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pONets for viscosity prediction
using learned entropy scaling references

Maximiliam Fleck, *a Marcelle B. M. Spera, a Samir Darouich, bc Timo Klenka

and Niels Hansen *a

Data-driven approaches used to predict thermophysical properties benefit from physical constraints

because the extrapolation behavior can be improved and the amount of training data be reduced. In the

present work, the well-established entropy scaling approach is incorporated into a neural network

architecture to predict the shear viscosity of a diverse set of pure fluids over a large temperature and

pressure range. Instead of imposing a particular form of the reference entropy and reference shear

viscosity, these properties are learned. The resulting architecture can be interpreted as two linked

DeepONets with generalization capabilities.
1 Introduction

The scarcity of thermophysical property data presents a chal-
lenge in the development of new processes and materials,
driving the long pursuit of predictive methods in chemical
engineering.1 For transport properties such as the shear
viscosity, researchers have developed group contribution2–7 and
corresponding states methods8–10 for pure substances. These
methods may oen yield inaccurate results, in particular for
compounds not included in the training set – for which
predictive errors can exceed 50%.11,12 While molecular simula-
tions offer an alternative approach for predicting transport
properties (including viscosity), they face limitations in
computational cost, transferability, and accuracy.11–16 Machine
learning approaches showed to be promising when sufficient
training data are available, especially when enhanced by
physics-based descriptors derived from molecular
simulation.17,18

Considerable research has focused on exploiting the
univariate relationship between a transport property and
residual entropy, originally proposed by Rosenfeld for simple
uids.19,20 If transport properties are rendered dimensionless
through appropriate scaling references, they can be predicted
across a wide temperature and pressure range. Entropy scaling
approaches have been extensively applied to develop predictive
models for both pure uids21,22 and uid mixtures.23,24 The
univariate relationship between dimensionless shear viscosity
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and reduced residual entropy represents a dimensionality
reduction that considerably improves the extrapolation
behavior of data-driven approaches when combined with
entropy scaling.25

While entropy scaling approaches differ in their details, e.g.
in the way the transport property is made dimensionless,26–32

they follow the same basic principles. In a preliminary work, we
implemented an entropy scaling framework into a neural
network architecture to predict the shear viscosity of pure uids
over a wide range of species and state points.31 Molecules were
represented by their PC-SAFT parameters. The Perturbed Chain
Statistical Associating Fluid Theory (PC-SAFT) equation of
state33 uses only a few substance-specic parameters and we
were able to validate that they can serve as highly effective
molecular descriptors in a machine-learning context and are of
low dimensionality compared to other molecular ngerprints
commonly employed.34–36

In our preliminary work,31 we adopted the Chapman–Enskog
scaling reference – which provides a meaningful low-density
behavior. However, alternative scaling relations may be more
appropriate for dense states. In the present work, we generalize
the previous approach by allowing the neural network to learn
the optimal scaling relation during training, rather than
imposing a specic scaling model a priori. This results in an
architecture that can be interpreted as two linked DeepONets
with generalization capabilities (GenDeepONets), with applica-
tion cases beyond the application discussed in this work.
Compared to the previous architecture,31 it demonstrates
superior performance metrics on a more challenging dataset
and has undergone a more thorough evaluation analysis,
establishing our DeepESNet (Deep Entropy Scaling Network) as
a signicant advancement over the previous methodology and
other feed forward methods.
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d5dd00179j&domain=pdf&date_stamp=2025-11-29
http://orcid.org/0000-0003-3394-7105
http://orcid.org/0000-0001-7841-0489
http://orcid.org/0009-0005-1229-0038
http://orcid.org/0000-0003-4366-6120
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00179j
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD004012


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/9
/2

02
6 

1:
34

:5
3 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
2 Entropy scaling

As shown in Fig. 1, the behavior of viscosities in the tempera-
ture–pressure (T, p) or temperature–density (T, r) space is rather
intricate with a non-trivial property surface, where phase tran-
sitions lead to discontinuities.26,31 Rosenfeld19,20 demonstrated
that transport coefficients, including viscosity, thermal
conductivity, and self-diffusion coefficients, can be approxi-
mated as univariate functions solely dependent on reduced
residual entropy, provided that these transport coefficients are
dened as dimensionless quantities in suitable manners. In the
residual entropy space, phase transitions no longer manifest as
discontinuities. This greatly simplies the problem of devel-
oping predictive methods, as two-phase systems or domains of
large curvatures on the surface h(T, p) do not have to be
described.

Rosenfeld initially proposed the entropy scaling approach
for simple uids. However, follow up studies showed the
applicability of this principle to strongly non-spherical,37–45

polar, and hydrogen-bonding uids, including water.21,23,26,46,47

It has been demonstrated that the approach is applicable to
a wide variety of substance groups.23,26 Entropy scaling can be
integrated into a neural network architecture to reliably predict
viscosities for many substances and state points as shown in our
preliminary work.31 In this work, we want to generalize this
approach.

The reduced residual entropy s*(T, r) at each chosen state
point is computed using the PC-SAFT equation of state33 as

s*ðT ; rÞ ¼ sðT ; rÞ � sigðT ; rÞ
NAkBzs

¼ sres

zs
(1)

with sres the residual entropy, s(T, r) the substance entropy, and
sig(T, r) the entropy of the ideal gas at the same temperature and
density, Avogadro's constant NA, Boltzmann's constant kB, and
normalizer zs which is dened differently in different entropy
Fig. 1 Viscosity and log-transformed viscosity of butane plotted over te
state points (T, p) and (T, r), respectively. The phase behavior is visible in
separated from the liquid phase (high pressure/high density). At high tem
visible. It is evident that predicting viscosity is very challenging, as values e
is not trivial.

© 2025 The Author(s). Published by the Royal Society of Chemistry
scaling approaches.26–31 Typically, zs is a substance-specic
constant parameter related to the size of the molecule.

To establish a dimensionless measure of viscosity, h* = h/
href in a suitable manner, a reference viscosity, for example the
Chapman–Enskog48,49 viscosity, is introduced. Typically, the
reference viscosity is a function of absolute or reduced
temperature and substance-specic. Depending on the chosen
approach, it can also rely on additional inputs such as entropy.
In this work, the reference will be learned. The aim of the
reference is to minimize the noise. Therefore, we can analyze
and compare different approaches due to their potential to
minimize noise in the entropy space, here referred to as
denoising. Our ndings indicate that the reference viscosity is
fullling its denoising function when dependent on tempera-
ture and substance-specic parameters:

ln(href) = f(T, xref) (2)

with f as a function of temperature T and species dependent
features x. The dimensionless viscosity leads to coherent
entropy scaling behavior and is typically utilized in logarithmic
form,

ln(h*) = ln(h/href) = f(s*, x*) (3)

with f as a function of entropy s* and species dependent
features x*. f(s*, x*) can be a polynomial or completely or partly
learned.
3 Generalized neural network
architecture

First, we assume that species dependent features are the same
throughout the model, i.e., xref = x* = x. Reformulating eqn (2)
and (3):
mperature. Differing viscosities at one temperature indicate different
the left plot. Vapor state points (low pressure/low density) are clearly
peratures, the critical region connecting the two phases also becomes
ven of only one specie span several magnitudes and the phase behavior

Digital Discovery, 2025, 4, 3578–3587 | 3579
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Fig. 3 DeepES network unit described with the naming from Deep-
ONet using the terms branch and trunk network. The dotted line
indicates that we can pull out additional information which might be
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ln(h) = ln(href) + ln(h*) = f(T, x) + f(s*, x) (4)

with species dependent features x, which are a model input
together with f(s*, x) and T.

Now we can further investigate the f functions. Starting with
f(s*, x), which is typically a polynomial with substance-specic
parameters and normalized entropies. Therefore, we dene
f(s*, x) as the dot product of a substance-specic parameter
vector and a residual entropy feature vector

ln(h*) = f(s*, x) = p*(x) × s*(s*(x)) (5)

with the substance-specic model parameter vector p* and
entropy feature vector s*(s*(x)). The latter is substance-
dependent through zs(x) and can be rewritten as

s* ¼ sres

zsðxÞ
(6)

with the substance-specic temperature parameter zs(x) and
residual entropy sres(T, r), which is a model input and can be
computed using an equation of state within pre-processing.

We can do the same for our reference viscosity and dene

ln(href) = f(T, x) = pref(x) × T*(T*(T, x)) (7)

with a substance-specic reference parameter vector pref(x) and
a temperature feature vector T*(T*(T, x)), which is a function of
the reduced temperature
Fig. 2 DeepESNet: architecture to predict viscosities. Branch and trunk
architecture is translated from eqn (4)–(8), with PC-SAFT parameters as

3580 | Digital Discovery, 2025, 4, 3578–3587
T* ¼ T

zT ðxÞ
(8)

with the substance-specic temperature parameter zT(x) and
temperature T, which is a model input.

The equations can be translated into the architecture shown
in Fig. 2. We call this architecture DeepESNet, which refers to
two generalized DeepONets that are connected to calculate
viscosity through entropy scaling. Each block has the general
structure shown in Fig. 3. The model inputs x, T, and sres are
used for different neural networks. On the reference GenDee-
pONet block, the branch network computes the reference
are fully connected deep neural networks using ReLu activation.50 The
species dependent features x.

useful in some cases.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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parameters pref(x) and zT(x) as a function of x. The substance-
specic parameter zT(x) is then used to reduce the tempera-
ture. The reduced temperature is the input of the trunk network
which computes the temperature feature of the reference as
a function of the reduced temperature T*. With that, we have
addressed eqn (7) and (8).

On the second GenDeepONet block, the branch network
receives as input the model parameters from the reference state,
pref(x), which come from the reference GenDeepONet block and
are combined with input x to compute the model parameters
p*(x) and zs(x) as a function of x. The trunk network computes
the entropy features as a function of the reduced residual
entropy s*. This, in turn, addresses eqn (5) and (6). We have now
the information required to obtain the viscosity through eqn (4).
The branch networks can be considered separately, combined,
or interconnected. We found that the interconnected approach
passing pref(x) enables good prediction. Nevertheless, we
provide on the SI a benchmark against other architectures.
4 Comparison to DeepONet
framework

The formalism derived from the entropy scaling principle and
the corresponding architecture bear strong structural similari-
ties to interconnected DeepONets.51,52 DeepONets have emerged
as promising surrogate solvers for partial differential equations
(PDEs), characterized by the following integral form:

GuðtÞ ¼ xð0Þ þ
ðt
0

f ðGuðsÞ; uðsÞ; sÞds (9)

A DeepONet consists of two sub-networks: a branch network
and a trunk network operating on different function spaces. The
branch network's function space is mapped to the trunk
network's function space. The trunk network receives inputs
dening the desired output location, which for PDEs typically
represent spatial or temporal coordinates. In our work, the
inputs to our trunk networks are temperature and residual
entropy. The branch network receives inputs characterizing the
molecule (x). This approach maps a function space describing
molecular characteristics to the entropy function space, analo-
gous to how DeepONet maps from input function space to
solution function space.

Gu(s) = h(s) = h(0) + f(h(s), x, s(T, r)) (10)

Which can be related to eqn (4) with h(0) = href. In our case,
h(0) is unknown and needs to be learned. Therefore, we end up
with two interconnected DeepONets. Our architecture extends
beyond the standard DeepONet framework through an idea that
might be transferable to PDE surrogate solvers. Our trunk
network utilizes normalized or generalized inputs, where the
normalization parameters are learned by the branch network.
In other words, the inputs of the trunk networks function space
are normalized based on the branch networks function space.
This approach aligns with established thermodynamic princi-
ples—absolute temperatures oen yield less insight than
© 2025 The Author(s). Published by the Royal Society of Chemistry
temperatures normalized relative to critical points, while in
entropy scaling, entropies are typically normalized by parame-
ters representing molecular size to enhance generalization.

This normalization strategy has potential applications
beyond our specic domain and could benet PDE surrogate
solvers more broadly. Transport processes, such as the
diffusion-reaction systems examined in the original DeepONet
literature, oen exhibit similar behavioral patterns but operate
across different time scales, particularly when multiple terms in
the governing equations vary simultaneously. Therefore,
learning appropriate generalizations of the time axis based on
driving forces represents a promising direction for improving
surrogate model performance and transferability.
5 PC-SAFT representation
parameters

We chose PC-SAFT parameters as our species dependent
features x. Previous work demonstrated the suitability of PC-
SAFT parameters and the molecular mass for machine
learning applications.31,36 In the PC-SAFT equation of state,
molecules are conceptualized as chains composed of spherical
segments. In the applied version, all segments are of uniform
size, and branches and rings are not explicitly represented in
the model. The underlying potential is a Lennard–Jones
potential. This provides three parameters (m, s, 3) for chained
molecules, such as n-alkanes. In PC-SAFT, m represents the
effective (non-integer) number of segments per molecule, s is
the segment size parameter, and 3 is the energy parameter of the
intermolecular potential per segment. Three further parameters
are required to adequately describe hydrogen-bonding (associ-
ating) groups (k, 3AB) and dipolar (m) molecules. Here, k is the
effective association volume parameter, 3AB the association
energy between association sites A and B parameter, and m

dipole moment parameter. In this work, we rely on PC-SAFT
parameters obtained from SMILES strings with transformers
from Winter et al.53
6 Data and training

The models are trained using viscosities obtained from the
Dortmund Data Bank, DIPPR and ThermoML.54–56 Certain
substances and families are overrepresented in the data set.
However, given that these substances and families are of
signicant importance, particularly within chemical families
such as alkanes and alcohols, this overrepresentation can be
considered advantageous. Furthermore, it should be noted that
the data underwent a relatively brief cleaning process, which
primarily served to remove non-plausible data. The training
process was sufficiently robust, and there was no indication that
a more elaborate outlier detection method was required.

As previously mentioned, the PC-SAFT equation of state was
developed to describe molecules as chains of spherical
segments. Therefore, only a few molecular families comprising
cyclic molecules were not utilized in the training of the nal
model. Nevertheless, we le cyclical and polycyclical families
Digital Discovery, 2025, 4, 3578–3587 | 3581
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like naphtalenes in the dataset, in order to examine and
demonstrate the representation's limitations.

First, we split the data at family and species level. Small
molecules are considered to be much more difficult to predict
and yet carry important information.53 Therefore, species with

a molecular weight of less than 68
g

mol
and a SMILES string

length smaller than 5 symbols were incorporated into the
training set. For families with more than 12 species in the
dataset, we used a training, validation, and test split of 70%/
15%/15% at species level. For families with less than 12 and
more than 9 species, we used a training and validation split of
85%/15%. For families with less than 9 species, we used all
species for training. From a total of 729 different species, we
end up with 115 species that are part of the validation data but
not the training data, and 112 species that are part of the test
data but not the training data. The validation and test data were
then populated with samples from the training set, resulting in
a nal training, validation, and test split of 50%/25%/25%. The
total number of samples is 76 915. This train/test/val split is
denoted as 50/25(15)/25(15) split, with 15% being the amount of
data not present at the training set. Further details on the
dataset split can be found in the SI. We also want to point out
that the datasets largest family is the family with the label
unknown, consisting of species that were not assigned to
a family. Hence, the species in validation and test sets that are
not part of the training set are heterogeneous.

Besides the dimensions of the branch and trunk networks,
the size of the output embeddings of the networks are treated as
hyperparameters. We used the Adam optimizer57 with L2 (mean
squared) loss and treated regularization penalty,58 learning rate,
and batch size as hyperparameters. More implementation
details are available in the SI.
7 Results

Here we discuss the temperature dependency of the reference
viscosity, ln(href), and show results of a trained model utilizing
the full architecture. We also discuss further utilization options.
Deviations between model and experiment are given as mean
absolute relative deviations in percent (MARD-%), unless spec-
ied otherwise. Another measure used is the median absolute
relative deviations in percent (median ARD-%).

MARD ¼ 100%

N

XN
i¼1

��hpred;i � hexp;i

��
hexp;i

(11)

ARD ¼ 100%

��hpred;i � hexp;i

��
hexp;i

(12)

7.1 Temperature dependency of the reference viscosity

The reference viscosity is responsible for the denoising of
residual entropy space, and is a function of both substance-
specic parameters and temperature. In this section, we will
validate the last affirmation, i.e., if the reference viscosity can
minimize noise in the entropy space only as a function of x and
3582 | Digital Discovery, 2025, 4, 3578–3587
T. This is required since alternative approaches incorporate
additional state-point-specic dependencies.26–31,36 The ability
of the reference viscosity to denoise the data – whether derived
analytically or through machine learning – is crucial. Due to the
separation of the functional areas of the reference and the
actual prediction, the latter depends on the noise reduction in
the input data. When this is not achieved, it results in
a considerable dependency not only on the training set, but also
on the state points. This can lead to problems with imbalanced
datasets. To test whether a temperature-dependent reference is
sufficient, we employed only the components of the architecture
illustrated in Fig. 2 that pertain to the reference viscosity. This
means that the reference GenDeepONet is used to predict
ln(href) whereas the second GenDeepONet is not used. We will
refer to it as denoising architecture.

An alternative loss function was delineated for the purpose
of training only the branch and trunk networks from the
reference GenDeepONet. According to eqn (4), subtracting
ln(href) from experimental ln(h) gives us ln(h*), which should be
noise-free when plotted over the residual entropy if the refer-
ence viscosity is predicted properly. A noise-free correlation
between ln(h*) and the residual entropy can be approximated
with a high degree of accuracy by a polynomial. The L2 (mean
squared) loss between a polynomial t and ln(h*) is therefore
dened as the loss function.

We used all available data from 16 n-alcohols for training.
Denoising results for octan-1-ol is shown in Fig. 4, where it is
possible to see that our reference GenDeepONet was able to
minimize the noise in the viscosity data (le plot), leading to
a less spread dataset – and a more accurate prediction (right
plot). Results for butan-1-ol, ethanol, and octan-1-ol are shown
in Fig. 5. The combination of temperature-dependent denoising
with polynomial tting demonstrates excellent agreement with
Experimental data. This validates our hypothesis that the
reference viscosity depends only on substance-specic param-
eters x and temperature, eliminating the need for additional
state point dependencies such as density or entropy. For n-
alcohols, this approach achieves better agreement with experi-
mental results compared to classical entropy scaling
methods:23,25,26 for octan-1-ol, for example, we achieved 4.35%
MARD while the value reported for a substance-specic tting
through an analytical equation of state was 5.13%.23 Although
the present dataset is challenging, only a temperature-
dependent reference viscosity was sufficient to reduce the
noise. Non-denoised data could lead to instability in training
and unpredictable tting behavior especially in such heteroge-
neous datasets. The methodology employed can be utilized to
construct highly accurate models of individual substances,
groups of substances and, possibly, mixtures.

As a nal remark, we would like to mention that the poly-
nomial approach for investigating the reference viscosity can be
substituted with a Gaussian process, where optimization would
aim the marginal log likelihood. This alternative framework
effectively minimizes entropy within the data itself. Conse-
quently, this methodology can be combined with classical
entropy scaling approaches to optimize equation of state
parameters by reducing noise in the data. The possibility of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Denoising results for octan-1-ol. Predictions made on the viscosity data (ln h) are plotted on the left and show at first glance a good
agreement with experimental results (black crosses). Nevertheless, onemust be aware of the scale and the fact that the data is scattered through
approx. 3 orders of magnitude. The effect of the denoising architecture is visible on the right, where predictions made on the reduced viscosity
(ln h*) are much more accurate and the entire dataset has the same order of magnitude throughout the entropy space.

Fig. 5 Denoising results for a few selected n-alcohols, with MARD shown next to the substance name. Predictionsmade on the viscosity data (ln
h) are plotted on the left and have visible good agreement with experimental results (black crosses). The effect of the denoising architecture is
visible on the right (ln h*). It is important to highlight that due to entropy scaling, the approach is resilient to overfitting outliers: the red-circled
black cross is part of the butan-1-ol experimental data but lies together with ethanol data points. Nevertheless, the denoising procedure for
butan-1-ol was not influenced by this outlier. For comparison, the MARD for butan-1-ol, ethanol, and octan-1-ol from classical entropy scaling
with substance-specific fitting is reported as 5.79%, 3.40%, and 5.13%.23

Table 1 Prediction performance of DeepESNet on different dataset
splits. Data reported in percentage, calculated with eqn (11) and (12).
Below the overall value, we added the results for species exclusively
part of the validation or test set on the respective column
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evaluating the reference viscosity directly also opens up a wide
range of applications for developing theories on transport
properties.
MARD/ARD

Training Validation Test

Split 1 6.05%/4.02% 7.59%/4.20% 10.0%/4.76%
9.93%/4.55% 12.8%/5.66%

Split 2 5.78%/3.63% 7.71%/4.28% 7.81%/4.05%
8.75%/4.67% 8.74%/4.27%
7.2 Trained full model architecture

The full model architecture was trained using the training data,
and the hyperparameters were optimized using the validation
data. We trained the model on different 50/25(15)/25(15) splits.
The main investigation and benchmarks were conducted on
a challenging 50/25(15)/25(15) split (Split 1 from Table 1). For
training data, the MARD between model prediction and exper-
imental data is 6.05% and the median ARD is 4.02%. For vali-
dation data, the MARD between model prediction and
experimental data is 7.59% and the median ARD is 4.20%. For
© 2025 The Author(s). Published by the Royal Society of Chemistry
test data, the MARD between model prediction and experi-
mental data is 10% and the median ARD is 4.76%. For species
that are exclusively part of the validation set, theMARD is 9.93%
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and the median ARD is 4.55%. For species that are exclusively
part of the test set, the MARD is 12.78% and the median ARD is
5.66%. The differences between train, test, and validation sets
can typically be explained by a few outliers. The values are
summarized on Table 1.

For the training data of Split 2, the MARD between model
prediction and experimental data is 5.78% and the median ARD
is 3.63%. For validation data, the MARD between model
prediction and Experimental data is 7.71% and themedian ARD
is 4.28%. For test data, the MARD between model prediction
and experimental data is 7.81% and the median ARD is 4.05%.
For species that are exclusively part of the validation set, the
MARD is 8.75% and the median ARD is 4.67%. For species that
are exclusively part of the test set, the MARD is 8.74% and the
Fig. 6 Predictions for selected species that are only part of the test
data to highlight the predictive capabilities of the model and the
underlying architecture. MARD shown next to the substance name. For
comparison, the MARD values reported for classical entropy scaling
with group contribution method26 are: 4.55% (hexane), 3.93% (hepta-
decane), 16.78% (hexan-1-ol).

Fig. 7 Test, validation and training data grouped by families. Orange lin

3584 | Digital Discovery, 2025, 4, 3578–3587
median ARD is 4.27%. Predictions for selected species that are
only part of the test data are shown in Fig. 6. The model and
more detailed results can be found on GitHub.59

A box plot showing the results for all available data grouped
by species can be found in Fig. 7. The family with the highest
median ARD is the naphtalenes, which are cyclic with several
rings, i.e., higher ARDs are expected. Other families with high
median ARDs contain highly branched or cyclic molecules that
are also not adequately represented by PC-SAFT parameters. On
the other hand, simple cyclic molecules such as 1,2-xylene (see
Fig. 6) and the components found in the family of other
alkylbenzenes, show good agreement with experimental results.
Species with atom types signicantly underrepresented in the
entire data set, for example iodine, were also found as outliers.
This nding indicates that PC-SAFT parameters exhibit specic
deciencies in the representation of polycyclic and highly
branched molecules.
7.3 Performance evaluation of DeepESNet architecture

7.3.1 Model comparison and dataset. The DeepESNet
architecture was evaluated against different baseline
approaches using 50/25(15)/25(15), 40/30(20)/30(20), and 20/
40(25)/40(25) splits. All trained models and implementation
code are publicly available.59 The comparative analysis included
three variants of the feed forward neural network, a modied
DeepESNet architecture lacking communication between the
two branch nets (from the reference GenDeepONet to the
second GenDeepONet block of the DeepESNet architecture),
and a DeepESNet architecture with trunk networks replaced by
polynomials. All feed forward models utilized PC-SAFT
es mark the median ARD of the respective family.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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parameters, molar mass, and temperature as base inputs, with
varying additional parameters: pressure, logarithmic pressure,
or residual entropy. The comparative analysis demonstrated
superior performance of the DeepESNet architecture across all
evaluated metrics (SI Fig. S6–S19).

7.3.2 Key ndings. The DeepESNet architecture showed
training stability and better extrapolation performance for
unknown species. This improvement is attributed to the
sequential, directed, and meaningful communication between
the networks of the multi-network framework. The modied
DeepESNet without inter-branch communication showed
intermediate performance, outperforming feed forward
approaches while remaining less reliable than the fully con-
nected architecture. Furthermore, replacing trunk networks
with polynomials produces slimmer models – with fewer
weights (13 078 on our study case) – that perform only slightly
worse than the full DeepESNet architecture. The polynomials
are of a very high order – for example, order 12 – which corre-
sponds to the magnitude of the number of features used in the
DeepESNet models. Although the high order is preferable, it can
have a negative effect on extrapolation behavior.

Among feed forwardmodels, performance ranked as follows:
entropy-based > density-based > logarithmic pressure >
pressure-based inputs, validating the efficacy of entropy scaling
approaches even in simpler architectures.

7.3.3 Data and computational efficiency. Using a much
smaller dataset to train the model, a 20/40(25)/40(25) split, i.e.,
using only 20% of available samples, the DeepESNet maintained
superior performance across all evaluation metrics. The degrada-
tion of performance with reduced training data was the smallest
for DeepESNet net. While the metrics between DeepESNet and
entropy feed forward are close for large training datasets, the
differences become apparent with small training datasets.

The DeepESNet architecture also achieved very good
performance with signicantly reduced computational
complexity. The optimal DeepESNet conguration (50/25(15)/
25(15) split) used 18 286 parameters compared to 50 945
parameters in the best-performing entropy-based feed forward
model. This represents a 64% reduction in model complexity.

7.3.4 Comparison to preliminary work. The preliminary
architecture31 was evaluated on smaller, more homogeneous
datasets (z600 species, fewer chemical families). It incorpo-
rated feed forward corrections to the Chapman–Enskog refer-
ence, requiring full state-point information (temperature and
density). This introduces overtting risks while maintaining the
limitations of feed forward approaches without enforcing
entropy scaling principles.

The current work shows superior performance on a more
challenging dataset and underwent a more thorough bench-
mark analysis, establishing the DeepESNet architecture as
a signicant advancement over the previous methodology and
other feed forward alternatives.
7.4 Further utilization options

In process simulators, evaluating the viscosity of a list of
substances at high frequency with low computational times is
© 2025 The Author(s). Published by the Royal Society of Chemistry
crucial. Consequently, parameters obtained from the branch
networks only require initialization at the start of a simulation,
whereas during the simulation only the small trunk nets need to
be called. As the inputs of trunk networks are one-dimensional,
they can be replaced by polynomials for additional speed-ups.
In both cases, either the full DeepESNet architecture or the
denoising architecture plus a polynomial tted to the denoised
viscosity (h*) can be used as model.

The models trained in this work rely on PC-SAFT parameters
obtained from SMILES strings with transformers from Winter
et al.53 As the model inputs are PC-SAFT parameters, the model
can be employed as a quasi-equation of state for viscosities or
retrained with alternative PC-SAFT parameter sets and different
experimental data. If alternative PC-SAFT parameter sets are
used, it is necessary to retrain the model with the respective
data, as the PC-SAFT parameters vary from set to set. We also
would like to emphasize that the PC-SAFT parameters from
Winter et al. are machine-generated and are therefore more
suitable for machine learning than sets based on individual
substance ts.

It is important to note that all of the possible uses illustrated
in this paper can be combined as desired in order to obtain
ideal models for the respective application.

8 Conclusions

In this work, a generalized entropy scaling (DeepESNet) archi-
tecture for viscosities was developed, implemented, and tested.
The generalized model consists of two linked generalized
DeepONets (GenDeepONet) architectures, with enhanced
predictive capabilities and simplied training compared to feed
forward neural networks. The DeepESNet architecture showed
training stability and better extrapolation performance for
unknown species compared to classical analytical entropy
scaling. In addition to the capacity for predicting the viscosities
of other substances, the model can also be utilized to obtain
highly accurate models of well-measured substances and
substance families, similarly to a substance-specic t in
analytical entropy scaling. Furthermore, simplied architec-
tures can be trained that are highly efficient in terms of
computing time. The wide range of potential applications of
this approach underscores its versatility and exibility, which
are direct consequences of the generalization of the entropy
scaling principle. This approach offers signicant potential to
address a broad spectrum of problems and applications.
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Data availability

Data for this article, including full implementation of the
models discussed in this work, are available at GitHub at
https://github.com/maxeck/deep-entropy-scaling.git (DOI:
https://doi.org/10.5281/zenodo.17419467).

Supplementary information: Further details on the ML
model, performance comparison, outlier detection, and
previous work. See DOI: https://doi.org/10.1039/d5dd00179j.
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