. Finally, pro-
moting greater consensus among researchers and publishers on
how synthesis instructions should be structured and documented
would significantly advance the field. Beyond improving repro-
ducibility, such standardisation would enable more accurate and
efficient data extraction, potentially reducing reliance on large
language models and facilitating the development of large-scale
knowledge bases essential for uncovering complex relationships
between molecular structure and synthetic strategy.

Looking ahead, this work lays the foundation for a range of
promising developments. From enhancing automation by en-
abling autonomous literature discovery and data extraction, to
leveraging structured formats like XDL for more streamlined
knowledge integration, many directions remain open. The in-
teroperability built into OntoSyn allows not only for broader
data sourcing but also for generating predictive models to sup-

Page 14 of 18


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00183h

Page 15 of 18

Open Access Article. Published on 26 August 2025. Downloaded on 8/30/2025 4:10:48 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

port synthesis planning. Continued advances in large language
models—including improved reasoning and larger context win-
dows—are expected to further enhance extraction accuracy and
may enable simpler, more efficient workflows. Expanding the on-
tology to new chemical domains and integrating with robotic plat-
forms could further unlock applications in autonomous laborato-
ries, offering a rich landscape for continued innovation. More-
over, refining the pipeline and establishing connections with other
autonomous agents will be key to building more cohesive and in-
telligent systems. For instance, automatically running the Pub-
Chem agent2® on newly instantiated species within the knowl-
edge graph would retrieve additional physico- and thermochem-
ical, enriching the contextual information available for synthesis
planning and validation.

In conclusion, this publication provides a robust framework
for automating synthesis discovery and material design beyond
reticular chemistry, addressing key challenges in scalability, repro-
ducibility, and data integration. By combining Al-driven automa-
tion, semantic knowledge representation, and data modelling, it
lays a solid foundation for a future transformation of synthetic
chemistry from an empirical to a data-and knowledge-driven dis-
cipline.

Conflicts of interest

There are no conflicts to declare.

Data availability

All codes and ontologies developed are available on Github under
MIT license: https://github.com/TheWorldAvatar/MOPTools!
The underlying repository contains additional tools and applica-
tions related to metal-organic polyhedral and can be permanently
accessed on Zenodo via DOI'10.5281/zenodo.16410991.

* Prompts and and JSON templates used for LLM interac-
tions were generated at runtime via the available code: text
blocks and logic for prompt generation can be found under
/MOP _Literature Extraction/llm_prompts.py

» Text blocks and logic for template generation are available
under /MOP_Literature Extraction/json_schemas.py

* A detailed description of each software module can be found
in /MOP_Literature Extraction/docs/readme.md|.

Furthermore, the Electronic Supplementary Information contains
an example of each prompt and template as well as a list of all
extracted articles.

The full data set including the ontology, all extracted knowl-
edge graph triples, as well as test and reference data sets are avail-
able in the Cambridge repository via DOI/10.17863/CAM.118147

Acknowledgements

This research was supported by the National Research Foun-
dation, Prime Minister’s Office, Singapore under its Campus
for Research Excellence and Technological Enterprise (CREATE)
programme. S. D. Rihm acknowledges financial support from
Fitzwilliam College, Cambridge, and the Cambridge Trust. For
the purpose of open access, the author has applied a Creative

Digital Discovery

View Article Online
DOI: 10.1039/D5DD00183H

Commons Attribution (CC BY) licence to any Author Accepted
Manuscript version arising.

Declaration of Generative AI and Al-assisted technologies in
the writing process

During the preparation of this work the authors used ChatGPT in
order to enhance the readability and language of the manuscript.
After using this tool, the authors reviewed and edited the con-
tent as needed and take full responsibility for the content of the
publication.

Notes and references

1 A. O. Adeola, J. O. Ighalo, P. I. Kyesmen and P. N. Nomn-
gongo, Journal of CO, Utilization, 2024, 80, 102664, DOI:
10.1016/j.jcou.2023.102664.

2 S. P. Argent, L. Da Silva, A. Greenaway, M. Savage, J. Humby,
A. J. Davies, H. Nowell, W. Lewis, P. Manuel, C. C. Tang, A. J.
Blake, M. W. George, A. V. Markevich, E. Besley, S. Yang, N. R.
Champness and M. Schroder, Inorganic Chemistry, 2020, 59,
15646-15658, DOI: 10.1021/acs.inorgchem.0c01935.

3 G. R. Lorzing, A. J. Gosselin, B. S. Lindner, R. Bhattacharjee,
G. P. Yap, S. Caratzoulas and E. D. Bloch, Chemical Communi-
cations, 2019, 55, 9527-9530, DOI: 10.1039/C9CC05002G.

4 S. Lee, H. Jeong, D. Nam, M. S. Lah and W. Choe,

Chemical Society Reviews, 2021, 50, 528-555, DOI:
10.1039/D0CS00443J.

5 H. Vardhan, M. Yusubov and F. Verpoort, Coordina-
tion Chemistry Reviews, 2016, 306, 171-194, DOI:

10.1016/J.CCR.2015.05.016.

6 W.-H. Xing, H.Y. Li, X.-Y. Dong and S.-Q. Zang, Jour-
nal of Materials Chemistry A, 2018, 6, 7724-7730, DOI:
10.1039/C8TA00858B.

7 A. C. Ghosh, A. Legrand, R. Rajapaksha, G. A. Craig, C. Sas-
soye, G. Balazs, D. Farrusseng, S. Furukawa, J. Canivet and
F. M. Wisser, Journal of the American Chemical Society, 2022,
144, 3626-3636, DOI: 10.1021/jacs.1c12631.

8 D. J. Tranchemontagne, Z. Ni, M. O’Keeffe and O. M. Yaghi,
Angewandte Chemie International Edition, 2008, 47, 5136—
5147, DOI: 10.1002/ANIE.200705008.

9 H. Park, Y. Kang, W. Choe and J. Kim, Journal of Chemi-
cal Information and Modeling, 2022, 62, 1190-1198, DOI:
10.1021/acs.jcim.1c01297.

10 A. Kondinski, A. Menon, D. Nurkowski, F. Farazi, S. Mosbach,
J. Akroyd and M. Kraft, Journal of the American Chemical Soci-
ety, 2022, 144, 11713-11728, DOI: 10.1021/JACS.2C03402.

11 A. Kondinski, A. M. Oyarzin, S. Rihm, J. Bai, S. Mosbach,
J. Akroyd and M. Kraft, Submitted for publication.

12 M. Suvarna, A. C. Vaucher, S. Mitchell, T. Laino and J. Pérez-
Ramirez, Nature Communications 2023 14:1, 2023, 14, 1-11,
DOI: 10.1038/541467-023-43836-5.

13 Q. Zhu, F. Zhang, Y. Huang, H. Xiao, L. Y. Zhao, X. C. Zhang,
T. Song, X. S. Tang, X. Li, G. He, B. C. Chong, J. Y. Zhou, Y. H.
Zhang, B. Zhang, J. Q. Cao, M. Luo, S. Wang, G. L. Ye, W. J.
Zhang, X. Chen, S. Cong, D. Zhou, H. Li, J. Li, G. Zou, W. W.

Journal Name, [year], [vol.],1 | 15


https://github.com/TheWorldAvatar/MOPTools
https://doi.org/10.5281/zenodo.16410991
https://github.com/TheWorldAvatar/MOPTools/blob/main/MOP_Literature_Extraction/llm_prompts.py
https://github.com/TheWorldAvatar/MOPTools/blob/main/MOP_Literature_Extraction/json_schemas.py
https://github.com/TheWorldAvatar/MOPTools/blob/main/MOP_Literature_Extraction/docs/readme.md
https://doi.org/10.17863/CAM.118147
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00183h

Open Access Article. Published on 26 August 2025. Downloaded on 8/30/2025 4:10:48 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Digital Discovery

Shang, J. Jiang and Y. Luo, National Science Review, 2022, 9,
nwac190, DOI: 10.1093/NSR/NWAC190.

X. Wei, X. Cui, N. Cheng, X. Wang, X. Zhang, S. Huang, P. Xie,
J. Xu, Y. Chen, M. Zhang, Y. Jiang and W. Han, ChatIE: Zero-
Shot Information Extraction via Chatting with ChatGPT, 2024,
https://arxiv.org/abs/2302.10205,

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell,
S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever and
D. Amodei, Proceedings of the 34th International Confer-
ence on Neural Information Processing Systems, 2020, DOI:
10.48550/arXiv.2005.14165.

M. Luo, X. Xu, Y. Liu, P. Pasupat and M. Kazemi, In-context
Learning with Retrieved Demonstrations for Language Models:
A Survey, 2024, https://arxiv.org/abs/2401.11624,

A. Kong, S. Zhao, H. Chen, Q. Li, Y. Qin, R. Sun, X. Zhou,
E. Wang and X. Dong, Better Zero-Shot Reasoning with
Role-Play Prompting, 2024, https://arxiv.org/abs/2308.
07702.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, b. ichter, F. Xia,
E. Chi, Q. V. Le and D. Zhou, Advances in Neural Infor-
mation Processing Systems, 2022, pp. 24824-24837, DOI:
10.5555/3600270.3602070.

Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun,
M. Wang and H. Wang, Retrieval-Augmented Generation for
Large Language Models: A Survey, 2024, https://arxiv.org/
abs/2312.10997.

Y. Luo, S. Bag, O. Zaremba, A. Cierpka, J. Andreo,
S. Wuttke, P. Friederich and M. Tsotsalas, Angewandte
Chemie - International Edition, 2022, 61, €202200242, DOI:
10.1002/anie.202200242.

J. Guo, A. S. Ibanez-Lopez, H. Gao, V. Quach, C. W.
Coley, K. F. Jensen and R. Barzilay, Journal of Chemi-
cal Information and Modeling, 2022, 62, 2035-2045, DOI:
10.1021/acs.jcim.1c00284.

M. Dreger, K. Malek and M. Eikerling, Digital Discovery, 2025,
DOI: 10.1039/d4dd00362d.

S. X. Leong, S. Pablo-garcia, B. Wong and A. Aspuru-Guzik,
MERMaid : Universal multimodal mining of chemical reactions
from PDFs using vision- language models, 2025.

J. Bai, S. Mosbach, C. J. Taylor, D. Karan, K. F. Lee, S. D. Rihm,
J. Akroyd, A. A. Lapkin and M. Kraft, Nature Communications
2024, 2024, 15, 1-14, DOI: 10.1038/541467-023-44599-9.
A. Eibeck, M. Q. Lim and M. Kraft,
Chemical Engineering, 2019, 131,
10.1016/j.compchemeng.2019.106586.

L. Pascazio, S. Rihm, A. Naseri, S. Mosbach, J. Akroyd and
M. Kraft, Journal of Chemical Information and Modeling, 2023,
63, 6569-6586, DOI: 10.1021/ACS.JCIM.3C00820.

M. Kraft, C. CARES, C. M. G. at University of Cam-

bridge and C. M. C. Ltd., The World Avatar [Computer
software], 2025, https://github.com/cambridge-cares/

Computers &
106586, DOI:

16 | Journal Name, [year], [vol.], 1

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

View Article Online
DOI: 10.1039/D5DD00183H

TheWorldAvatar, Last accessed April 22, 2025.

J. Bai, S. D. Rihm, A. Kondinski, F. Saluz, X. Deng, G. Brown-
bridge, S. Mosbach, J. Akroyd and M. Kraft, Digital Discovery,
2025, DOI: 10.1039/D5DD00069F.

S. D. Rihm, D. N. Tran, A. Kondinski, L. Pascazio, F. Saluz,
X. Deng, S. Mosbach, J. Akroyd and M. Kraft, Data-Centric
Engineering, 2025, 6, e22, DOI: 10.1017/dce.2025.12.

L. Hawizy, D. M. Jessop, N. Adams and P. Murray-Rust, Jour-
nal of Cheminformatics, 2011, 3, 1-13, DOI: 10.1186/1758-
2946-3-17/TABLES/6.

A. J. Hammer, A. I. Leonov, N. L. Bell and L. Cronin, JACS Au,
2021, 1, 1572-1587, DOI: 10.1021/JACSAU.1C00303.

P. Murray-Rust, H. S. Rzepa and M. Wright, New Journal of
Chemistry, 2001, 25, 618-634, DOI: 10.1039/B008780G.

H. Bar,
of Laboratory Automation,
10.1177/2211068211424550.
J. Bai, L. Cao, S. Mosbach, J. Akroyd, A. A. Lapkin and
M. Kraft, JACS Au, 2022, 2, 292-309, DOI: 10.1021/jac-
sau.1c00438.

T. R. Gruber, Knowledge Acquisition, 1993, 5, 199-220, DOI:
10.1006/knac.1993.1008.

K. K. Breitmann, M. A. Casanova and W. Truszkowski, in On-
tology in Computer Science, Springer London, 2007, pp. 17—
34, DOI: 10.1007/978-1-84628-710-7_2.

K. Degtyarenko, J. Hastings, P. de Matos and M. Ennis, Cur-
rent protocols in bioinformatics, 2009, 26, 14.9.1-14.9.20,
DOI: 10.1002/0471250953.bi1409s26.

C. Batchelor, RXNO: reaction ontologies, 2023, https://
github.com/rsc-ontologies/rxno, Last accessed April 22,
2025.

P. Stromert, J. Hunold, A. Castro, S. Neumann and O. Koe-
pler, Pure and Applied Chemistry, 2022, 94, 605-622, DOI:
10.1515/PAC-2021-2007.

V. K. Chaudhri, C. Baru, N. Chittar, X. L. Dong, M. Gene-
sereth, J. Hendler, A. Kalyanpur, D. B. Lenat, J. Sequeda,
D. Vrandec¢i¢ and K. Wang, Al Magagine, 2022, 43, 17-29,
DOI: 10.1002/AAA1.12033.

J. Akroyd, S. Mosbach, A. Bhave and M. Kraft, Data-Centric
Engineering, 2021, 2, e14, DOI: 10.1017/dce.2021.10.

M. Q. Lim, X. Wang, O. Inderwildi and M. Kraft, in The
World Avatar - A world model for facilitating interoperability,
Springer, 2022, pp. 39-53, DOI: 10.1007/978-3-030-86215-
2 4.

D. Brickley and R. V. Guha, RDF Schema 1.1, 2014, https://
www.w3.0rg/TR/2014/REC-rdf - schema-20140225/| Last ac-
cessed April 22, 2025.

W3C OWL Working Group, OWL 2 Web Ontol-
ogy Language, 2012, https://www.w3.org/TR/2012/
REC-owl2-overview-20121211/, Last accessed April 22,
2025.

S. Harris and A. Seaborne, SPARQL 1.1 Query Language,
2013, https://www.w3.org/TR/sparqlll-query/, Last ac-
cessed April 22, 2025.

R. Hochstrasser and B. Papenfuld, Journal

2012, 17, 86-95, DOLI

Page 16 of 18


https://arxiv.org/abs/2302.10205
https://arxiv.org/abs/2401.11624
https://arxiv.org/abs/2308.07702
https://arxiv.org/abs/2308.07702
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://github.com/cambridge-cares/TheWorldAvatar
https://github.com/cambridge-cares/TheWorldAvatar
https://github.com/rsc-ontologies/rxno
https://github.com/rsc-ontologies/rxno
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://www.w3.org/TR/sparql11-query/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00183h

Page 17 of 18

Open Access Article. Published on 26 August 2025. Downloaded on 8/30/2025 4:10:48 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

46

47

48

49

50

51

52

53

54

55

56

57

R. Grishman, IEEE Intelligent Systems, 2015, 30, 8-15, DOI:
10.1109/MIS.2015.68.

D. Papakyriakou and I. S. Barbounakis, International Jour-
nal of Computer Applications, 2022, 183, 975-8887, DOI:
10.5120/ijca2022921884.

M. Krallinger, O. Rabal, A. Lourenco, J. Oyarzabal and
A. Valencia, Chemical Reviews, 2017, 117, 7673-7761, DOI:
10.1021/ACS.CHEMREV.6B00851.

Z. Zheng, O. Zhang, H. L. Nguyen, N. Rampal, A. H.
Alawadhi, Z. Rong, T. Head-Gordon, C. Borgs, J. T. Chayes
and O. M. Yaghi, ACS Central Science, 2023, 9, 2161-2170,
DOI: 10.1021/ACSCENTSCI.3C01087.

K. M. Jablonka, P. Schwaller, A. Ortega-Guerrero and
B. Smit, Nature Machine Intelligence, 2024, 6, 161-169, DOI:
10.1038/542256-023-00788-1.

D. Xu, W. Chen, W. Peng, C. Zhang, T. Xu, X. Zhao, X. Wu,
Y. Zheng, Y. Wang and E. Chen, Frontiers of Computer Science,
2024, 18, 186357, DOI: 10.1007/511704-024-40555-y.

M. X. Liu, F. Liu, A. J. Fiannaca, T. Koo, L. Dixon, M. Terry
and C. J. Cai, Extended Abstracts of the CHI Conference on
Human Factors in Computing Systems, 2024, p. 1-9, DOI:
10.1145/3613905.3650756.

P. Sahoo, A. K. Singh, S. Saha, V. Jain, S. Mondal and
A. Chadha, A Systematic Survey of Prompt Engineering in
Large Language Models: Techniques and Applications, 2025,
https://arxiv.org/abs/2402.07927,

D. Kepel and K. Valogianni, Autonomous Prompt Engineering
in Large Language Models, 2024, https://arxiv.org/abs/
2407.11000.

X. Chen and X. Wan, Evaluating, Understanding, and Improv-
ing Constrained Text Generation for Large Language Models,
2024, https://arxiv.org/abs/2310.16343.

L.-P. Meyer, C. Stadler, J. Frey, N. Radtke, K. Junghanns,
R. Meissner, G. Dziwis, K. Bulert and M. Martin, First Working
conference on Artificial Intelligence Development for a Re-
silient and Sustainable Tomorrow, 2024, pp. 103-115, DOI:
10.1007/978-3-658-43705-3_8.

J. Dagdelen, A. Dunn, S. Lee, N. Walker, A. S. Rosen, G. Ceder,
K. A. Persson and A. Jain, Nature Communications, 2024, 15,
1418, DOI: 10.1038/541467-024-45563-x.

58

59

60

61

62

63

64

65

66

67

68

69

70

71

Digital Discovery

View Article Online
DOI: 10.1039/D5DD00183H

M. Pokrass, OpenAlI:
puts in the API, 2024,
introducing-structured-outputs-in-the-api/,
accessed April 22, 2025.

G. K. Q. Monfardini, J. S. Salamon and M. P. Barcellos, Con-
ceptual Modeling, 2023, pp. 45-64, DOI: 10.1007/978-3-
031-47262-6_3.

M. J. Prakash, Y. Zou, S. Hong, M. Park, M.-P. N. Bui, G. H.
Seong and M. S. Lah, Inorganic chemistry, 2009, 48, 1281-
1283, DOI: 10.1021/ic802382p.

F. Giasson and B. D’Arcu, The Bibliographic Ontology, 2016,
https://www.dublincore.org/specifications/bibo/,
Last accessed April 22, 2025.

M. Wigham and J. L. Top, Advanced
2011, 25, 276-287, DOLI:

Introducing  Structured  Out-
https://openai.com/index/
Last

H. Rijgersberg,
Engineering Informatics,
10.1016/J.AEL.2010.07.008.
L. Cronin and C. G. at University of Glasgow, XDL Documenta-
tion, 2022.

C. Batchelor, Chemical Methods Ontology, 2023, https://
github.com/rsc-ontologies/rsc-cmo, Last accessed April
22, 2025.

C. J. Date, ACM SIGMOD Record, 1982, 13, 18-29, DOI:
10.1145/984514.984515.

X. Liu, J. Wang, J. Sun, X. Yuan, G. Dong, P. Di, W. Wang and
D. Wang, Prompting Frameworks for Large Language Models:
A Survey, 2023, https://arxiv.org/abs/2311.12785,

M. Salehpour and J. G. Davis, The Effects of Different JSON
Representations on Querying Knowledge Graphs, 2020, https:
//arxiv.org/abs/2004.04286.

T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction
to Algorithms, fourth edition, MIT Press, 2022.

J. H. Caufield, H. Hegde, V. Emonet, N. L. Harris, M. P.
Joachimiak, N. Matentzoglu, H. Kim, S. Moxon, J. T. Reese,
M. A. Haendel, P. N. Robinson and C. J. Mungall, Bioin-
formatics, 2024, 40, btael04, DOI: 10.1093/bioinformat-
ics/btael04.

A. C. Vaucher, F. Zipoli, J. Geluykens, V. H. Nair, P. Schwaller
and T. Laino, Nature Communications, 2020, 11, 1-11, DOI:
10.1038/541467-020-17266-6.

H. Lyu, Z. Ji, S. Wuttke and O. M. Yaghi, Chem, 2020, 6, 2219~
2241, DOI: 10.1016/j.chempr.2020.08.008.

Journal Name, [year], [vol.],1 |17


https://arxiv.org/abs/2402.07927
https://arxiv.org/abs/2407.11000
https://arxiv.org/abs/2407.11000
https://arxiv.org/abs/2310.16343
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://openai.com/index/introducing-structured-outputs-in-the-api/
https://www.dublincore.org/specifications/bibo/
https://github.com/rsc-ontologies/rsc-cmo
https://github.com/rsc-ontologies/rsc-cmo
https://arxiv.org/abs/2311.12785
https://arxiv.org/abs/2004.04286
https://arxiv.org/abs/2004.04286
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00183h

Open Access Article. Published on 26 August 2025. Downloaded on 8/30/2025 4:10:48 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery Page 18 of 18

All codes and ontologies developed are available on Github under MIT license;,  -o/ob5001051;
https://github.com/TheWorldAvatar/MOPTools. The underlying repository contains
additional tools and applications related to metal-organic polyhedral and can be
permanently accessed on Zenodo via DOI 10.5281/zenodo.16410991

e Prompts and and JSON templates used for LLM interactions were generated
at runtime via the available code: text blocks and logic for prompt generation
can be found under /MOP _Literature Extraction/lim _prompts.py; text blocks
and logic for template generation are available under
/IMOP _Literature Extraction/json_schemas.py;

¢ A detailed description of each software module can be found in
/IMOP _Literature Extraction/docs/readme.md.

Furthermore, the Electronic Supplementary Information contains an example of each
prompt and template as well as a list of all extracted articles.

The full data set including the ontology, all extracted knowledge graph triples, as well
as test and reference data sets are available in the Cambridge repository via DOI
10.17863/CAM.118147
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