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Large language models (LLM) have demonstrated remarkable capabilities in chemistry, yet their
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ability to capture intrinsic chemistry remains uncertain. Within any familiar, chemically equivalent

representation family, rigorous chemical reasoning should be representation-invariant, yielding con-

sistent predictions across these representations. Here, we introduce the first systematic benchmark

to evaluate the consistency of LLMs across key chemistry tasks. We curated the benchmark using

paired representations of SMILES strings and IUPAC names. We find that the state-of-the-art general
LLMs exhibit strikingly low consistency rates (< 1%). Even after finetuning on our dataset, models
still generate inconsistent predictions. To address this, we incorporate a sequence-level symmetric
Kullback—Leibler (KL) divergence loss as a consistency regularizer. While this intervention improves
surface-level consistency, it fails to enhance accuracy, suggesting that consistency and accuracy are

orthogonal properties. These findings indicate that we must consider both consistency and accuracy

to properly assess LLMs' capabilities in scientific reasoning.

1 Introduction

Large language models (LLM) have rapidly become powerful tools
across scientific domains, including chemistry. They have demon-
strated impressive capabilities in tasks such as molecule design,
property prediction, and synthesis planningm‘@. In these applica-
tions, LLMs are typically trained on textual encodings of molecules,
often as sequences such as SMILES, the simplified molecular input
line entry system'Z, or [UPAC names, the standardized nomencla-
ture for chemicals®. Despite their success, a fundamental question
remains (Figure[I): Do LLMs truly understand the intrinsic chem-
istry of molecules (pink pathway), or are they merely exploiting
surface-level textual patterns (blue pathway)?

In principle, rigorous chemical reasoning should be independent
of how a molecule is represented. A knowledgeable chemist, or
an Al model with true chemical understanding, should draw the
same conclusions about a molecule whether given its 2D graph,
SMILES string, or IUPAC name. In other words, the representation
should not influence the reasoning process or the outcome. This
expectation aligns with the broader principle of self-consistency in
Al models, which requires that responses remain invariant under
semantics-preserving transformations of the input?.

However, if a model’s reasoning does depend on the chosen
representation, logically equivalent inputs may yield different
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Fig. 1 lllustration of how language models approach predictions for
chemistry tasks. It remains unclear whether their predictions rely on
surface-level patterns in molecular representations (blue pathway) or on
the intrinsic chemical properties (pink pathway) of the molecules.

outcomes. This issue has been documented in natural language
processing, where LLMs often produce contradictory responses
when the same question is phrased in different ways or when the
context is reworded. For instance, GPT-3 and GPT-4 exhibit poor
self-consistency on multi-step reasoning tasks, giving different
answers to re-framed but logically equivalent queries@.

A similar phenomenon has been observed in computer vision:
image classifiers can learn superficial cues, such as texture rather
than capturing the true shape of an object. As a result, a trivial
change in surface pattern can lead to entirely different predictions
for the same underlying object1?, These examples from language
and vision highlight a broader failure mode: when reasoning
hinges on how information is presented instead of its intrinsic
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meaning, the model’s reliability is compromised.

Despite the growing use of LLMs in chemistry, their consistency
across different molecular representations has not been systemati-
cally evaluated. To address this gap, we introduce a benchmark to
assess whether LLMs exhibit representation-invariant reasoning.
We curated a paired dataset of molecules with both SMILES and IU-
PAC representations, spanning multiple chemistry tasks, including
forward reaction prediction, retrosynthesis, and molecular prop-
erty prediction. By evaluating LLMs on each task using both input
formats, we can compute a consistency rate — the percentage of
cases where the model produces identical predictions for SMILES
and IUPAC representations. Our results show that state-of-the-
art general-purpose LLMs exhibit a low consistency rate (< 1%).
Even after finetuning on our paired dataset, the models continue
to suffer from inconsistency, suggesting that they rely more on
superficial text patterns than on the underlying chemistry.

Can this inconsistency be easily remedied? To explore this, we
investigated whether a simple training intervention could enforce
representation-invariant behavior. Specifically, we introduced a
sequence-level symmetric Kullback-Leibler (KL) divergence loss as
a consistency regularizer. This approach penalizes the model when
its output distributions differ for the same molecule presented in
different formats. While this regularization strategy led to mild
improvements in consistency, the gains were limited — models still
frequently produced diverging predictions depending on the input
format. Furthermore, this intervention did not improve accuracy.
The models became more likely to generate the same prediction for
a given molecule, regardless of representation, but not necessarily
the correct prediction. This suggests that consistency and accuracy
are orthogonal properties, and that we must consider both to
assess LLMSs’ capability in capturing intrinsic chemistry.

The persistence of inconsistency indicates a deeper, systematic
issue in how LLMs learn chemistry that cannot be easily fixed
with finetuning alone. Addressing this challenge will likely require
fundamental advances. More broadly, our findings highlight a
key requirement for Al-driven scientific reasoning: models should
respect the natural invariances of the domain to be reliable. By
rigorously benchmarking this consistency gap, we take a step
toward developing more trustworthy Al systems that reason based
on substance rather than surface patterns.

2 Experiments

2.1 Problem setup

We study three chemistry tasks — forward reaction prediction,
retrosynthesis, and property prediction — each formulated as a
conditional generation problem: given an input sequence x, predict
an output sequence y.

LLMs predict the output distribution Py (y|x), where 6 denotes
model parameters. The input molecules can be encoded in dif-
ferent formats (e.g., SMILES, IUPAC names), leading to different
output distributions, Py (y|xs) for SMILES and Qg (y|x;) for IUPAC.
We evaluate consistency by comparing these distributions to as-
sess whether models capture the intrinsic chemistry underlying
symbolic representations.

2| Journal Name, [year], [vol.], 1
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2.2 Evaluation metrics
We evaluate model performance using two key metrics:

Consistency measures how often a model produces identical
predictions for the same molecule when presented in different
formats (SMILES vs. IUPAC). For forward reaction prediction and
retrosynthesis: A prediction is considered consistent if the outputs
match for both input representations. For binary property predic-
tion: Consistency is measured as the proportion of cases where
classification remains the same. For numeric property prediction:
Consistency is quantified using the mean squared error (MSE)
between predictions from SMILES and IUPAC inputs.

To distinguish cross-representation alignment from chance-level
agreement, we report adjusted consistency, defined as the observed
consistency minus a random-consistency baseline. For forward
reaction prediction, retrosynthesis, and binary property prediction,
the baseline is the expected match rate between two independent
random predictions. For numeric property prediction, we sub-
tract the expected MSE between two random predictions. Unless
otherwise noted, all reported consistency values are adjusted.

Accuracy evaluates how closely model predictions align with the
ground truth. For forward reaction prediction and retrosynthesis:
accuracy is the percentage of exact matches between the predicted
and target outputs in each format. For binary property prediction:
accuracy is the percentage of correct classifications. For numeric
Property Prediction: accuracy is measured as the MSE between
predicted and ground truth.

Formal definitions and equations for both metrics are provided
in Appendix[A]

2.3 Evaluation of state-of-the-art LLMs
We evaluated the consistency and accuracy of state-of-the-art
general LLMs for forward reaction prediction. The models in-
clude GPT-4 GPT-401% ol-preview, ol-minil?, 03-mini%,
Claude 3 Opus® Llama 3.1 8B, and the instruction-tuned
LlaSMolyigeral -2- A test set of 300 chemical reactions was used.
We provided explicit instructions tailored to the input and output
molecular representations. For instance, when both the input and
output were in SMILES format, the instruction read: “Based on
the SMILES strings of reactants and reagents, predict the SMILES
string of the product. Please output the product directly.”

2.4 Finetuning LLMs with mapped SMILES & IUPAC data
To mitigate biases in pretrained data, we finetuned GPT-2, Mis-
tral 7B, and CodeT5 on carefully curated datasets where each
input molecule had a one-to-one mapped SMILES and IUPAC rep-
resentation. This setup isolates the impact of input format while
preserving underlying chemistry. To further assess the effect of
pretraining, we also finetuned a randomly initialized GPT-2 model.

For forward reaction prediction and retrosynthesis, models were
trained to generate either SMILES or IUPAC outputs with equal
probability, indicated by a flag (“S” for SMILES, “I” for IUPAC). All
models were optimized using cross-entropy loss.

We further examined the effect of model size by training four
GPT-2 variants (124M, 355M, 774M, and 1.5B parameters). To
estimate variability, we ran experiments with different random
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seeds. The training hyperparameters and implementation details
are provided in Appendix [B.1]and

2.5 Sequence-level KL divergence loss

To improve consistency across molecular representations, we in-
troduce a sequence-level KL divergence loss to minimize the di-
vergence between the probabilistic distributions generated from
SMILES and IUPAC inputs, Py (y|xs) and Qg (y|x1).

We consider both directions of the KL divergence, Dz (P||Q)
and DKL(QHP):

B <) log FOXS)
Dk (P||0) _)gpe(y‘ )1 ng(y|XI)

1)
Dk1(Q|IP) =}, Qp(ylxr)log %

yeYy

where Y is the set of all possible output sequences.

However, the sequence-level KL divergence is computationally
intractable. Therefore, we estimate the KL divergence using the
Monte-Carlo sampling method. Details of KL divergence loss can
be found in Appendix[C]

2.6 SMILES <« IUPAC translation

To study whether LLMs learn an internal mapping between SMILES
and IUPAC representations, we evaluated models on the SMILES
«+» IUPAC translation task. We used 03-mini as a representative
commercial LLM and GPT-2 small finetuned on forward reaction
prediction as a representative open-source baseline.

We also examined whether translation pretraining improves
downstream performance. Specifically, we first trained a GPT-
2 small model on a SMILES <+ IUPAC translation dataset, then
finetuned it on the forward reaction prediction task, with and
without the addition of KL divergence loss.

2.7 Data

We base our work on the SMolInstruct dataset, which is a large-
scale instruction-tuning dataset for chemistryl”. We used the
“Property Prediction”, “Chemical Reaction”, and “Name Conver-
sion: TUPAC to SMILES and SMILES to IUPAC” subsets. We used
the official training, validation, and test splits provided by the
SMollnstruct dataset. For evaluation, we uniformly sampled 300
examples when the test set contains more than 300 examples.

The original “Property Prediction” and “Chemical Reaction” sub-
sets use SMILES representation. We translated SMILES into IUPAC
to construct one-to-one mapped input datasets. For each molecule,
we first used PubChemPy18 a Python wrapper for the PubChem
PUG REST API, to retrieve its [UPAC name. If no I[UPAC name was
found, we used Chemical-Converters?, an open-source model
to translate SMILES into IUPAC. We validated the translation using
pyopsin, a Python wrapper for OPSINZ2,

The training datasets for the forward reaction prediction and
retrosynthesis both consist of 1M entries. For most models, we
used an 80k subset for finetuning. To evaluate the impact of
dataset size, we trained a GPT-2 model on the full dataset. We
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Fig. 2 Consistency (adjusted) and accuracy of forward reaction predic-
tions by state-of-the-art LLMs. Across all models, consistency remains
low. Most models exhibit higher accuracy for IUPAC inputs, except for
LlaSMolpistral, Which is instruction-tuned on a SMILES dataset. Darker
colors represent higher values, while lighter colors indicate lower values.

filtered the “Name Conversion” dataset by removing examples
with more than one molecule. The statistics of all datasets are
listed in Appendix Table [4]

3 Results and discussion

3.1 Evaluation of state-of-the-art LLMs

We evaluated the consistency and accuracy of forward reaction
prediction across seven state-of-the-art LLMs, focusing on their per-
formance when using SMILES versus IUPAC input representations.
The results revealed four key insights (Figure [2).

First, across all models, the adjusted consistency scores ranged
from 0% to 1%, revealing a poor alignment between SMILES and
IUPAC representations. The result indicates that LLMs struggle
to maintain consistent outputs when asked by different input
representations.

Second, LLMs without instruction tuning achieved higher accu-
racy for IUPAC inputs. This discrepancy is likely due to the training
data distribution, which tends to include more examples using
IUPAC21723 providing the models with a familiarity advantage for
this representation.

Third, models designed for reasoning, such as ol-preview,
demonstrated improved accuracy, but the increase in accuracy
did not lead to a comparable increase in consistency. This observa-
tion suggests that accuracy and consistency are orthogonal metrics.
We explored the orthogonality further in the discussion.

Finally, the instruction-tuned model, LlaSMolygra1, achieved
significantly higher accuracy with SMILES inputs, reflecting the
impact of its SMILES-specific training. However, this tuning did
not enhance accuracy with IUPAC inputs, indicating a lack of gen-
eralization between the two representations. This result highlights
a key limitation of current LLMs—they fail to develop an intrin-
sic understanding of the chemical equivalence between different
molecular representations.

3.2 Finetuning LLMs with mapped SMILES & IUPAC data

The state-of-the-art LLMs discussed earlier are not trained on one-
to-one mapped data, which may favor either IUPAC or SMILES
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Fig. 3 Consistency and accuracy of LLMs in (a)(c) forward reaction prediction and (b)(d) retrosynthesis after finetuning on one-to-one mapped data.
The finetuning of (c) and (d) has added a KL divergence loss. The overall consistency (red) and false consistency (blue) are overlaid. Most models are
finetuned on an 80k dataset subset, except for “GPT-2 full’ —a GPT-2 small model trained on the full 1M dataset. Error bars represent the standard

deviation across training runs with varying random seeds.

representation. To mitigate bias, we performed finetuning using a
one-to-one mapped dataset of SMILES and IUPAC representations,
ensuring that the representation format was the only variable.

We evaluated three architectures — GPT-2, Mistral 7B|Z|, and
CodeT5 small?® — on three tasks: forward reaction prediction,
retrosynthesis, and property prediction. For GPT-2, we further
varied the model size (small, medium (M), large (L), and extra-
large (XL)) to examine the impact of scaling. Additionally, we
compared performance using two training data sizes: 80k and 1M
data points. To assess the effects of pretraining, we also trained a
GPT-2 model with randomly initialized weights.

Performance was evaluated using two metrics: consistency and
accuracy. We used both overall and false consistency (cases where
SMILES and IUPAC inputs produce the same incorrect predictions),
which is critical for disentangling consistency from accuracy. Accu-
racy was measured separately for SMILES and IUPAC inputs. The
results are presented in Figure [3a and [3b} Tables[I]and 2] To pro-
vide context for our results, we compare the performance of our
models with state-of-the-art LLMs (Table[5). Our finetuned GPT-2
model achieves accuracy comparable to existing benchmarks.

Impact of model architectures. For forward reaction predic-
tion and retrosynthesis tasks, CodeT5 consistently outperformed
Mistral and GPT-2. Its encoder-decoder architecture likely con-
tributes to this by constructing a structured latent representation of
the input, enabling better transformation into the output space’2.
In contrast, the decoder-only architectures of GPT-2 and Mistral,

4| Journal Name, [year], [voI.],1

designed for autoregressive generation, may be less suited for
structured prediction tasks. Additionally, CodeT5’s Unicode-based
tokenizer may better preserve meaningful substrings in symbolic
domains like SMILES or IUPAC, compared to the byte-level tok-
enizers used by GPT-2 and Mistral.

For property prediction, however, the results vary across models
and tasks. The mixed results indicate that while certain architec-
tures, such as CodeT5’s encoder-decoder framework, may excel at
capturing structural patterns, decoder-only models, such as GPT-2
and Mistral, may generalize better for less complex tasks26.

Impact of model size. Scaling up the GPT-2 model from small to
XL showed no significant improvements in consistency or accuracy,
suggesting that simply increasing model size does not improve
performance or enhance the ability to generalize.

Impact of data size. For GPT-2, increasing the training dataset
size from 80k to 1M led to substantial improvements in both
consistency and accuracy for forward reaction prediction and ret-
rosynthesis. The increase in overall consistency aligns with the
improvement in accuracy, indicating that the larger dataset en-
hances the model’s ability to make correct predictions for both
SMILES and IUPAC inputs. However, the gap between overall
consistency and false consistency widened, suggesting that the
additional data results in limited improvement in false consistency.

Effects of pretraining. Models trained from randomly initial-
ized weights showed a slight decrease in consistency and accuracy
compared to their pretrained counterparts (Figure [6] Tables [6]
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(columns 7-10). Entries that improve with the addition of KL divergence loss are highlighted in bold. Error bars represent the standard deviation across
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training runs with varying random seeds. An upward arrow (1) indicates that higher values correspond to better performance.

Properties  Models

Performance (%) 1

Performance w/ KL (%) 1

Consist. Adj. Consist.  Acc. (S) Acc. () Consist. Adj. Consist.  Acc. (S) Acc. ()

GPT-2 83.6+1.1 26.9+1.1 83.6+1.7 81.0+2.1 91.5+18 34.8+18 86.2+0.9 82.0+1.1

BBBP Mistral 85.2+6.8 28.5+6.8 68.3+5.8 76.7+1.3 90.5+1.1 33.8+1.1 84.1+43 78.8+53
CodeT5 85.7+20 29.0+2.0 85.7+0.3 85.2+29 88.9+24 32.2+24 86.2+15 82.5+0.3

GPT-2 95.4+1.9 9.5+1.9 93.1+0.4 91.6+1.5 96.2+2.0 10.3+2.0 93.1+1.2 92.4+0.0

ClinTox Mistral 100+4.8 14.1+48 92.440.0 92.4+4.0 99.2+0.4 13.340.4 92.4+0.0 91.6+0.4
CodeT5  87.0+2.0 1.1+2.0 89.3+1.2 85.5+3.1 94.7+04 8.8+04 91.6+09 90.8+1.2

GPT-2 97.3+0.7 6.24+0.7 95.340.4 95.3+03 98.3+0.0 7.2+0.0 96.3+0.3 95.3+0.2

HIV Mistral 99.7+0.2 8.6+0.2 95.7+0.2 95.3+0.0 99.7+0.2 8.6+0.2 95.3+0.0 95.0+0.2
CodeT5 96.7+05 5.6+0.5 96.0+0.5 96.0+0.2 97.3+1.1 6.2+1.1 95.7+0.2 96.3+0.2

GPT-2 61.3+1.2 6.2+1.2 55.7+12 62.0+2.5 77.7+38 22.6+38 55.7+03 65.7+03

SIDER Mistral 98.3+0.8 43.240.8 65.0+3.5 66.0+0.2 96.7+1.3 41.6+13 64.7+3.6 63.3+1.5
CodeT5 71.3+43 16.2+43 60.7+2.8 60.7+1.0 76.7+59 21.6+5.9 62.3+13 61.7+12

Table 2 Consistency (raw and adjusted) and accuracy of LLMs in numeric property prediction after finetuning (columns 3—-6) and with KL divergence
loss (columns 7-10). Entries that improve with the addition of KL divergence loss are highlighted in bold. Error bars denote the standard deviation
across training runs with varying random seeds. A downward arrow ({) indicates that lower values correspond to better performance, and an upward

arrow (1) indicates that higher values correspond to better performance.

Performance (MSE)

Performance w/ KL (MSE)

Properties  Models Consist.], Adj.Consist.?  Acc. (S)) Acc. (D] Consist.], Adj.Consist.t  Acc. (S){ Acc. (D
GPT-2 4.3+0.5 5.1+0.5 1.5+0.1 3.340.6 2.7+03 6.7+0.3 1.6+0.3 3.1+01

ESOL Mistral 4.9+0.5 4.540.5 1.7+0.8 4.5+0.6 2.1+02 7.3+0.2 1.3+03 2.9+04
CodeT5 5.9+05 3.5+05 0.9+0.2 5.4+0.4 3.1+07 6.3+0.7 1.8+0.3 3.6+02
GPT-2 1.1+0.1 1.5+0.1 1.2+0.0 1.2+0.0 0.7+0.0 1.9+0.0 1.0+0.1 1.0+0.0

LIPO Mistral 0.9+0.2 1.7+02 1.5+0.2 1.2+0.0 0.5+0.1 2.1+0.1 1.2+0.0 1.1+0.0
CodeT5 1.0+0.2 1.6+0.2 1.0+0.0 0.9+0.1 1.0+0.0 1.6+0.0 1.1+0.0 1.0+0.1

[7). This suggests that pretraining data contains useful chemistry-
related information, which contributes to model’s performance.

3.3 Adding sequence-level KL divergence loss

In this section, we examined the impact of adding sequence-level
KL divergence loss during training on three models: GPT-2, Mistral
7B, and CodeT5, for forward reaction prediction, retrosynthesis,
and property prediction. The results are summarized in Figures
and [] Tables [6]and

Consistency improvements. Adding KL divergence loss led
to notable improvements in consistency across all models and
tasks, including randomly initialized GPT-2. For forward reaction
prediction and retrosynthesis, false consistency increased, and the
gap between overall and false consistency narrowed, contrasting
with the trends observed with increasing dataset size. These results
confirm that KL divergence loss enhances consistency by aligning
predictions across input representations.

Accuracy unchanged. Despite improvements in consistency, ac-
curacy remained largely unchanged across models and tasks. This
suggests that gains in consistency do not compromise accuracy but
also highlights the orthogonality of these two metrics — improving
one does not inherently lead to improvement in the other.

3.4 SMILES <« IUPAC translation
We used SMILES < IUPAC translation as an evaluation tool and
a pretraining strategy to study whether models develop internal
mappings across representations.

Translation for evaluation. We evaluated the translation abil-

ity of 03-mini and GPT-2. The accuracy of 03-mini is near ran-
dom (0.3%), suggesting no learned alignment between represen-
tations. GPT-2 finetuned on forward reaction prediction achieves
low translation accuracy (2-8%). KL regularization improves
translation accuracy to 4-15%, indicating that KL helps enforce
cross-representation alignment.

Translation for pretraining We pretrained a GPT-2 model on
SMILES <« IUPAC translation with an accuracy of 45.3% for [IUPAC
— SMILES and 12.7% for SMILES — IUPAC. The pretraining
improves consistency of forward reaction prediction from 14.7%
to 23.0%. The consistency gains diminish when KL regularization
is applied. However, the translation pretraining does not improve
accuracy of forward reaction prediction (Figure[7).

The results show that both KL regularization and translation pre-
training enhance surface-level consistency across representations,
but do not improve the model’s intrinsic chemical reasoning.

4 Analysis

4.1 Consistency transition with KL divergence Loss

To explore how KL divergence loss improves consistency, we ana-
lyzed forward reaction prediction as a representative task, focusing
on reactions with consistency transitions. Out of 300 reactions in
the test set, 46 reactions transitioned from inconsistent to consis-
tent predictions after adding KL divergence loss. These reactions
were categorized into five groups (Figure [4] Scheme [1} and Ap-

pendix Schemes [2l10):

1. Complicated reactions: We group reactions that require a
good understanding of chemistry and substantial manipula-
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Complicated reactions
Addition

Condensation

Cyclization
13.0%

Fig. 4 Summary of reactions that transition from inconsistent without KL divergence loss to consistent with KL divergence loss. (Left) Reactions
are categorized into five groups: complicated reactions, position inconsistencies, minor mistakes, reaction-step inconsistencies, and reaction-type
inconsistencies. (Right) Complicated reactions are further subdivided into six types: redox reactions, coupling reactions, cyclization reactions, addition

reactions, and condensation reactions.

tion of symbolic representations as “complicated reactions”.
For instance, hydroquinone oxidation by cerium(IV) ammo-
nium nitrate requires recognizing the hydroquinone structure
and the oxidant. Besides, the product’s SMILES string dif-
fers from the reactant’s SMILES string in multiple positions
(Scheme Entry 1). More than half of the reactions (24/46)
fall into this category.

These reactions span five types: redox, coupling, cyclization,
addition, and condensation. The distribution is shown in
Figure[4 Additional examples are listed in Schemes

2. Position inconsistency: The second-largest group consists
of reactions whose predicted products are inconsistent in
reaction sites or the positions of functional groups between
SMILES and IUPAC inputs (Schemes [I]and [7).

3. Reaction type inconsistency: SMILES and IUPAC inputs lead
to predicted products from different reaction types (Schemes

[[and[8).

4. Reaction step inconsistency: SMILES and IUPAC inputs result
in predicted products involving different numbers of reaction
steps (Schemes|[T]and [9).

5. Minor inconsistency: Reactions with minor errors in either
SMILES or IUPAC representations, such as mislabeling a ni-
trogen atom as carbon (Schemes|[I]and [10).

The reverse transition — from consistent to inconsistent predic-
tions — follows a similar pattern. Out of 300 reactions, 6 reactions
became inconsistent with KL divergence loss: 3 complicated reac-
tions, and 3 position inconsistency (Schemes[11]and [12).

For complicated reactions, models often make inconsistent and
incorrect predictions without KL divergence loss. With KL diver-
gence loss, the predictions become consistent but still incorrect.
In contrast, for reactions where the model makes correct predic-
tions in one representation but minor mistakes in the other, KL

6| Journal Name, [year], [vol.], 1

W w/oKL » &
21 o wk
y=0.08x+4.91, ° °
18{ — RZ=001 \'\o
y=-0.29%+27.63, ° )
2 164 R? =0.07 L4
3 °
£ 14
>
9
g
& 12 4
5
z
o
(] 10 4
5 @
n E_E
E gn L
61 ]
28 29 30 31 2 33 34 E5

Accuracy (SMILES) %

Fig. 5 Consistency (false) versus accuracy of the GPT-2 model in for-
ward reaction prediction, without KL divergence loss (blue) and with KL
divergence loss (red) across different random seeds in training. A linear
fit of the data demonstrates minimal correlation between consistency and
accuracy.

divergence loss helps align predictions, enabling correct outputs
for both representations.

The results suggest that KL divergence loss effectively addresses
surface-level inconsistencies, but it falls short of achieving both
accuracy and consistency. Advanced techniques will be required
to capture the deeper intrinsic chemistry and achieve the ultimate
goal of accurate and consistent predictions across representations.

4.2 Orthogonality between consistency and accuracy
To explicitly analyze the relationship between consistency and
accuracy, we studied the forward reaction prediction using GPT-2
small models with various random seeds. We used false consis-
tency instead of overall consistency to exclude cases where both
representations produce correct predictions to provide a clear
measure of consistency.

We plotted consistency versus accuracy for models finetuned
with and without KL divergence loss (Figure [5). In both cases,
there was minimal correlation between false consistency and accu-
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Scheme 1 Examples of reactions transitioning from inconsistent to consistent predictions after adding KL divergence loss. Incorrect fragments are
highlighted in red. For correct predictions, only the label “correct” is written without drawing the chemical structure.

Reactants & reagents Target product

Predicted product (w/o KL) Predicted product (w/ KL)

SMILES IUPAC
Complicated: HO\%T\ Ce(NHe)(NOsls fi/ )L P P HOL_
: HONY NS
Redox Y ‘04\%" YK NK/OH 'H/i"“ o N°
Ho N0 Ho N on
N B R
AL X CC N o (\Tm
Coupling & \C’} s N m o L
0 v, 7 oW L )
&z~ N
a
Zy o o o o NP Y AN o
Cyclization QLI PR SN (7 N I
KotBu Hol HiO
e
{ _
DQ{A\/L/LD’\/TUKN‘*J\? > ”/ \\// J\ ”\/0 o ﬂ/% & <:\*<ow‘ﬂ< o.
Addition o = \ / N \/\(0 NT SO /= AN TN N R NN
oMo ~ j:j/ N\: ° \OLJ u“l u]u /ru~o> = \OLJ o
~ P
Oy
) e - ;
N N\ AR N
e “o o ¢ 0 0O O O
Cond ti N~ g A ‘\j\(\ AN
ondensation [/ ‘ :/\,J/ o (ﬁ (IN]/\O > / /\//N\‘ﬁo’\/ 7 P ‘ Aoji L)
L Nat 'S Y o SN e k&j ¢
Q icw H0 N7
DAY
a a Ho o~
5 2 TR
- ~ N
Position f \N, o )8 Correct CI Correct
Wr [W ij wf/Lo ey C]: o N
Q Q NP A~
oY Jen:
ol M / o
Minor KOEH ¥ ]\\//\]\ZN Ny :IN/“ Correct E\E; b Correct
O O o
NN (T
{ ~
Step Q’ ¢ NHy CI ! Correct e <Q Correct
o o
o o
~ ~
@ K [ % .
! N o AN A oH NN o
Type \/\N/\ v o KI Ijj c‘:l:j/ »Yf‘m, ~ Correct
FIF FhF

racy, suggesting their orthogonality. Linear regression of the data
yielded slopes of —0.29 and 0.08 for the results with and without
KL divergence loss, respectively, which further demonstrates that
improvements in accuracy do not directly lead to better consis-
tency. These findings highlight the need for strategies to enhance
both metrics independently.

5 Conclusion

This work explores whether LLMs truly understand the intrinsic
chemistry of molecules. We evaluated the consistency of LLMs
across chemistry tasks using different molecular representations,
such as SMILES strings and TUPAC names. Our findings reveal
that LLMs exhibit low consistency between the representations,
even when trained on carefully curated one-to-one mapped data.
Incorporating sequence-level KL divergence loss improved surface-
level consistency by aligning predictions, but did not enable the
models to capture or use deeper intrinsic chemical properties.
Further analysis hinted at the possibility of orthogonality between
consistency and accuracy, suggesting that improvements in one do
not inherently lead to enhancements in the other.

These findings underscore the limitations of current LLM ar-
chitectures and the pressing need for advanced models capable

of scientific understanding and reasoning. In particular, we find
it necessary for such an advanced model to readily incorporate
prior knowledge of target domains, such as chemistry in this case,
similarly to graph neural networks and other geometric deep learn-
ing approaches?Z. Such advances are crucial for achieving both
accurate and consistent predictions in chemistry tasks.
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The code is available at https://github.com/bingyandscience/
consistency. The data are available at https://doi.org/10,
5281/zenodo . 14430369. The finetuned GPT-2 models for forward
reaction prediction, with and without KL divergence loss, are
available on the Hugging Face Hub at https://huggingface.co/

bing-yan/consistency.
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A Formal definitions of evaluation metrics

Consistency measures how often the model generates identical
outputs when provided with different molecular representations
as input.

1. Forward reaction prediction and retrosynthesis: For a given
input format, the model is tested to generate outputs in either
SMILES and IUPAC representations. For SMILES input (xg),
the model generates SMILES (§¢°) or IUPAC outputs (§;°); for
IUPAC input (x1), the model generates SMILES (y 1) or IUPAC
output ((F{")).

The outputs from different input representations “match” if

identical:
MATCHs = 1[j¢ = 93]
2
MATCH; = ]l[)’)‘fs =)’/‘fl]

1[-] is the indicator function which returns 1 if the condition
inside is true and O otherwise. The consistency score for a
single entry is the average of SMILES and IUPAC matches. For
a dataset of N entries, the overall consistency is calculated
as:

1 N

Consist(overall) = N Y (MATCHg ; + MATCH ;)

3)
1

2

HMz

(Jl ¥t =gl + 10 =314l

We also compute the false consistency, defined as the consis-
tency of entries that produce incorrect predictions from both
SMILES and IUPAC inputs. For M entries:

. 1 &
Consist(false) = o Z(]l ygsl =9 )+ ]l[y“fsl = yfll]) 4)

where 95'; # s 1,95 ; # ¥s,1, 91 # Y1i» 91 # ¥4 and ys ;. yr; are
target outputs.

We compute adjusted consistency to measure consistency be-
yond chance. Let p(y) be the empirical label distribution.
Then the expected chance-level consistency is:

Consist(rand) = ) p(y)? 5)
S

The adjusted consistency is then:

Consist(adj) = Consist(overall) — Consist(rand)  (6)

2. Binary property prediction: The predictions are denoted as
¥ and $ for SMILES and IUPAC inputs, respectively. The
consistency for a dataset with N entries is:

. . _ 1 N S AN
Consist(binary) = N i:Zl(Jl[y,» =3 ™

The expected random agreement baseline is:

Consist(rand) = p(O)2 +p(1)2 (8)
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where p(0) and p(1) are the empirical probabilities of pre-
dicting 0 or 1. The adjusted consistency is:

Consist(adj) = Consist(binary) — Consist(rand) 9@

. Numeric property prediction: consistency is measured as the

mean squared error (MSE) between the predictions from
SMILES and IUPAC inputs:

2

Consist(numeric) = Z (7 — (10)

We define the random consistency baseline as:
Consist(rand) = 2 - Var()) 11

where § denotes the set of all predictions from both input
representations. The adjusted consistency is the improvement
over this random baseline:

Consist(adj) = Consist(rand) — Consist(numeric)  (12)

A.1 Accuracy
Accuracy evaluates how closely the model’s predictions align with
the ground truth.

1. Forward reaction prediction and retrosynthesis: For SMILES

input, accuracy is calculated as the percentage of exact
matches between the predicted SMILES output (y $) and
the target SMILES output (ys); for IUPAC input, accuracy is
calculated between the predicted IUPAC output (yI‘) and the
target IUPAC output (yp).

N
Accuracy(SMILES) = %;(1[9;5,1' =ys.])

(13)
Accuracy(IUPAC) = 1 i(l i = yri])
N Li Li

i

. Binary property prediction: accuracy is calculated as the

percentage of predictions same to the ground-truth y.

SO
Accuracy(SMILES) = ;mui =)
(14)
1 N
Accuracy(IUPAC) = Z(]l[“"l =)

. Numeric property prediction: accuracy is measured as the

MSE between the predicted outputs and the ground truth

values.
N

1
Accuracy(SMILES) = Y 7 —wi)?
i=1
(15)

N
Accuracy(IUPAC) = Z y, —yz
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Table 3 Hyperparameters used to finetune LLMs: learning rate (LR),
batch size (BSZ), accumulation (Acc.), number of epochs, and training
time on one H100 GPU.

Model LR BSZ Acc. Epochs Time (h)
GPT-2 small le-4 32 1 20 2.28
GPT-2 medium 1le-4 16 1 20 6.24
GPT-2 large le-4 8 1 20 15.57
GPT-2 XL le-4 8 2 20 24.91
CodeT5 small le4 32 1 20 2.57
Mistral 7B le-5 8 2 10 25.25

Table 4 Statistics of the datasets used to finetune LLMs.

Task #Train #Valid  #Test
Forward prediction (full) 963,567 1,956 300
Forward prediction (subset) 76,379 1,956 300
Retrosynthesis (full) 932,616 2,004 300
Retrosynthesis (subset) 76,471 2,004 300
Property - BBBP 1,521 188 189
Property - ClinTox 1,063 127 131
Property - HIV 32,864 4,104 300
Property - SIDER 21,800 2,540 300
Property - ESOL 888 111 112
Property - LIPO 3,358 385 300
SMILES < IUPAC 274,053 1,397 300

B Implementation details

B.1 Software and hardware
In this work, we use Python 3.10. The major Python packages we
used are Transformers 4.43.4, PyTorch 2.1.0, RDKit 2023.3.3.

We train models using Nvidia A100 or H100 GPUs. We use one
GPU for GPT-2 small, GPT-2 medium, GPT-2 large, and CodeT5
small models, and two GPUs for GPT-2 XL and Mistral 7B models.

B.2 Hyperparameters

We train all models using the AdamW optimizer2822, We use
random seeds of 42, 123, 999, 1234, 2024, 2718, 4321, 5678,
8080, 31415, and 98765. The other hyperparameters for each
model are summarized in Table 3]

B.3 Input and output examples
We provide examples of input and output sequences for finetuning
and evaluation.

1. Evaluation of state-of-the-art LLMs: We provide a simple
instruction specifying the input and output representation in
the inquiry. The molecules are separated by comma (“.”) For
example:

Input in SMILES: “Based on the SMILES strings of reactants
and reagents, predict the SMILES string of the product. Please
output the product directly.

<SMILES> COclccc2c(c1)C(=0)clecccc1CC2.[BH4-].[OH-
].[Na+].CCO <SMILES>"

Target output in SMILES: “COclccc2c(c1)C(O)clecceclCC2”

Input in IUPAC: “Based on the IUPAC names of reactants and
reagents, predict the IUPAC name of the product. Please

10 | Journal Name, [year], [vol.], 1
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output the product directly.

<IUPAC> 5-methoxytricyclo[9.4.0.03,8]pentadeca-
1(15),3(8),4,6,11,13-hexaen-2-one.boranuide.
hydroxide.sodium(1+).ethanol <IUPAC>"

Target output in IUPAC:
“5-methoxytricyclo[9.4.0.03,8]pentadeca-
1(15),3(8),4,6,11,13-hexaen-2-0l”

2. Finetuning of LLMs: We append a flag at the end of the input
sequence to specify the output representation, “S” for SMILES
and “I” for IUPAC. For example:

Input in SMILES expecting output in SMILES:
“COclcec2e(c1)C(=0)cleecccc1CC2.[BH4-].[OH-
].[Na+].CCO.S”

Target in SMILES: “COclccc2c(c1)C(O)clcecce1CC2”

Input in SMILES expecting output in IUPAC:
“COclcec2e(c1)C(=0)clecceclCC2.[BH4-].[OH-
].[Na+].CCO.I”

Target in IUPAC: “5-methoxytricyclo[9.4.0.03,8]pentadeca-
1(15),3(8),4,6,11,13-hexaen-2-0l”

C KL divergence loss

Here we show the loss function for the sequence-level KL diver-
gence: Dk (P||Q) and Dk (Q||P). We use Dk (P||Q) as an exam-
ple to demonstrate the calculation.

The gradient of Dk (P||Q) is (we simplify Py (y|xs) as Pg(y), and
Qo (¥|x1) as Qg (v)):

VoDg1(P||0) };VG Py(y 10gQ ((yy)))
(16)
B o P2 Po(y)
—ygvs(Pa(y))l € 50 00) + Py (Y)Ve(Qo(y))
Using the trick Vg (Pg(y)) = Py (y) Vg (log(Ps(y))):
Po(y) Po(y)
VaDia(PI0) = X, o) aloa(Ay(y)leg {75+ o) Vi g2 )
— By VallogPa(9)10g 220 + Volog 220
7

Therefore, we can define the KL loss corresponding to the KL
divergence Dk (P||Q):

Py(y) Py(y)
Qo (y) Qo (y)

However, the expectation is untractable, so we use a Monte
Carlo to estimate it by sampling M sequences {y!,...,y"} from
Py(y) and pass them through the models Py (y) and Qg(y):

Po(y™)
Qo (y™)

KL loss =K, p,(y)[log Py (y) log .detach +log ] (18

P9 (ym) }
Qo (y™)
(19)

KL loss(PQ) ~

.detach +log

Z [log Pg(y™)log
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Similarly, we can calculate the loss for the KL divergence of
Qg (y) from Py(y) (Dkr(Q]||P)) and the Monte Carlo estimation by
sampling N sequences {y',...,y"} from Qg (y):

Qo (y)
Py(y)

Qo (y)
Po(y)

KL loss(QP) = E,..g,(y)[log Qs () log .detach +log ]
1

~ L Q0(y")
N

Py (") ]
(20)
During training, we added a weight to the KL divergence loss.
We screened values ranging from 0.001 to 10.0 and found that a

weight of 1.0 gave the best consistency for all tasks and models.

n Q9 (yn)
1 [log Qg (y")log Po (™)

M=

.detach +log

n

D Dataset

Here we list the statistics of the datasets used in this work in Table
There are three finetuning tasks: forward reaction prediction,
retrosynthesis, and property prediction. These datasets are all one-
to-one mapped between SMILES and IUPAC inputs. Furthermore,
we have included the SMILES < IUPAC translation dataset to
evaluate and pretrain the LLMs.

E Comparison with existing models

To contextualize our results, we present a comparison with state-
of-the-art LLMs on chemistry tasks (Table . The table includes
performance from our GPT-2 Small model finetuned on the full
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datasets, the best-performing model (LlaSMolyis41), and the aver-
age performance of the top four models. Full results can be found
in''Z, We use the accuracy of SMILES inputs for our GPT-2 model
as used in the benchmarks.

F Reinitialized model

We trained a randomly initialized GPT-2 model using the same
finetuning setup as its pretrained counterpart. This allows us
to isolate the contribution of pretraining data. The results are
presented in Figure[6] Tables[6]and

G Consistency transition

Here we list all of the reactions that transit either from inconsis-
tent to consistent predictions, or from consistent to inconsistent
predictions.

G.1 Consistent-to-inconsistent transitions

Here we list 46 reactions that transition from inconsistent to con-
sistent predictions between SMILES and IUPAC inputs after adding
KL divergence loss in Schemes

G.2 Inconsistent-to-consistent transitions

Here we list 6 reactions that transition from consistent to inconsis-
tent predictions between SMILES and IUPAC inputs after adding
KL divergence loss in Schemes
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Table 5 Comparison of our results to state-of-the-art LLMs on chemistry tasks. We report the performance of the finetuned GPT-2 small model and the
best-performing model, LIaSMolpistral. Additionally, we provide the average performance of the top four models for a broader comparison. Complete

results are available inZ.

Task Accuracy (% 1 or RMSE )
Ours (GPT-2)  Best (LlaSMolyjisira;)  Top 4 models averaged
Forward reaction prediction (%) 57.7 63.3 53.9
Retrosynthesis (%) 29.7 32.9 26.7
Property - BBBP (%) 86.2 74.6 70.4
Property - ClinTox (%) 93.1 93.1 92.9
Property - HIV (%) 96.3 96.7 96.7
Property - Sider (%) 55.7 70.7 69.9
Property - ESOL (RMSE) 1.150 1.036 2.215
Property - LIPO (RMSE) 0.995 1.010 1.191
(a) Forward reaction prediction (b) Retro-synthesis prediction
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w
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"
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N ow
308 8
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=
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GPT-2 GPT-2 KL Reinitialize ~Reinitialize KL
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w
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N
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mEm Accuracy (IUPAC)  WEE Accuracy (SMILES)

GPT-2 GPT-2 KL Reinitialize ~Reinitialize KL
Models

Fig. 6 Consistency and accuracy of pretrained vs reinitialized GPT-2 in (a) forward reaction prediction and (b) retrosynthesis prediction with the
addition of KL divergence loss. Overall consistency (red) and false consistency (blue) are overlaid. All models are finetuned on an 80k dataset subset.
Error bars represent the standard deviation across training runs with varying random seeds.

40

Forward reaction prediction

30
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Consistency %
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= Accuracy (1U
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Accuracy %
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PAC)  mWEE Accuracy (SMILES)

GPT-2 Trans

Models

Trans KL

Fig. 7 Consistency and accuracy of GPT-2 in forward reaction prediction. All models are finetuned on an 80k dataset subset. “Trans” denotes a
pretraining on SMILES < IUPAC. “KL" refers to the addition of KL divergence loss during finetuning.

Table 6 Consistency (raw and adjusted) and accuracy of reinitialized GPT-2 in binary property prediction after finetuning (columns 3-6) and with KL
divergence loss (columns 7-10). Entries with improvements following the addition of KL divergence loss are highlighted in bold. Error bars represent the
standard deviation across training runs with varying random seeds. An upward arrow (1) indicates that higher values correspond to better performance.

Properties ~ Models

Performance (%) 1

Performance w/ KL (%) T

Consist. Adj. Consist.  Acc. (S) Acc. () Consist. Adj. Consist.  Acc. (S) Acc. (I)
BBBP GPT-2 83.1+0.8 26.4+0.8 81.5+0.6 78.9+1.3 92.1+15 35.4+15 82.5+05 85.2+14
ClinTox GPT-2 99.2+42.2 13.3+22 92.4+0.2 93.2+13 100.0+23 14.1+23 92.4+0.9 92.4+0.1
HIV GPT-2 97.7+0.8 6.6+0.8 94.3+03 95.7+0.3 99.3+0.1 8.2+0.1 94.7+0.4 95.3+0.1
SIDER GPT-2 77.3+1.5 22.2+15 64.3+1.1 57.7+1.9 84.3+32 29.2+32 65.3+05 62.0+0.2
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Table 7 Consistency (raw and adjusted) and accuracy of reinitialized GPT-2 in numeric property prediction after finetuning (columns 3-6) and with KL
divergence loss (columns 7-10). Entries with improvements after the addition of KL divergence loss are highlighted in bold. Error bars denote the
standard deviation across training runs with varying random seeds. A downward arrow (|) indicates that lower values correspond to better performance,
and an upward arrow (1) indicates that higher values correspond to better performance..

Properties Model ] _ Perf(_)rmance (MSE) ] Pgrform.ance w/ KL (MSE)

Consist.| Adj.Consist.f  Acc. (S)) Acc. (D] Consist. Adj.Consist.t  Acc. (S)| Acc. (D]
ESOL GPT-2 3.4+0.1 6.0+0.1 1.8+0.1 2.84+0.4 2.9+03 6.5+03 1.1+01 3.640.2
LIPO GPT-2 1.6+0.2 1.0+0.2 1.3+0.1 1.3+0.1 0.7+0.0 1.9+0.0 1.4+0.1 1.1+01

Scheme 2 Complicated redox reactions that transition from inconsistent to consistent predictions after adding KL divergence loss
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Scheme 3 Complicated coupling reactions that transition from inconsistent to consistent predictions after adding KL divergence loss
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Scheme 4 Complicated cyclization reactions that transition from inconsistent to consistent predictions after adding KL divergence loss
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Scheme 5 Complicated addition reactions that transition from

inconsistent to consistent predictions after adding KL divergence loss
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Scheme 6 Complicated condensation reactions that transition from inconsistent to consistent predictions after adding KL divergence loss
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Scheme 7 Position-inconsistent reactions that transition from inconsistent to consistent predictions after adding KL divergence loss
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Scheme 8 Reaction type-inconsistent reactions that transition from inconsistent to consistent predictions after adding KL divergence loss
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Scheme 9 Reaction step-inconsistent reactions that transition from inconsistent to consistent predictions after adding KL divergence loss
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Scheme 10 Minor inconsistent reactions that transition from inconsistent to consistent predictions after adding KL divergence loss
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Scheme 11 Complicated reactions that transition from consistent to inconsistent predictions after adding KL divergence loss
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Scheme 12 Position inconsistent reactions that transition from consistent to inconsistent predictions after adding KL divergence loss
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Data availability statement

The code of model training and evaluation is available at https://github.com/bingyan4science/consistency.
The data are available at https://doi.org/10.5281/zenodo.14430369. The finetuned GPT-2 models for
forward reaction prediction, with and without KL divergence loss, are available on the Hugging Face Hub
at https://huggingface.co/bing-yan/consistency.
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