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data: how elemental features
enhance ML-based formation energy predictions

Hamed Mahdavi, *a Vasant Honavara and Dane Morganb

Quantum mechanics (QM) based modeling allows for accurate prediction of molecular and atomic

interactions, enabling simulations of many materials and chemical properties. However, the high

computational cost of QM models leads to a need for faster computational methods to study atomic-

scale interactions. Graph Neural Networks fit to QM calculations have been used as a computationally

efficient alternative to QM. Still, generalization to diverse unseen compounds is challenging due to the

many possible chemistries and structures. In this work, we demonstrate the effectiveness of utilizing

element features in facilitating generalization to compounds containing completely new elements in the

dataset. Our findings show that we can even randomly exclude up to ten percent of the elements from

the dataset without significantly compromising the model's performance.
Introduction

Quantum mechanics (QM) provides a highly accurate descrip-
tion of atomic-scale interactions, but the computational
complexity of quantum mechanical methods hampers the
ability to thoroughly investigate all possible arrangements of
different chemical elements.1 There is therefore a need for more
computationally efficient approaches to studying molecular
interactions. In response to this challenge, researchers have
increasingly leveraged tools frommachine learning, particularly
Graph Neural Networks (GNNs), as an alternative to QM.2

However, the combinatorial nature of chemical interactions
makes it difficult to gather a comprehensive training dataset of
different chemical species and environments, leading to
a requirement for predictive models that can extrapolate
beyond the training data. Ensuring these models remain reli-
able when encountering chemistries or congurations not seen
during training is a core challenge.3 In this context, out-of-
distribution (OoD) generalization is potentially very useful as
it involves developing models that can make accurate predic-
tions for elements or interactions that were not present during
the training phase. A promising approach to the OoD issue is to
incorporate physical knowledge and concepts, such as
symmetries, into machine learning models to improve
generalization.4–13 Another relevant body of work studies the
generalization benets of learned and QM descriptors in
machine learning based prediction of material properties.14,15 Li
et al.14 provide a simple and useful owchart that helps to
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decide when using QM descriptors in GNN models could be
helpful. Chen et al.15 demonstrate the effectiveness of pre-
trained ML-based atomic descriptors for formation enthalpy
prediction. Their model, trained on molecules containing up to
11 heavy atoms, is capable of predicting the formation enthalpy
of test molecules with as many as 42 heavy atoms, achieving
a low mean absolute error. The other line of work concentrates
on data-centric methods: Smith et al.16 introduced active
learning protocols (e.g., in ANI-1x) to curate diverse training
sets, signicantly improving coverage of chemical space.
Uncertainty quantication techniques (ensembles, Bayesian
NNs) are also frequently employed to detect when a model is
querying an unseen region, enabling on-the-y error mitigation
or data augmentation.17–20In the present work, we consider how
the physical knowledge embedded in elemental descriptors can
help with OoD predictions in machine learning based poten-
tials. This is particularly benecial in scenarios where one seeks
to develop universal interatomic potentials applicable across
the entire periodic table.21–24 The majority of machine learning
models for molecular tasks represent each element either with
a one-hot encoding or a real vector.4–8,10–13,25 Li et al.26 conduct
a comprehensive evaluation of multiple machine learning
approaches across 700 OoD tasks. Their results indicate that
common machine learning models applied to materials data-
sets demonstrate strong generalization capabilities, success-
fully predicting targets even for tasks that involve new chemical
elements or structural groups absent in the training set. By
examining the representation spaces of materials, the authors
nd that test samples from tasks showing high predictive
accuracy generally reside within the regions covered by the
training data. Conversely, samples from tasks with lower
performance levels tend to lie outside the training domain.
Additionally, their analysis reveals that the generalization
© 2025 The Author(s). Published by the Royal Society of Chemistry
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behavior on OOD tasks does not strictly follow traditional
scaling laws. Indeed, enlarging the training dataset or pro-
longing the training period leads to minimal improvements and
may even worsen the performance on particularly challenging
OOD prediction tasks. While the models in Li et al.26 exhibit
a degree of generalization to compounds with OoD elements,
a signicant performance disparity persists between models
trained with and without exposure to specic elements or
elemental sets. Elements possess strongly correlated charac-
teristics that can be represented by a set of features that capture
their chemical relationships. For instance, the periodic table
illustrates established patterns that correlate the properties of
elements with one another. Prior studies have attempted to
integrate element features to improve material tasks prediction
accuracy in i.i.d (independent identically distributed) setting
where the test data distribution is the same the training
data.27,28 This study provides novel insights into the factors
contributing to diminished model performance on compounds
containing OoD elements. Furthermore, we demonstrate
incorporating elemental features enhances predictive capabil-
ities in OoD scenarios. Specically, this approach signicantly
improves the prediction of formation energies for compounds
with novel unseen elements during, oen yielding performance
comparable to that observed when the element is abundant in
the training data. Additionally, we demonstrate that elemental
features also improve generalization behavior and scaling laws
for OoD elements.
Dataset and models description
Dataset

We used the mp_e_form dataset from Matbench v0.1 test-
suite.29 This dataset includes 132752 compound structures and
Table 1 Complete list of the 58 element-level features used in this projec
number), various size scales (covalent, metallic, and van der Waals radi
moduli, and selected DFT-derived ground-state properties

Selected elemental features

Atomic number Atomic radius
Atomic volume Atomic weight
Bulk modulus C6 dispersion coeffi
Covalent radius (single bond)35 Covalent radius (d
Covalent radius (slater) Density at 295 K
Generic electronegativity Electron affinity
Ghosh electronegativity scale Pauling electroneg
Fusion enthalpy DFT band–gap en
Estimated BCC lattice constant (DFT) Estimated FCC lat
DFT volume per atom (0 K) HHI production in
Mass specic heat capacity Molar specic hea
Evaporation heat Heat of formation
Mendeleev number Melting point
Total unlled electrons Total valence elec
Valence d electrons Unlled f electron
Unlled p electrons Valence p electron
Valence s electrons Period in the peri
Thermal conductivity at 25 °C van der Waals rad
van der Waals radius (MM3) van der Waals rad
Polarizability (instantaneous dipoles)

© 2025 The Author(s). Published by the Royal Society of Chemistry
their associated formation energies, all selected from the
Materials Project data.30 All compounds in this dataset are
inorganic and the formation energies are calculated using
density functional theory (DFT) at the Generalized Gradient
Approximation (GGA) level, which we will call the DFT-GGA
method.31 We used the Python package XenonPy to gather a 94
× 58 feature matrix for the rst 94 elements in the periodic
table. The feature list includes many property values collected
as part of developing the Xenopy package, including atomic
radius, van der Waals radius, atomic number, and period. Table
1 presents the complete list of features we utilized in this
project. We denote this feature matrix with H during the paper.
Models

As a baseline and use case for our approach, we use the SchNet7

and MACE32 models. SchNet is an invariant molecular energy
prediction and atomic force modeling framework. Its architec-
ture ensures that the predicted energy is invariant to the
molecule's orientation and atom indexing, while the predicted
forces are equivariant, meaning they rotate consistently with the
molecular structure.

The core of SchNet involves continuous-lter convolution
(cfconv) layers, which apply Gaussian radial basis functions and
multi-layer perceptrons to atomic distances to obtain the
hidden representation of each atom. Using only the atomic
distances ensures the model's invariance to rotations and
translations of coordinates.

MACE uses equivariant message passing, making the model
more powerful than invariant ones. The main idea of MACE lies
in decomposing many-body messages between atoms into
a novel linear expansion of higher-order features, allowing
efficient calculation of thesemessages. Similar to SchNet, which
t. The set includes basic identifiers (atomic number, period, Mendeleev
i), thermodynamic quantities (enthalpies, heat capacities), mechanical

Atomic radius33

Boiling temperature
cient (Gould–Bučko) Covalent radius34

ouble bond)36 Covalent radius (triple bond)37

Dipole polarizability
Allen electronegativity scale

ativity scale First ionisation energy
ergy (0 K) DFT energy per atom (0 K)
tice constant (DFT) DFT magnetic moment (0 K)
dex HHI reserves index
t capacity Atom volume in ICSD database

Unit-cell lattice constant
Molar volume

trons Unlled d electrons
s Valence f electrons
s Unlled s electrons
odic table Specic heat at 20 °C
ius van der Waals radius (Alvarez)
ius (UFF) Speed of sound

Digital Discovery, 2025, 4, 2972–2982 | 2973
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Fig. 1 Since OoD elements are absent from the training dataset, their
corresponding embedding vectors receive no backpropagated
gradients and thus remain static throughout the optimization process.
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uses an embedding matrix to represent each element, MACE
can also process any vector-shaped representation of elements.
To ensure consistency, we also used vector-shaped embeddings
for MACE, where these embeddings are optimized during
training. A detailed description of the model hyper-parameters
we used for training is included in the Appendix section.

Problem definition and setting

Our research focuses on investigating how a machine learning
model performs when it encounters compounds containing
previously unseen elements, which were not part of the original
training dataset. We are specically focused on predicting the
formation energies of compounds from a large training dataset
of structures and their energies. We have dened an OoD
scenario in which we remove all compounds containing
a specic set of elements, such as cobalt, from the training set.
The goal is to predict the formation energies of structures
containing these excluded elements.

A recent comprehensive study by Li et al.26 systematically
evaluated the OoD generalization capabilities of various
machine learning models, from tree ensembles to graph neural
networks and large language models, across over 700 tasks
involving unseen chemistry or crystal structures in materials
science. Their ndings indicate that many models, including
simpler ones, surprisingly exhibit robust generalization across
most heuristically dened OoD tasks, such as leaving out
a single element or entire groups/periods. They attribute this, in
part, to the fact that many representations implicitly capture
elemental relationships, allowing for effective interpolation
even when specic elements are absent from training. However,
Li et al.26 also identied specic elements (e.g., H, F, O) and
tasks that remain genuinely challenging, where test data lie
signicantly outside the domain covered by the training data in
the representation space (representationally OOD). Crucially,
they found that for these truly difficult OoD tasks, standard
scaling approaches, like increasing training data size (of seen
elements) or training time, provide marginal benets or can
even degrade performance, highlighting the limitations of
standard training paradigms for extrapolation.

As highlighted Li et al.,26 while machine learning models can
exhibit notable generalization even when encountering some
previously unseen elements, a substantial performance gap
oen persists, particularly for elements that are chemically or
structurally distinct from the training data. Addressing this
remaining challenge in OoD generalization is critical for
developing truly predictive and transferable materials models.
This work therefore investigates the underlying reasons for this
performance discrepancy, focusing specically on the limita-
tions inherent in standard graph neural network frameworks
that utilize conventional learnable element embeddings (E).
Furthermore, we propose and evaluate a method designed to
signicantly mitigate this gap and enhance predictive accuracy
for compounds containing such OoD elements. To establish the
specic technical context for this study, we consider having
access to a dataset of compounds and their formation energies.
The i-th compound in this dataset, D; is represented by the
2974 | Digital Discovery, 2025, 4, 2972–2982
triplet (zi,xi,yi)i=1
N, where zi represents the set of atom types in

the compound, xi denotes the corresponding 3-dimensional
coordinates of each atom, and yi is the formation energy. For
the purpose of potential energy estimation, a typical graph
neural networkmodel, fq, takes as inputs the atomic types zi, the
atomic coordinates xi, and an m × d learnable embedding
matrix E used to represent the m unique elements with d-
dimensional vectors. The model fq(zi, xi, E) then outputs an
estimated potential energy ŷ. Conventionally, the network
parameters q and the element embeddings matrix E are opti-
mized jointly during the training process.

The problem we are considering is how models, represented
by fq(zi, xi, E), can be best developed to effectively generalize to
data containing new elements. In a standard implementation,
achieving this type of generalization reliably is challenging. As
depicted in Fig. 1, this limitation arises because if an element,
denoted as e, is absent from the training set, its corresponding
row in the embedding matrix E is not updated, as it receives no
gradient during the backward pass. This lack of updating
means the embedding vector retains no learned information
specic to element e, leading to inferior predictions for
compounds containing this unseen element compared to
predictions for elements present in the training data. In this
study, we investigate the embedding matrix E and demonstrate
the benets of utilizing pre-dened element features within the
embeddings, in contrast to relying solely on a randomly
initialized embedding matrix.

To demonstrate the benets of integrating element features
for OoD generalization, we present a scenario where none of the
compounds in the training set include any elements from the
predened set of elements E ; in their chemical formulas.
Conversely, all compounds in the test set include at least one of
the elements from E : The objective is to effectively generalize to
the test set, despite the lack of samples containing elements
from E in their formulas during training.

To create the specic datasets for this task, we assume access
to the dataset D; which has been randomly divided into the
training set DTrain and the test set DTest using an i.i.d. random
split, where jDj ¼ �

�DTrain
�
�þ jDTestj: To prepare the training set for

the OoD task, we randomly select a set of elements E and exclude
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Quantifying the performance gap for an unseen element (Ge)
using standard embeddings. The plot compares test metrics on Ge-
containing compounds ðDTest

fGegÞ achieved by models trained with the
full dataset versus models trained after removing all Ge-containing
compounds ðDTrain

�fGegÞ: A marked increase in Mean Absolute Error (MAE)
and a corresponding decrease in the coefficient of determination (R2)
are observed when Ge is excluded from training, demonstrating the
performance deficit when generalizing to unseen elements.
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all compounds containing members of E from DTrain, denoting it
as DTrain

�E : Conversely, for the test set, we retain only compounds
that include at least one member of E in their chemical formula
and exclude all other compounds, denoted as DTest

E :

Diagnosis and the proposed solution

To overcome the problem of OoD generalization to new
elements dened in the previous section, we take a closer look
at the embedding matrix E. Before we can approach a solution,
however, we need to answer a few key questions related to how
embeddings work in the context of GNNs for material
compound energies. In particular, we seek to answer:

(i) How does a model perform in an OoD scenario if it uses
the embedding matrix directly without prior knowledge of the
elements?

(ii) Do the learned embedding vectors contain chemistry?
(iii) And nally, is there a x to help the model generalize to

unseen elements aer it has been trained?

How does a model perform in an OoD scenario if it uses the
embedding matrix directly without prior knowledge of the
elements?

The goal of this section is to quantify the performance degra-
dation observed when standard GNN element embedding
approaches encounter OoD elements absent from the training
data. While recent comprehensive studies, such as Li et al.,26

have shown that models can oen exhibit a degree of general-
ization to compounds containing unseen elements (likely due
to learned chemical similarities), a signicant performance gap
typically persists compared to models trained with access to
those elements. To illustrate and quantify this performance
difference in our specic setup, we examine a leave-one-
element-out OoD task. We select Germanium (Ge) as a repre-
sentative case, although similar performance characteristics are
expected for many other elements excluded from training.
Specically, we remove all compounds containing Ge from the
training set to obtain DTrain

�fGeg and train the MACE and SchNet
models on this reduced dataset. We then evaluate these models
on the test set containing Ge compounds, DTest

fGeg: This perfor-
mance is critically compared against that of the same models
trained on the complete dataset, DTrain; evaluated on the
identical test data DTest

fGeg: As demonstrated in Fig. 2, excluding
Ge from the training set results in substantially higher Mean
Absolute Error (MAE) and lower coefficient of determination
(R2) values when predicting properties for Ge-containing
compounds during test time, indicating a signicant degrada-
tion in performance for both MACE and SchNet models. This
highlights the signicant performance penalty incurred when
relying on standard embeddings for elements unseen during
training, even if someminimal generalization might be present,
motivating the need for improved OoD strategies.

Do the learned embedding vectors contain chemistry?

This section investigates whether, under standard randomly
initialized embeddings, chemical information is being
© 2025 The Author(s). Published by the Royal Society of Chemistry
integrated into the embeddings during training. In particular,
we seek to check if training process is encoding information
similar to that in our elemental property vectors. Additionally,
we examine whether the relative positions of the element
embedding vectors reect any meaningful chemistry. We
explore these questions as they might be useful for designing an
approach that will generalize to new elements. If the embed-
dings lack chemical information, the only solution in scenarios
with new elements in the test set is to retrain the model, and we
might not always have enough data for the new elements to
retrain our model. For the experiments of this section, we
assume access to an embedding matrix E, which is trained on
materials project data using mean absolute loss along with
a model. For the models, we use SchNet7 and MACE32 (as
described in Dataset and Models Description section).

Assessing E–H similarity as a proxy for chemistry

One way to investigate the embeddings of elements is by
examining the relative similarity of different elements. One
might expect that chemically similar elements should have
similar embeddings, analogous to word embeddings in natural
language models.38 We know that chemically similar elements
have similar feature vectors inH. By examining the most similar
elements to each element using H with a similarity measure
such as cosine distance or negative l2 distance, we can identify
chemically similar elements. We can also list the set of similar
elements using the same logic for the embedding matrices that
are trained with MACE and SchNet. Table 2 represents the top-4
similar elements using negative l2 distance for 8 elements using
the embedding matrix E trained with MACE, the embedding
matrix E trained with SchNet, and nally H. We can see the
expected chemical correlations in Table 2c, e.g., where elements
similar to Cu include Ag, another noble metal, elements similar
to Fe include other transition metals, elements similar to Ca
include multiple other column II elements, and elements
similar to P include other column VA and anion species.

However, such chemical correlation is not very apparent for
Tables 2a and b. Looking at the Table 2a, Cu has Ag close to it,
Digital Discovery, 2025, 4, 2972–2982 | 2975
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Table 2 We have listed top-4 similar elements for 8 different elements
using the negative l2 distance for feature matrix H and embedding
matrix E. As we can see, top-4 similar elements based on H in (c) are
chemically meaningful, while the chemistry in (a) is less visible, and
there is no pattern in the top-4 similar elements for (b)

Element Top-4 similar elements

(a) E for MACE
Cu: 29 H: 1 Ag: 47 Ru: 44 Co: 27
Ti: 22 H: 1 Zr: 40 Ta: 73 Si: 14
Fe: 26 H: 1 Co: 27 Be: 4 O: 8
Ca: 20 Sr: 38 H: 1 Ba: 56 Y: 39
Si: 14 H: 1 S: 16 P: 15 Al: 13
Pb: 82 H: 1 Rb: 37 As: 33 O: 8
P: 15 Si: 14 H: 1 S: 16 O: 8

(b) E for SchNet
Cu: 29 Na: 11 U: 92 S: 16 Br: 35
Ti: 22 U: 92 Cs: 55 Br: 35 Sc: 21
Fe: 26 Re: 75 K: 19 Sc: 21 Br: 35
Ca: 20 K: 19 N: 7 Na: 11 Sc: 21
Si: 14 Na: 11 Sr: 38 N: 7 O: 8
Pb: 82 Cs: 55 Ra: 88 Ba: 56 U: 92
P: 15 Au: 79 U: 92 Sc: 21 Y: 39

(c) H
Cu: 29 Ag: 47 Cr: 24 Rh: 45 Ni: 28
Ti: 22 V: 23 Zr: 40 Sc: 21 Mn: 25
Fe: 26 Co: 27 Ni: 28 V: 23 Ti: 22
Ca: 20 Sr: 38 Mg: 12 Ba: 56 Na: 11
Si: 14 Al: 13 P: 15 Ge: 32 Ga: 31
Pb: 82 Bi: 83 Po: 84 Tl: 81 At: 85
P: 15 S: 16 Cl: 17 O: 8 N: 7
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which is quite reasonably chemically, but the connection to Ru
is not clear. Co shares some similarity with Cu, but H is
completely irrelevant in that row. Fe has H and O in the same
row, which are entirely unrelated to Fe. Be is also quite distinct,
and the only obviously chemically relevant element is Co. The
Table 2a sometimes contains similar elements in each row, but
it reects much less chemistry compared to the Table 2c. It also
has some strange features, e.g., H is included in all rows without
any obvious reason. The rows in Table 2b appear random. For
example, Cu has neighbor elements from many other columns
in the periodic table with widely varying chemical nature, and
no other noble metals. A comparable lack of chemical similarity
can be seen for the nearest neighbors of other elements. To
determine if something is missed by this simple analysis of
a few cases we check if E encodes chemistry in ways similar toH
with a more systematic approach. Specically, we aim to answer
the following question: If a pair of elements are similar with
respect to representations from H using a xed similarity
metric, are they also similar with respect to features from E?

To estimate this quantitatively, we calculate the top-k similar
elements for each element using H and E. If E encodes chem-
istry like H, then the two sets of top-k similar elements should
be similar and have signicant overlap. Intuitively, the amount
of overlap between two sets shows how similar are the closest
neighbours of a xed element with respect to E andH. Formally,
we used the following procedure to assess the overlap of simi-
larity determined by H and E:
2976 | Digital Discovery, 2025, 4, 2972–2982
1. Since the rows of E and H represent elements, we calcu-
lated the similarity between each pair of elements using
a similarity measure such as cosine similarity or negative l2
distance, using H and E. In other words, for each pair of
elements like i, j, we calculate Sim(Ei, Ej) and Sim(Hi, Hj) and,
where Sim($, $) is negative l2 or cosine distance.

2. We save the obtained similarities in m × m matrices SE

and SH respectively. So we have:

Sij
E = Sim(Ei,Ej), Sij

H = Sim(Hi,Hj) (1)

3. Using the obtained pairwise similarities, we calculate the
top-k similar elements for each element using the numbers
from SE and SH. We denote the set of top-k similar elements to
element e using matrix H with TopHk (e). We dene TopEk(e) in
a similar manner.

4. To calculate the similarity of representations of element i
using embedding matrix E and feature matrix H, we calculate
the overlap ratio of the set of top-k similar elements to i ob-
tained from SE and SH which is
�
�TopH

k ðeÞXTopE
k ðeÞ

�
�

�
�TopH

k ðeÞ
�
�

¼
�
�TopH

k ðeÞXTopE
k ðeÞ

�
�

k
: By denition of this

measure, 1.0 overlap ratio means TopHk (e) and TopEk(e) are the
same 0 overlap ratio means these two sets are mutually
exclusive.

It is important to note that while we employ the negative l2
distance as a similarity metric for the feature matrix H, this
measure is not asserted to possess a specic physical interpre-
tation. Rather, we contend that the application of such metrics
as a similarity measure effectively retrieves chemically similar
elements when considering the top-k nearest neighbors for each
element. Given the practical inconvenience of enumerating the
complete set of top-k closest neighbors for the embedding
matrix E, we utilize this similarity measure only as a proxy to
illustrate that element embeddings do not inherently encode
chemical relationships, and this analysis serves primarily for
visualization purposes.

We have visualized the obtained the overlap ratio of
TopHk (e) and TopEk(e) for k= 8 using a heat map over the periodic
table in Fig. 3 for MACE and SchNet. Fig. 3 shows that the ob-
tained overlap ratios are generally small for most of the
elements. There are some elements in both heatmaps Fig. 3a
and b that show a larger overlap ratio, but it is not true for the
majority of the elements in the dataset. This trend was consis-
tent across different similarity measures and reasonable
choices of k. From this analysis we can conclude that the
embeddings from matrix E are not similar to the feature matrix
H and likely do not contain signicant chemical correlations.
Probing chemical information in element embedding vectors

Similar to word embeddings, if element embeddings capture
chemical information, their relative positions should reect
this chemistry. So different with the previous section where we
compared E with a reference feature matrix H, we are going to
probe the relative positions of element embeddings within E. If
the embeddings merely serve as identiers for each element,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Heatmaps of overlap ratios of top 8 similar elements for E andH. Smaller overlap ratio for a specific element shows that the corresponding
embedding vector contains less chemistry.
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their relative positions will not convey meaningful information.
To determine whether the learned embeddings contain useful
information, we test the following hypothesis: If the embed-
dings encode chemical information, the vector for an unseen
element during initial training should be recoverable through
further training on new data containing compounds with that
© 2025 The Author(s). Published by the Royal Society of Chemistry
element. This is because the approximate position of the
unseen element should be inferred from the relative positions
of other elements' embedding vectors. Thus, it should be
possible to optimize the embedding of an unseen element post-
training, improving the model's performance for those previ-
ously unseen elements.
Digital Discovery, 2025, 4, 2972–2982 | 2977
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We conducted tests on several elements for both MACE and
SchNet using the following scenario. Firstly, we removed the
compounds containing element e from the training set and
optimized a model on DTrain

�feg : Secondly, we kept all the samples
removed in the rst phase, denoted by DTrain

feg ; and disabled
gradients for all parameters and the embedding matrix E except
the corresponding row for e. Then, we trained this embedding
vector using the complete dataset DTrain: Despite updating the
embedding vector for e, we found that the performance of the
model on DTest

feg did not improve at all. To conrm that this
observation was not due to an optimization issue, we deliber-
ately corrupted the embedding vector for a chosen element e
aer training the model on the complete dataset DTrain; and
checked if we could recover the performance by optimizing the
embedding vector for e. We added noise to the embedding
vector e, which signicantly degraded the model's performance
on DTest

feg : We observed that we could recover the performance
using gradient descent or Adam aer adding noise to the
embedding vector for e, so that optimizing the embedding
vector for e was not the issue.

These two observations demonstrate that the learned
embedding matrix E does not encode much information about
elements and that the embeddings are probably just indicators
for elements.
Proposed method

We just discussed how learned embeddings do not embed
signicant chemical similarity between elements and probably
serve asmere indicators of the element they represent. Therefore,
it seems reasonable to suppose that we could use different
embeddings that not only indicate species but also have chemical
Fig. 4 The layout of our proposed method for using elements infor-
mation in potential energy estimation.

Table 3 Performance comparison of the original MACE and SchNet arc
and the original models, evaluated with the MAE (eV per atom) metric. Ou
trained on the OoD training data DTrain

�E :

Excluded elements Model Full data Elemen

E 1 MACE 0.0190 0.1076
SchNet 0.0760 0.1325

E 2 MACE 0.0183 0.0874
SchNet 0.0695 0.1247

E 3 MACE 0.0207 0.0693
SchNet 0.0793 0.1201

2978 | Digital Discovery, 2025, 4, 2972–2982
correlations, potentially gaining capabilities for the model. To
explore this, instead of using an independent embedding matrix
E, we assume that the model has access to the feature matrix of
elemental properties H, where the i-th row of H represents the
feature vector for the element with atomic number i. As shown in
Fig. 4, to utilize H, we employ a fully connected neural network,
denoted by MQ and parameterized by Q, that takes the feature
matrix H (which is 94 × 58 dimensional as dened before) as
input and outputs a d-dimensional representation for each
element, where d is an adjustable hyper-parameter of a model.
With this modication, our model becomes fq(zi, xi,MQ(H)), and
q and Q are optimized during training. Through this modica-
tion, the model learns to characterize each element based on its
meaningful chemical features. Thus, even if we lack data samples
for certain elements during training, we can still make reason-
able predictions based on their elemental features, as there are
similarities between different elements.
Experiments
Task data generation

To demonstrate the efficacy of our proposed model, we con-
ducted a series of experiments. We randomly choose a set of
hitectures trained on full data and DTrain
�E ; using both the elements MLP

r method provides a substantial improvement over the original models

ts MLP OoD data (last epoch) OoD data (best epoch)

0.5560 0.43
0.3210 0.31
0.5906 0.426
0.5103 0.443
0.5302 0.372
0.5187 0.455

Fig. 5 This figure illustrates the relationship between the training data
size and the number of elements for the defined OoD task. The
number of excluded samples, as well as the rate at which samples are
lost from the base dataset, increases as more elements are removed.
Consequently, our proposedmethod cannot maintain its performance
once more than 10 elements are excluded. This is likely because,
beyond this threshold, the removal of key elements limits the model's
ability to generalize to unseen elements.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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elements E ; then we remove any compound in the training set
that contains any member of E : For the test set, we keep every
compound that contains at least one element in E : We divide
the data into a training set (85%) and a test set (15%) and use
the same xed split to generate DTrain

�E and DTest
E : We also refer

to the subset of compounds in DTest not containing elements in
E with DTest

�E :
Fig. 6 Compounds in the dataset possessing at least one previously
unseen element were grouped by the ratio of unseen elements they
consist of. The excluded elements for each figure are mentioned in the
corresponding caption. We plotted the MAE/Atom error against this
ratio in each group. As anticipated, our model's performance is
significantly superior to that of themodel trained onOoD training data.
(a) Na, Se, Br, Y, Ru, Sb, Tb, Ac. (b) Sc, V, Cu, Sr, Tb, Ho, Tm, Yb, Np. (c) K,
Ca, Ti, Cd, Te, Er, Ir, U.

© 2025 The Author(s). Published by the Royal Society of Chemistry
Baselines and our model

We use MACE and SchNet for fq and a simple two-layer MLP
with SwiGlu activations39 for MQ. We call our proposed models
Elements MLP MACE and Elements MLP SchNet. To measure
the impact of the missing data on generalization in the outlined
OoD scenario, we use the original MACE and SchNet trained on
the complete dataset and DTrain

�E for each set of excluded
elements E i for i˛f1; 2; 3g as baselines, which we refer to as
“MACE Full Data”, “SchNet Full Data”, “MACE OoD Data” and
“SchNet OoD Data”.
Fig. 7 The performance of the model that uses element features
remains comparable to the model trained on the complete dataset
when we randomly remove several elements from the dataset. (a)
Models R2 and MAE for the test set when samples that include Na, Se,
Br, Y, Ru, Sb, Tb, Ac are removed from the training set. (b) Models R2

and MAE for the test set when samples that include Sc, V, Cu, Sr, Tb,
Ho, Tm, Yb, Np are removed from the training set. (c) Models R2 and
MAE for the test set when samples that include K, Ca, Ti, Cd, Te, Er, Ir, U
are removed from the training set.

Digital Discovery, 2025, 4, 2972–2982 | 2979
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Formation energy prediction

We compare the performance of our proposed model against
SchNet and MACE using three randomly sampled sets of
excluded elements, each with different members, as detailed
below.

� E 1 ¼ fNa; Se; Br; Y; Ru; Sb; Tb; Acg
� E 2 ¼ fSc; V; Cu; Sr; Tb; Ho; Tm; Yb; Npg
� E 3 ¼ fK; Ca; Ti; Cd; Te; Er; Ir; Ug
It is important to note that removing specic elements from

the dataset to create OoD tasks reduces the size of the training
set. For example, excluding Cu and Comight result in the loss of
5000 samples containing these elements. To ensure a fair
comparison, we adjusted the number of epochs for the
complete dataset, ensuring both models underwent the same
total number of optimization (gradient update) steps.

The performance comparison between our proposedmethod
and the models with access to full training data and OoD data is
represented in Table 3 for each experiment. We use the test set
MAE from the last training epoch and the best-performing
epoch as the comparison metric. Our method achieves
a substantial improvement over the original models trained on
the OoD training data DTrain

�E ; while its performance remains
lower to that of the model with full dataset access. We have
observed consistent results for other randomly sampled sets up
to k= 10, where k is the number of removed elements in the set.
However, beyond this threshold, the gap between the models
Fig. 8 Similarity heatmaps illustrating the overlap ratios of the top 8 mo
original MACE and SchNet models (left column) and their correspondin
element feature matrix H. Higher overlap ratios in the right column indic
chemical information present in H.

2980 | Digital Discovery, 2025, 4, 2972–2982
becomes larger with a higher rate. This is illustrated in Fig. 5. As
we remove more than ten elements from the dataset, we lose
data at a higher rate when the size of the set of the removed
elements is greater than 10.

The R2 and MAE values for the test set predictions were
plotted in Fig. 7 as a function of training epochs for
E 1; E 2 and E 3: The results presented in Fig. 7 show that our
models outperform the original models trained on OoD data by
a large margin, even with several elements excluded from the
training. This indicates that by leveraging element features, our
models maintain generalization to unseen elements, despite
the complete removal of all compounds containing the
excluded set E from the training data. Notably, and consistent
with the ndings of Li et al.,26 the performance of the original
models trained on OoD data can worsen with more training.
This negative effect is less strong for the Elements MLP models
and is only seen slightly for the Elements MLPMACEmodels, as
shown in Fig. 7a and b.

Performance versus the Ratio of Unseen Elements. We also
examined the performance of our model across different ratios
of unseen elements within compounds. To assess this, we
categorized the compounds including at least one unseen
element in the dataset based on the stoichiometry of unseen
elements they contained. Then we rounded up ratios for each of
the compounds and classied them in 0.0–0.2, 0.2–0.4, ., 0.8–
1.0 groups. For example, if W was unseen and O seen, thenWO3
st similar elements, as determined by the embedding matrices E of the
g Elements MLP augmented versions (right column), compared to the
ate that the elements MLP embeddings capture more of the inherent

© 2025 The Author(s). Published by the Royal Society of Chemistry
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would have ration 0.25 of unseen to seen. Notice that even
compounds in the 0.0–0.2 group contain at least one unseen
elements. Fig. 6 illustrates the performance of our models
compared to the original models with access to the complete
and OoD dataset. As depicted in Fig. 6, our proposed method
consistently shows substantially better performance than
models trained on OoD data, while still performing reasonably
worse than models trained on the full training data. One might
expect that the performance gap between both our models and
the OoD models, relative to the models with full data access,
would widen as the proportion of unseen elements increases.
However, Fig. 6 does not show such a trend. We must be careful
to note that the error is measured using a metric already
normalized by the number of atoms. Therefore, even if the ratio
of unseen elements increases, this effect is offset by the division
by the number of atoms.
Similarity between elements MLP output and H

One might wonder if the embedding matrix from the Elements
MLP would resemble H, following the same method used to
visualize the similarity heatmap between the original models'
embedding matrix E and H. We've plotted this comparison in
Fig. 8. As the gure shows, the Elements MLP models' element
embedding matrices are considerably more similar to H than
those of the original models.
Conclusion and discussion

This work addresses a challenge in Graph Neural Networks for
potential energy prediction: generalizing to out-of-distribution
scenarios with unseen elements. Through our experiments,
we show that the common practice of using element embed-
dings leads to them lacking meaningful chemical correlations
and likely acting as mere identiers. This limitation becomes
evident when elements absent from the training data are
encountered, leading to degraded performance. To address
this, we feed elemental features—such as atomic size and
electronegativity—directly into the model, improving general-
ization for unseen elements. Even when multiple unseen
elements are introduced simultaneously, our model maintains
reasonable accuracy with modest degradation compared to
models trained with full datasets.

While the feature-based approach enhances generalization
in OoD settings, models trained solely with elemental features
show only marginal improvements on IID test data. Although
we did not observe signicant gains in the IID setting, using
chemically meaningful embeddings may allow for smoother
adaptation when new elements are introduced. Additionally,
this approach could enable better transfer learning from exist-
ing datasets, further boosting performance. Incorporating more
advanced chemical features and uncertainty quantication
could make these models more robust and scalable for real-
world applications. However, our experiments also reveal
a persistent performance gap between models trained with full
data access and those handling compounds with unseen
© 2025 The Author(s). Published by the Royal Society of Chemistry
elements. Reducing this gap is an important avenue for future
research.

In conclusion, our study demonstrates that incorporating
elemental properties as features improves out-of-distribution
generalization when predicting the potential energies of
compounds from their atomic structures. Although unexplored
in this project, we hypothesize that our method could extend to
any other molecular target or property that depends on the type
and properties of the constituent elements. While these
features equip the model to handle compounds with unseen
elements, a notable gap remains compared to models trained
with complete data. Closing this gap will require further
investigation, possibly through modications to the loss func-
tion or model architecture in future work.
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