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ions of rules describing
exceptional materials identified with a multi-
objective optimization of subgroups†

Lucas Foppa * and Matthias Scheffler

Useful materials are often statistically exceptional and they might be overlooked by artificial intelligence (AI)

models that attempt to describe all materials simultaneously. These global models perform well for the

majority of materials, but they do not necessarily capture the useful ones. Subgroup discovery (SGD)

identifies descriptions of subsets of materials associated with exceptional values of a chosen property.

Thus, SGD can better capture exceptional materials compared to widely used AI techniques. Previous

studies focused on the SG that maximizes an objective function establishing a tradeoff between the SG

size and the exceptionality of the distribution of property values within the SG. However, this

optimization does not give a unique solution, but many SGs typically have similar objective-function

values. Here, we identify a “Pareto region” of SGD solutions presenting a multitude of size-exceptionality

tradeoffs. The approach is demonstrated by learning descriptions of perovskites with a high bulk modulus.
1 Introduction

Materials serve as the cornerstone of critical economic sectors
and they play a pivotal role in driving the transition to
a sustainable economy and to renewable energy.1,2 Thus, there
is an urgent need for the discovery of appropriate and more
efficient materials. However, the materials that are useful for
a given application are oen statistically exceptional. These
materials might present, for instance, extremely high values of
materials properties compared to other known compounds.
Exceptional materials are very few compared to the practically
innite space of possible materials, which remains largely
unknown.3,4 Articial intelligence (AI) has been increasingly
applied to identify correlations and patterns in data inmaterials
science and engineering.5–8 Indeed, AI might describe materials
properties and functions governed by intricate mechanisms
better than previous theoretical and computational approaches
because it targets correlations and does not assume a single
underlying physical model.9 Thus, AI holds the potential to
accelerate the exploration of the immense materials space,
leading to the discovery of new materials. However, capturing
exceptional materials is a challenging task for most widely used
AI methods.
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AI methods oen fail in describing the exceptional materials
rst because the training data are typically not well distributed
over (or representative of) the huge, unknown materials space.
Therefore, interpolation schemes are unable to generalize to
potentially interesting portions of the materials space that were
disregarded in the training data.10–14 This issue, which might be
referred to as an “out of distribution” issue, can be alleviated by
AI approaches that can better extrapolate compared to methods
that are inherently interpolative.12,15 Besides, AI model training
can be combined with the systematic acquisition of new data
corresponding to portions of the materials space that were not
covered by the initial training data using sequential-learning
approaches such as active learning or Bayesian
optimization.16–19 However, the efficiency of sequential learning
oen relies on the quality of uncertainty estimates, which is in
some cases problematic.20–22 A second key reason that can
explain the inability of current AI approaches to capture
exceptional materials is the focus on global models. These
models attempt to describe all materials simultaneously. They
are obtained by optimizing an objective (loss) function that
reects the average performance, e.g., the mean prediction
error. Thus, global models are designed to perform well in
average for the majority of (uninteresting) materials, but do not
necessarily perform well for exceptional ones.23 Objective
functions can be adapted to give more importance to the
description of specic property values, e.g., high values.24

However, different groups of materials could operate according
to different mechanisms. This might render a global descrip-
tion not only inaccurate, but also inappropriate.

Alternative AI methods for materials discovery include
strategies based on similarity among materials25,26 or among
Digital Discovery
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their constituents, e.g., ions in solids,27 and the subgroup-
discovery (SGD)28,29 approach. In particular, SGD tackles the
limitations of global descriptions and it has the potential to
better capture exceptional materials. Indeed, SGD has been
recently put forward in materials science.30–35 SGD is a super-
vised, descriptive rule-induction36 technique and it identies
subsets of a dataset associated with exceptional values of
a target quantity of interest, for instance a materials property or
performance indicator. Crucially, SGD identies these subsets
(SGs) of data along with the descriptions of these subsets,
referred to as rules. The SGD analysis starts with the choice of
many features that relate to possibly relevant mechanisms
governing the target materials property. Then, SGD creates
a number of statements about the features that are satised
only for a part of the dataset. These statements are, for instance,
inequalities constraining the values of the features. Finally,
a search algorithm37–39 identies the combination of typically
few statements that results in a SG that maximizes an objective
function. This objective (or quality) function is a product of the
relative SG size and the so-called utility function. The relative SG
size is the fraction of data points that satises the statements
describing the SG. The higher the relative SG size, the more
general the description. The utility function quanties the
Fig. 1 Subgroup discovery (SGD) identifies subsets of materials that are
interest. The subsets, or subgroups (SGs), are described by rules that typic
governing the target, out of many initially offered features. The subgroup
the (relative) SG size and the utility function. These two terms reflect the
studies focused on the one SG that maximizes the objective function,
containing, e.g., SGl, SG

*
k, and SGm, and presenting multiple tradeoffs be

Digital Discovery
“exceptionality” of the distribution of target values in the SG
with respect to the entire dataset. The positive mean shi is one
example of a utility function oen utilized when the target
values of interest are high. This utility function measures the
shi of the mean value of the target in the SG with respect to the
mean value of the target in the entire dataset. The higher the
value of the positive-mean-shi utility function, the higher the
target values in the identied SG. Thus, such a utility function
favors the identication of SGs associated with high target
values. We will discuss this utility function in more detail in the
Results section. We will also discuss a second example of the
utility function, namely the Jensen–Shannon divergence
between the distributions of target values in the SG and in the
entire dataset.

SG rules typically constrain the values of only a few key
features, out of the many initially offered ones. Thus, SGD
learns a (low-dimensional) representation. The SGD approach is
illustrated in Fig. 1 (top). The aim of SGD is to nd descriptions
of portions of the materials space that are exceptional. Thus, it
accepts that the mechanisms governing the materials' proper-
ties might vary across the materials space and that not all of
these mechanisms need to be described for the discovery of
useful materials. Indeed, SGD was used to identify rules
outstanding with respect to a certain materials property, the target of
ally constrain key features characterizing thematerials andmechanisms
s are obtained by maximizing an objective function that is a product of
generality and the exceptionality of the SG, respectively. Top: Previous
denoted as SG*

k. Bottom: In this work, we identify a collection of SGs
tween the SG size and the utility function.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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associated with high-performance materials even based on
datasets dominated by low-performance situations.35 Addition-
ally, SGD is an exploratory analysis that can identify unexpected
patterns and anomalies. We note that SGD is signicantly
different from clustering techniques because it does not aim at
describing the entire dataset. Moreover, SGD is a supervised
approach, and it explicitly identies rules indicating why the
data points belong to the SG. Clustering is an unsupervised
technique that groups data points into clusters based on simi-
larity, without considering any target quantity. Besides, clus-
tering does not explicitly identify why the data points are
clustered together.

Previous SGD studies30–33 focused on the identication of the
SG (and rules) that maximizes the objective function, as illus-
trated in Fig. 1 (top). However, the SG that maximizes the
objective function does not reect all possible tradeoffs between
the relative SG size and utility function that could be relevant for
a given application. Additionally, the denitions of some utility
functions assume that the distributions of target values in the
entire dataset and in the SG are appropriately characterized by
one single summary-statistics value, such as the mean value in
the case of the positive-mean-shi utility function. However,
this assumption may be questioned in materials science, as the
distributions can signicantly deviate from the normal distri-
bution. Indeed, distributions related to materials can be skewed
or even bimodal. Finally, utility functions oen assume that the
summary-statistics values appropriately reect the huge,
unknown materials space, e.g., the mean value in the dataset is
a good approximation for the mean value in the entire materials
space. This assumption does not hold if the datasets are created
according to certain selection biases. Thus, the datasets can be
highly unbalanced compared to the materials space.

In this manuscript, we introduce a multi-objective optimi-
zation of SGs that identies coherent collections of SGs and
rules in the “Pareto region” of optimal SGD solutions. These
SGs present a multitude of tradeoffs between the relative SG
size and the utility function, the two conicting objectives in
SGD. This concept is schematically shown in Fig. 1 (bottom).
The multi-objective optimization of SGs is demonstrated for
the identication of ABO3 perovskites with a high bulk
modulus as an example of a target. We compare the SGs ob-
tained with two different utility functions, the positive mean
shi and the cumulative Jensen–Shannon divergence. The
latter does not make assumptions on the shape of the distri-
butions of target values. We also analyze the sensitivity of the
results with respect to the offered set of features. Finally, we
exploit the rules trained on a dataset of 504 single ABO3

perovskites to identify high-bulk-modulus perovskites out of
a candidate space of 12 096 single ABO3 and double A2BB0O6

perovskites. Our results show that rules focusing on perov-
skites with a high bulk modulus do not necessarily correspond
to the single SG which maximizes the objective function, but
they can be systematically derived with the Pareto-region
concept. These rules identify perovskites of the candidate
space that present the bulk modulus up to 13% higher than the
highest value of the training set.
© 2025 The Author(s). Published by the Royal Society of Chemistry
2 Methods
2.1 Subgroup discovery

The SGD approach is based on a dataset of materials, which we
denote as ~P. This dataset is part of the huge materials space, the
full population, P. Each material of the full population is
associated with a set of features, namely physical parameters
that are potentially related to a target quantity of interest y, for
instance, a materials property. The target of interest is only
known for the materials in the dataset. SGD starts by system-
atically constructing statements about the features. Each
statement is only veried for a part of the materials in the
dataset. Thus, the statements select part of the dataset. The
construction of these statements follows different approaches
depending on the type of feature: categorical, ordinal, or metric.
For categorical features, i.e., when the feature values are
a discrete set with no relevant order, all possible statements of
the form f= ci are constructed, where ci are the categories in the
dataset. For ordinal features, i.e., when the feature values
contain a set of discrete and ordered values, all possible
inequality constraints such as f $ zi and f # zi are generated,
where zi represents the integer values in the dataset. For metric
features, i.e., when the feature values are from a continuous
ordered scale, statements similar to those of the ordinal case
are constructed, i.e., f$ ni and f# ni. In this case, however, one
cannot simply use all possible ni values, but instead has to nd
a small computationally feasible subset of ni values. This is
accomplished with the aid of k-means clustering. First, the
clustering algorithm is applied to identify k + 1 values repre-
senting the center of clusters corresponding to range of values
for each of the features in the dataset. Then, the arithmetic
means between the centers of two neighboring clusters are
taken as possible ni. Thus, the possible ni values are closer to
each other when the concentration of data is higher. In this
work, we use k = 10. Further details on the construction of
statements and on the choice of k are discussed elsewhere.30,40

Then, SGD uses a search algorithm, for instance Monte Carlo-
based37,38 or branch-and-bound,39 to identify conjunctions of
statements constructed with the “AND” operator (^), that result
in SGs that maximize an objective (quality) function Q of the
form

Q
�
SG; ~P

� ¼
 
sðSGÞ
s
�
~P
�
!a�

u
�
SG; ~P

��b
: (1)

Here, s(SG) and s(~P) are the sizes of the SG and of the dataset ~P,
respectively, i.e., the number of data points that satisfy the
statements dening the SG and the number of data points in
the entire dataset. The ratio between the size of the SG and the
size of the dataset, s(SG)/s(~P), is referred to as the relative SG
size. u(SG, ~P) is the utility function describing how exceptional
the distribution of the target in the SG is compared to the entire
dataset. The utility function is chosen according to the question
to be addressed, and there are many possibilities.31 The positive
shi of the mean value of the target in the SG compared to the
mean value of the target in the entire dataset and the Jensen–
Shannon divergence between the distribution of target values in
Digital Discovery
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the SG and the distribution of target values in the entire data-
set41 are two examples of utility functions that we will consider
in this work. Finally, a and b are tunable parameters controlling
the tradeoff between the relative SG size, i.e., the generality of
the description, and the utility function, i.e., the exceptionality
of the description. Usually, a= b = 1 or b= 1 − a, with a ˛ [0.1,
0.9]. The Monte Carlo search algorithm37,38 randomly generates
conjunctions of the previously generated statements with

probability proportional to
sðSGÞ
sð~PÞ . Then, an opportunistic

pruning algorithm renes these conjunctions by removing
statements that result in the increase of Q(SG, ~P) values. The
iterative removal of statements leads to the maximization of the
objective function of eqn (1). We note that SG search algorithms
such as the branch-and-bound approach39 are more systematic
than the stochastic Monte Carlo algorithm. However, the
computational cost of the branch-and-bound approach
increases more rapidly with the number of statements
compared to the cost of the Monte Carlo search. Finally, it
should be noted that optimizing the SGD objective function
over the full set of possible conjunctions of statements about
the data is an NP-hard combinatorial optimization problem and
that SG searches are extensive but not exhaustive. Thus, there is
no guarantee that all possible SGs will be identied in the
Pareto front of SGD solutions. In this work, we used the SGD
algorithm implemented in the realkd version 0.7.2. A Monte
Carlo-based SG search algorithm37,38 was used with 50 000 seeds
for the initialization.

The inputs to the SGD analysis are the datasets containing
a target quantity of interest (e.g., a materials property) and the
features that characterize the materials. Additionally, one has to
choose an appropriate quality function, which determines the
desired distribution of target values in the SGs. The outputs are
the subsets of data (SGs) and the rules (statements) that
describe these subsets of data. These rules typically depend only
on key features, out of all initially offered features. In analogy to
genes in biology, these key features might be called materials
genes,9 as they correlate with the mechanisms governing the
materials properties. The rules can be exploited to efficiently
identify the few exceptional materials in the huge materials
space P, for which the target property is unknown.
2.2 Approach for identifying the Pareto region of SGD
solutions

In order to identify the pursued coherent collections of SGs with
multiple generality-exceptionality tradeoffs, we rst run the
SGD algorithm using the objective function of eqn (1) with a =

b = 1. Thus, relative SG size and the utility function are given
the same importance. Then, we collect a number of SGD solu-
tions identied by this algorithm that display high objective-
function values. Among these top-ranked SGD solutions, we
identify a Pareto front with respect to the two objectives relative
SG size and the utility function. In multi-objective optimization,
a Pareto front is the set of solutions for which no single objec-
tive can be improved without deteriorating at least one other
objective. Thus, the solutions in the Pareto front reect an
Digital Discovery
optimal tradeoff between competing objectives. To ensure that
no interesting SGD solution is le out, we included in our
analysis not only solutions that are part of the Pareto front but
also solutions within a xed threshold distance (in this work
equal to 0.01) to the Pareto front in the relative SG size-utility
function space, i.e., solutions which are near the Pareto front.
We refer to the solutions at the Pareto front plus the solutions
near the Pareto front as the Pareto region. The denition of
a Pareto region via a xed distance to the Pareto front ensures
that all SGD solutions of the Pareto region have objective-
function values within the range determined by the chosen
threshold distance. However, this approach is sensitive to the
form of the Pareto front and the distribution of SGD solutions in
the Pareto front. This issue can be alleviated by dening the
Pareto region based on subsequent Pareto fronts. This alter-
native approach to dene the Pareto region is discussed in
detail and compared with the distance-based approach in the
ESI.†

3 Results and discussion
3.1 Identication of perovskites with a high bulk modulus

The identication of coherent collections of SGs and the
usefulness of our approach will be demonstrated for the
learning of rules describing the bulk modulus (B0) of ABO3

perovskites. More specically, the problem that we will tackle is
the identication of materials that exhibit a high bulk modulus.
The bulk modulus quanties the resistance of the material to
compression and it correlates with the materials' hardness. We
will use SGD to identify rules based on basic physical parame-
ters which describe subsets of materials presenting a high bulk
modulus. Thus, the bulk modulus is the target of our SGD
analysis. The rules obtained by SGD using a training dataset of
504 materials will then be used to identify promising materials
with a high bulk modulus from a pool of 12 096 candidate
materials. Perovskites are a promising materials class42,43 for
energy-related applications such as photovoltaics and
catalysis44–46 and they have been the subject of a number of AI
and machine-learning studies.47–51

The dataset52 used to train the SG rules contains 504 perov-
skites composed of A elements from the alkali, alkaline-earth,
and scandium groups and lanthanides. B elements include
transition metals and main-group elements such as bismuth,
antimony, and germanium. The choice of A and B elements
reects common elements reported in perovskites.44–46 We only
consider the cubic, highly symmetric perovskite structure in our
dataset, which is oen only stable at high temperatures. Thus,
our analysis focuses on diversity of the chemical elements
entering the material rather than on the diversity of structures.
However, it is straightforward to extend the SGD approach to
other, less symmetric crystal structures. We used 24 features
characterizing the perovskites (Table 1). Two of the features are
properties of the solid perovskite materials (denoted S), the
equilibrium lattice constant (a0) and the cohesive energy (E0).
The equilibrium lattice constant is the only structural degree of
freedom of the cubic structure. The cohesive energy corre-
sponds to the energy required to atomize the materials' crystal.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Features used to characterize the ABO3 perovskites in the SGD analysis

Type Name Symbol Unit

Sa Equilibrium lattice constantd a0 Å
Sa Cohesive energyde E0 eV per atom
Ab Radii of the valence-s orbitals of the A and B neutral atomsd rs,A and rs,B Å
Ab Radii of the valence-s orbitals of the A and B +1 cationsd rcats,A and rcats,B Å
Ab Radii of the highest-occupied orbitals of A and B neutral atomsd rval,A and rval,B Å
Ab Radii of the highest-occupied orbitals of the A and B +1 cationsd rcatval,A and rcatval,B Å
Ab Electron affinity of the A and B atomsd EAA and EAB eV
Ab Ionization potential of the A and B atomsd IPA and IPB eV
Ab Electronegativity of the A and B atomsd ENA and ENB eV
Ab Kohn–Sham single-particle eigenvalue of the highest-occupied orbital of the A and B atomsd 3H,A and 3H,B eV
Ab Kohn–Sham single-particle eigenvalue of the lowest-unoccupied orbital of the A and B atomsd 3L,A and 3L,B eV
Ab Atomic numbers of A and B elements ZA and ZB ℤ
Cc Expected oxidation states of the elements A and B in the perovskite formulaf nA and nB ℤ

a Properties of the solid material. b Properties of free atoms of elements constituting the material. c Properties of the composition of the material.
d Evaluated using DFT-PBEsol. e Energy needed per atom to atomize the crystal. f Dened based on the periodic-table group of the A element and on
the charge neutrality of the ABO3 composition, i.e., nA + nB = 6.
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Ten of the features are atomic properties of free atoms of the
elements A or B (denoted A), such as orbital radii, ionization
potential, and electronegativity. Finally, we included two
features that depend on the composition of the material
(denoted C), the expected oxidation states of A and B elements
in the compound (nA and nB, respectively). The bulk modulus
and the features (except the atomic numbers of A and B, nA and
nB) were calculated using density-functional theory (DFT) with
the PBEsol exchange-correlation functional. The bulk modulus
is evaluated by tting the Birch–Murnaghan equation of state to
a series of energies of the crystal calculated using structures that
present slightly larger or smaller volumes than the equilibrium
volume. Further calculation details are provided elsewhere.52

We note that some of the features in Table 1 are correlated with
each other. This is not a limitation for SGD. However, the
presence of correlated features might result in similar SGs
dened by slightly different rules.

3.1.1 Collection of SG rules obtained with the positive-
mean-shi utility function. We start by analyzing the results
obtained with the positive-mean-shi utility function, dened
as

u
�
SG; ~P

� ¼ yðSGÞ � y
�
~P
�

ymax

�
~P
�� y

�
~P
� : (2)

Here, �y(SG) and �y(~P) are the mean values of the distribution of
the target in the SG and in the entire dataset and ymax(~P) is the
maximum value that the target assumes in the dataset. In our
application, the target is the bulk modulus and ymax(~P) =

1.49 eV Å−3 for the ScMnO3 perovskite. The utility function in
eqn (2) requests that the values of the target within the SG are
high with respect to the mean value of the target in the dataset.
It assumes that the distributions of target values in the SG and
in the entire dataset are properly described by the mean
values.

The 5000 SGs with the highest objective-function values
identied in the analysis using the positive-mean-shi utility
© 2025 The Author(s). Published by the Royal Society of Chemistry
function are shown as grey points in Fig. 2(A). The Pareto region
is shown in blue in this plot: the 60 and 49 SGs belonging to the
Pareto front and to the near-Pareto-front region are displayed in
dark and light blue, respectively. This plot shows, in orange, the
SG that maximizes the objective function, denoted as SGm*

55 . The
curve corresponding to the constant value of QðSGm*

55 ; ~PÞ is
shown as a dashed orange line. Note that we assign the i indices
to the SGs of the Pareto region SGm

i according to increasing
values of relative SG size. The star in SGm*

55 indicates that this is
the SG associated with the maximum objective-function value.
The Pareto region contains many SGs with objective-function
values close to the maximum at relative SG sizes in the range
[0.4, 0.6]. Conversely, SGs in the Pareto region with relative sizes
lower than 0.4 and higher than 0.6 present relatively lower
objective-function values compared to the maximum value.

The Pareto-region concept leads to the identication of not
one, but a collection of 109 SGs presenting multiple generality-
exceptionality tradeoffs. However, it is unclear how to choose
which of these SGs should be considered for a detailed analysis
of physical insights or for materials discovery in larger candi-
date materials spaces. Many of the SGs of the Pareto region
might be similar to each other and they might contain redun-
dant information. In order to assess the variability of the SG
rules of the Pareto region and to facilitate further analysis of
these rules, we established a measure of similarity between SGs
and used it to identify clusters of SGs containing similar SGs.53

This analysis is described in detail in the ESI.† In summary, the
similarity is assessed using Jaccard indices. These indices
consider that the similarity between two SGs is proportional to
the overlap of their elements, i.e., to the number of data points
that satisfy the rules dening both SGs. Thus, this similarity will
be high between SG rules that result in a similar selection of
materials, even though the rules themselves might be different,
e.g., due to correlated key features or due to different thresh-
olds. To obtain the clusters, we applied agglomerative hierar-
chical clustering.54
Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00174a


Fig. 2 Collections of SGs describing perovskites with a high bulkmodulus (B0) obtained using themulti-objective optimization approach and the
positive-mean-shift utility function. The results for the full feature set containing the 24 features in Table 1 are shown. (A) The 5000 SGD solutions
with high values of the objective function are shown in grey and the Pareto region of SGD solutions is shown in blue. The SG associated with the
maximum value of the objective function is shown in orange. (B) The 109 SGs of the Pareto region are clustered according to their similarity via
hierarchical clustering. Each cluster is shown in a different color. (C) Distributions of B0 in the entire training dataset and in some examples of SGs
of the Pareto region. The rules associated with these SGs are shown in Table 2. (D) SG rules for some examples of SGs of the Pareto region that
constrain the values of the equilibrium lattice constant (a0) and cohesive energy (E0).

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
Ju

ne
 2

02
5.

 D
ow

nl
oa

de
d 

on
 7

/2
9/

20
25

 9
:4

4:
46

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
The results of the similarity analysis and clustering of the
Pareto region in Fig. 2(A) for a chosen number of four clusters
are displayed in Fig. 2(B). In this gure, the four identied
clusters are displayed in four different colors. In general, the
clusters of SGs correspond to different ranges of relative sizes.
The cluster shown in orange, for instance, can be related to the
SGD solutions with objective-function values close to the
maximum in the relative size range of [0.4, 0.6]. Interestingly,
a small cluster containing only three SGs is identied at low
relative sizes. This indicates that these three SG rules are unique
Digital Discovery
compared to the remaining ones. We note that the SGs of the
Pareto region are spread in a continuous manner in the utility-
function vs. relative-size plot in Fig. 2(A). The aim of the clus-
tering technique is not to identify clusters of SGs that preexist in
the utility-function vs. relative-size space, but rather to partition
the pool of SGs of the Pareto region into clusters containing
similar rules. This partitioning aims to facilitate the analysis of
the many SGD solutions identied with the multi-objective-
optimization approach.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Characteristics of some of the SGs identified with the Pareto-region approach. Information on all other SGs of the Pareto region is
provided in the ESI

Features Indexb Q(SG, ~P) u(SG, ~P) s(SG)/s(~P) �y(SG)c ystd(SG)
d Rules

S, A, and Ca SGm
1 0.16 0.67 0.24 1.36 0.07 E0 > 7.48 eV per atom ^ rcats,B # 1.44 Å

S, A, and Ca SGm
6 0.19 0.63 0.31 1.34 0.08 E0 > 7.48 eV per atom ^ a0 # 4.00 Å

S, A, and Ca SGm*
55 0.25 0.53 0.48 1.28 0.12 E0 $ 6.41 eV per atom ^ a0 # 4.07 Å ^ rcats,B $ 0.94 Å

S, A, and Ca SGm
61 0.25 0.45 0.55 1.27 0.13 E0 $ 6.41 eV per atom ^ a0 # 4.07 Å

S, A, and Ca SGm
100 0.20 0.26 0.77 1.19 0.18 E0 $ 5.42 eV per atom ^ a0 # 4.16 Å

S, A, and Ca SGJS
5 0.06 0.61 0.10 1.42 0.04 −4.55 # 3L,B < −4.33 eV ^ a0 < 3.85 Å ^ nB < 3.5

S, A, and Ca SGJS
96 0.10 0.45 0.22 1.37 0.06 rval,A # 1.51 Å ^ EAB$−1.84 eV ^ rcats,B # 1.50 Å ^ rval,B # 1.14 Å

^ E0 > 7.11 eV per atom
S, A, and Ca

SGJS*
129

0.11 0.29 0.39 1.32 0.09 EAB # 0.31 eV ^ 3L,B # −3.50 eV ^ rcats,B $ 1.09 Å ^ E0 $ 6.77 eV
per atom

S, A, and Ca SGJS
169 0.09 0.16 0.55 1.27 0.13 E0 $ 6.41 eV per atom ^ a0 # 4.07 Å

A and Ca
SGJS

0

1
0.05 0.67 0.08 1.43 0.03 EAB $ −1.03 eV ^ −4.55 # 3L,B < −4.33 eV ^ nB < 4

A and Ca
SGJS

0

4
0.05 0.67 0.08 1.43 0.04 IPB # 7.82 eV ^ 3L,B < −4.33 eV ^ rval,B < 0.68 Å ^ nB < 3.5

A and Ca
SGJS

0

5
0.06 0.65 0.09 1.42 0.04 rval,A < 1.28 Å ^ EAB # 0.31 eV ^ ZB < 36 ^ rs,B $ 1.26 Å

A and Ca
SGJS

0

51
0.10 0.43 0.22 1.37 0.06 −5.11 # 3L,B # −3.50 eV ^ rcatval,B # 0.94 Å ^ nA > 2

A and Ca
SGJS

0*
66

0.10 0.35 0.30 1.34 0.08 rcatval,A # 1.38 Å ^ 3L,B # −3.49 eV ^ rval,B # 1.14 Å ^ nA $ 1.5

A and Ca
SGJS

0

179
0.06 0.12 0.52 1.26 0.15 ENA $ 2.76 eV ^ ENB # 4.85 eV ^ rs,B $ 1.09 Å

a S, A, and C correspond to solid, atomic, and compositional, respectively (see Table 1). b The star indicates the SG with the maximum value of
objective (quality) function Q obtained with a given utility function and feature set. The superscripts “m” and “JS” correspond to the utility
functions positive mean shi and cumulative Jensen–Shannon divergence, respectively. c Mean value of the target within the SG, in eV Å−3.
d Standard deviation of the target within the SG, in eV Å−3.
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We analyzed in more detail one SG per identied cluster.
SGm

1 , SG
m
6 , SGm*

55 , and SGm
100 are examples of SGs belonging to the

purple, red, orange, and magenta clusters, respectively. The
distributions of bulk-modulus values in the entire dataset and
in the mentioned SGs are shown in Fig. 2(C). As the relative SG
size decreases, the SGs of the Pareto region have higher mean
bulk-modulus values and narrower bulk-modulus distributions.
For the goal of identifying perovskites with an extremely high
bulkmodulus, the rules associated with SGs with low relative SG
size and high mean bulk-modulus values, e.g., associated with
SGm

1 or SGm
6 , are useful, since they provide a more focused

description. Such SGs would not be detected based solely on the
maximization of the objective function.

Next, we analyzed the rules dening SGm
1 , SG

m
6 , SGm*

55 , and
SGm

100, shown in Table 2. The rules constrain the values of 3 key
features, out of the 24 offered features: the equilibrium lattice
constant (a0), cohesive energy (E0), and the radius of valence-s
orbitals of +1 cations (cat) of the B element (rcats,B). In partic-
ular, the a0 and E0 values are always constrained to maximum
and minimum thresholds, respectively. Thus, perovskites with
a short lattice constant and high cohesive energy tend to
present a high bulk modulus. This reects the inverse rela-
tionship of the bulk modulus with the lattice constant and the
direct relationship of the bulk modulus with cohesive energy.52

This analysis illustrates how physical insights can be obtained
from the key features identied by SGD.

The rules associated with SGm
6 and SGm

100 are presented in the
coordinates of the key parameters a0 and E0 in Fig. 2(D). We also
present, in this gure, the rules associated with SGm

61, as an
example of an SG that belongs to the orange cluster in Fig. 2(B)
© 2025 The Author(s). Published by the Royal Society of Chemistry
whose rules only depend on a0 and E0 – see Table 2. In this plot,
the bulk-modulus values are indicated by the grey scale color of
the circles. The gure shows graphically that a more focused
description is achieved as the utility-function values increase
(and the SG size decreases) within the Pareto region. This gure
also highlights that more focused rules might arise at the
expense of missing some high-bulk-modulus materials. For
instance, some dark-grey circles corresponding to high-bulk-
modulus materials are outside the limits of SGm

6 . Thus, these
high-bulk-modulus materials are not captured by SGm

6 .
To understand which high-bulk-modulus materials might be

“missed” in SGm
6 as an example of an SG with a high utility

function, we veried whether the 5%materials with the highest
bulk moduli of the dataset are contained in SGm

6 . These are 26
perovskites presenting bulk moduli higher than 1.43 eV Å−3 and
composed of the B elements chromium, manganese, iron,
cobalt, and tungsten, and the A elements scandium, praseo-
dymium, neodymium, cerium, promethium, yttrium,
samarium, and beryllium. 24 of these 26 materials satisfy the
rules associated with SGm

6 . The two high-bulk-modulus mate-
rials that do not satisfy the rules of SGm

6 are BeMnO3 and
BeWO3, with bulk moduli of 1.43 and 1.45 eV Å−3, respectively.
These two materials present the lowest cohesive energies (6.63
and 7.47 eV per atom, respectively) among the 26 materials.
They are shown as lime crosses in Fig. 2(D). Thus, they do not
satisfy the inequality E0 > 7.48 eV per atom, which is part of the
rules of SGm

6 (Table 2). The bulk modulus for these two mate-
rials could be governed by a different mechanism compared to
the materials that are part of SGm

6 . We will analyze this
Digital Discovery
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Fig. 3 Collections of SGs describing perovskites with a high bulk
modulus using the cumulative formulation of the Jensen–Shannon
divergence as the utility function. The 5000 SGD solutions with high
values of the objective function are shown in grey and the Pareto
region is displayed in blue. The SG associated with the maximum value
of the objective function is shown in orange or red. The two panels
show the results for two different sets of features. (A) Results for the full
feature set containing the 24 features in Table 1. (B) Results for the
reduced feature set containing 22 atomic and compositional features
(see Table 1). The rules associated with the SGs indicated in the figure
are shown in Table 2.
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unexpected pattern in more detail in a dedicated subsection of
the manuscript (see below).

We evaluated the variability of the identied SGs with
respect to the dataset size by training the SGD with random
selections of 75%, 50%, and 25% of the dataset. Even though
the similarity between the SG identied based on the entire
dataset and the SG identied based on a fraction of the dataset
(measured using the Jaccard similarity index) decreases with
decreasing data-set size, the SGs obtained with only 25% of the
dataset and presenting large relative sizes are signicantly
similar compared to the SGs obtained with the entire dataset.
The SGs obtained with 25% of the dataset and presenting low
relative sizes, however, are signicantly different from the SGs
Digital Discovery
obtained with such relative sizes using the entire dataset. Thus,
for the problem under consideration, SGD is efficient with up to
50% less data. More details of this analysis can be found in the
ESI.†

3.1.2 Collection of SG rules obtained with the cumulative-
Jensen–Shannon-divergence utility function. We now turn our
attention to the results obtained with a utility function based on
the Jensen–Shannon divergence. The information-theoretic
Jensen–Shannon divergence (DJS) is a symmetrized version of
the Kullback–Leibler divergence (DKL), also known as relative
entropy. The Jensen–Shannon divergence between the discrete
distributions R and S is dened as

DJSðR;SÞ ¼ 1

2
DKLðR;MÞ þ 1

2
DKLðS;MÞ

¼ 1

2

X
x˛c

RðxÞlog
�
RðxÞ
MðxÞ

�
þ 1

2

X
x˛c

SðxÞlog
�
SðxÞ
MðxÞ

�
;

(3)

where MðxÞ ¼ RðxÞ þ SðxÞ
2

, and c indicates the sample space.

The Jensen–Shannon divergence measures the dissimilarity
between two distributions. It assumes small values for similar
distributions and increases as the distributions are shied with
respect to each other. The value of the Jensen–Shannon diver-
gence also increases if two distributions have different
narrownesses. In our SGD analysis, the cumulative formulation
of the Jensen–Shannon divergence,41 denoted DcJS, is used as
the utility function. The divergence is evaluated between the
distribution of the target values in the SG and the distribution
of the target values in the entire dataset. This utility function
favors the selection of SGs presenting distributions of target
values that are shied and narrower compared to the distribu-
tion of the entire dataset. However, it does not explicitly require
the values of the target in the SG to be high or low. Moreover,
the cumulative Jensen–Shannon divergence does not make
assumptions on the shape of the distributions. Thus, it can
handle distributions that deviate signicantly from a Gaussian
more efficiently than utility functions based on the mean shi.
We stress that other measures of similarity between distribu-
tions such as the Bhattacharyya distance can be used as utility
functions in SGD.

The results obtained with the cumulative Jensen–Shannon-
divergence utility function and with the full set of the 24
features are shown in Fig. 3(A) and in Table 2. The Pareto front
and region contain 101 and 189 SGs, respectively. The SGs
identied in the Pareto region contain materials with a high
bulk modulus and they present narrow distributions of target
values. We analyzed the selectors dening some of the SGs of
this Pareto region. The rules associated with SGJS

5 , SG
JS
96, SG

JS*
129,

and SGJS
169 constrain the values of the key features: the equilib-

rium lattice constant (a0), cohesive energy (E0), the radius of
valence-s orbitals of +1 cations (cat) of the B element (rcats,B), the
Kohn–Sham single-particle eigenvalue of the lowest-unoccupied
orbital of the B atom (3L,B), the expected oxidation state of B in
the perovskite (nB), the radius of the highest-occupied orbital of
A and B neutral atoms (rval,A and rval,B, respectively), and the
electron affinity of the element B (EAB). Therefore, the rules
highlight that the lattice constant and the cohesive energy are
© 2025 The Author(s). Published by the Royal Society of Chemistry
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important parameters for describing high-bulk-modulus mate-
rials, along with atomic and compositional properties that
mainly reect the nature of the B element of the ABO3

perovskites.
Let us now compare the results obtained with the positive-

mean-shi with the results obtained with the cumulative-Jen-
sen–Shannon-divergence utility functions. The Pareto region of
SGs identied based on the positive-mean-shi utility function
is associated with relative SG sizes in the approximate range
[0.20, 0.80] (Fig. 2(A)). The range of relative SG sizes in the
Pareto region identied for the case of the cumulative-Jensen–
Shannon-divergence utility function is, in turn, ca. [0.10, 0.70]
(Fig. 3(A)). Thus, optimal SGs with relative SG sizes below 0.20,
i.e., SGs that contain less than 20% of the dataset, could only be
obtained with the utility function based on the Jensen–Shannon
divergence. These SGs with small size are associated with
distributions of bulk-modulus values that are narrower and
more shied towards high values than those associated with the
SGs identied with the positive-mean-shi utility function. For
instance, the materials selected in SGJS

5 and SGJS
96 present stan-

dard deviations of bulk-modulus values of 0.04 and 0.06 eV Å−3,
respectively. The mean values of the bulk modulus among the
perovskites in these two SGs are 1.42 and 1.37 eV Å−3, respec-
tively. None of the SGs identied with the positive mean shi
present higher mean values or lower standard deviation values
(see Table 2). Thus, the rules corresponding to small SGs
identied with the cumulative Jensen–Shannon divergence are
more focused on the high bulk modulus. This can be related
to the fact that only this utility function explicitly favors narrow
SGs.

The SG rules identied using the cumulative-Jensen–
Shannon-divergence utility function contain, in general, more
statements and more features compared to the SG rules iden-
tied using the positive mean shi (Table 2). However, we note
that the equilibrium lattice constant, the cohesive energy, and
the radii of B atoms are identied as key features by both
approaches. The cumulative Jensen–Shannon-divergence utility
function provides more focused rules for the present dataset
and it is thus better than the positive-mean-shi for the purpose
of identifying exceptional perovskites with very high bulk
moduli. However, we stress that this utility function does not
explicitly require low or high values of the target. This is
a disadvantage compared to the positive-mean-shi utility
function. Dispersion-corrected utility functions simultaneously
take into account positive or negative shis of the mean (or of
the medians) of target values and the narrowness of the distri-
butions of targets in the SG. These utility functions were
proposed in order to simultaneously incorporate the require-
ments for a shi in a specic direction and for small
narrowness.31

3.1.3 SG rules obtained with a reduced set of features. So
far, we have used the entire set of the 24 features in Table 1 to
obtain SGs of perovskites with a high bulk modulus. SGD
identied the equilibrium lattice constant (a0) and the cohesive
energy (E0) among the key features required for describing high-
bulk-modulus materials. However, in order to calculate a0 and
E0 using DFT, the geometry of the materials needs to be
© 2025 The Author(s). Published by the Royal Society of Chemistry
optimized. This optimization corresponds to the majority of the
work needed to calculate the bulk modulus itself. Thus, from
the standpoint of exploring a large materials space, a0 and E0
are impractical (expensive) features, since one needs to evaluate
these quantities for the materials under consideration in order
to apply the SG rules. In order to obtain SG rules that describe
high-bulk-modulus perovskites based on easily accessible
features, we have also considered a reduced set of 22 features by
excluding a0 and E0. Thus, we only considered the atomic and
compositional features. In addition to this crucial cost aspect,
this analysis also illustrates how the SG rules change when the
feature set changes and, in particular, when important features
are not included in SGD. The identication of appropriate rules
based solely on atomic and compositional features is
a remarkable challenge for SGD, since the relationship between
these basic features and the bulk modulus is signicantly more
indirect compared to the relationship between the bulk
modulus and a0 or E0.52

We identied the Pareto region of SGs using the reduced set
of 22 features and the cumulative Jensen–Shannon-divergence
utility function. The SGs identied with this approach are
denoted as SGJS

0
, where 0 indicates the reduced feature set. The

results are shown in Fig. 3(B) and in Table 2. The identied
Pareto front and near the Pareto front contain 66 and 136 SGs,
respectively. The maximum value of the objective function ob-
tained with the reduced feature set is slightly lower than that
obtained with the full feature set (0.10 and 0.11, respectively, see
orange and red dashed lines in Fig. 3(A) and (B)). This indicates
that the quality of the SG description is lower with the reduced
feature set. The SG identied based on the reduced set of
features that displays the maximum objective function, denoted
as SGJS

0*
66 in Table 2 and Fig. 3(B), contains 150materials. This SG

contains fewer materials than the SG identied with all the
features SGJS*

129 (197 materials). However, the overlap between
the two SGs is signicant. Indeed, 125 materials are present in
both SGs. Thus, there is a high similarity between both
descriptions.

SG rules focusing on high-bulk-modulus materials in the low
relative size portion of the Pareto region were also obtained with
this reduced feature set. For instance, SGJS

0

1 , SGJS
0

4 , and SGJS
0

5

display mean bulk-modulus values of 1.43, 1.43, and 1.42 eV Å−3

and standard deviations of 0.03, 0.04 and 0.04 eV Å−3, respec-
tively. These gures are similar to those associated with
SGJS

5 , which was identied based on the entire set of the 24
features. The SGs SGJS

0

5 and SGJS
5 contain, respectively, 45 and 48

materials. 40 materials are present in both SGs. This reects
a signicant similarity between both descriptions. Thus, the
SGs with small relative size identied in the Pareto region with
the reduced set of features are comparable to those obtained
with the full feature set. The rules associated with the SGs
identied using the reduced set of 22 features depend on some
key parameters that were also identied by the analysis of the
entire set of the 24 features and the cumulative-Jensen–
Shannon-divergence utility function, e.g., radii of A and B
elements, Kohn–Sham single-particle eigenvalue of the lowest-
unoccupied orbital of the B atom (3L,B), electron affinity of the
B atom (ENB), and expected oxidation state of the B element in
Digital Discovery
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Fig. 4 The SG rules describing perovskites with a high bulk modulus
(B0) trained on 504 single ABO3 perovskites are applied to identify
promising single ABO3 and double A2BB0O6 perovskites from a candi-
date space containing 12 096 materials. The histograms show the
distribution of B0 among the materials of the training dataset (in black),
among 50 materials randomly selected from the candidate space (in
grey), among 50 materials of the candidate space selected according
to the SG rules SGJS

0*
66 (in orange), and among 50 materials of the

candidate space suggested by the SG rules SGJS
0

1 , SGJS
0

4 , and SGJS
0

5 (in
blue). The dashed and dotted lines indicate the mean and maximum
(max.) B0 values of each distribution, respectively.
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the perovskite. However, some additional key features are
identied in the analysis of the reduced set of features, such as
the ionization potential of the B atom (IPB), the atomic charge of
the B element (ZB), the expected oxidation state of the A element
in the perovskite (nA), and the electronegativity of the A element
(ENA). This shows how SGD attempts to reconstruct the infor-
mation contained in the important features a0 and E0 by using
the information on other offered features. Overall, the results
obtained with the reduced feature set are comparable to those
obtained with all 24 features. The rules derived based on the
reduced feature set can thus be applied to identify high-bulk-
modulus materials in larger materials spaces compared to the
training set.

3.1.4 Exploitation of the SG rules for the identication of
perovskites with a high bulk modulus. We applied the SG rules
trained on 504 single ABO3 perovskites with the reduced set of
22 features to identify materials with a high bulk modulus (B0)
out of a candidate materials space of 12 096 compounds. This
candidate material space was created by considering additional
A and B elements that were not included in the training set (A:
thorium and protactinium; B: hafnium, rhenium, osmium,
iridium, gold, mercury, and thallium). Additionally, we
combined two different B elements to form double perovskites
with the formula A2BB0O6. In the case of the double perovskites,
the features related to the B element are dened as the
(composition) average of the features associated with the two
different B and B0 elements. In this analysis, we are explicitly
considering a nite set of A2BB0O6 materials that contain a 1 : 1
B : B0 stoichiometric ratio. However, the material space of
double perovskites is practically innite, since any proportion
of B and B0 is possible, i.e., any A2B2�xB

0
xO6 formula with x in the

range [0.0, 2.0] corresponds to a material in this space. In order
to assess the usefulness of SG rules identied with the Pareto-
region approach with respect to the SG rules associated with
the maximum value of the objective function, we applied two
different sets of SG rules to select materials from the candidate
materials space that likely present high bulk moduli. The rst
set of rules corresponds to SGJS

0*
55 , which are associated with the

SG with maximum value of the objective function. These rules
are satised by 4518 of the 12 096 candidates. The second set of
rules corresponds to SGJS

0

1 , SGJS
0

4 , and SGJS
0

5 , which are associated
with the SGs in the Pareto region with high utility-function
values, i.e., high exceptionality. These rules are satised by
238 materials, out of the 12 096 candidates, i.e., 1.97% of the
candidate materials space. Then, we randomly selected 50 of
the 4518 selected materials and 50 of the 238 selected materials
and evaluated their B0 using DFT-PBEsol calculations. For
comparison, we have also calculated the B0 of 50 perovskites
that were randomly selected from the 12 096 materials.

The distribution of B0 for the materials that were randomly
selected from the candidate materials space (Fig. 4, in grey) has
practically the same mean value compared to that of the
distribution of B0 in the training set (Fig. 4, in black), i.e.,
1.09 eV Å−3. This indicates that the training data might be
representative of this specic candidate materials space. The
highest B0 among the materials randomly selected from the
candidate materials space is 1.36 eV Å−3. This value is
Digital Discovery
signicantly lower than the highest B0 in the training dataset,
1.49 eV Å−3 for ScMnO3.

The distribution of B0 for the materials that were selected
from the candidate materials space using the SG rules SGJS

0*
55

(Fig. 4, in orange) is concentrated in high B0, with a mean B0
value of 1.22 eV Å−3. One material suggested by these SG rules
has B0 higher than the highest value in the training dataset,
PaCoOsO6, with a bulk modulus of 1.52 eV Å−3, respectively.
This value is slightly higher than the highest B0 in the training
dataset (1.49 eV Å−3). However, we note that the rules suggested
several materials that turned out to have relatively low values of
B0.

The distribution of B0 for the materials that were selected
from the candidate materials space using the SG rules SGJS

0

1 ,
SGJS

0

4 , and SGJS
0

5 (Fig. 4, in blue) is concentrated in higher values
compared to the other distributions, with a mean B0 value of
1.35 eV Å−3. Additionally, four of the materials suggested by the
SG rules have B0 higher than the highest value in the training
dataset. These are PaMnO3, Pa2CrFeO6, Pa2VCrO6, and PaVO3,
with a bulk modulus of 1.67, 1.63, 1.59, and 1.55 eV Å−3,
respectively. Thus, the SG rules lead to the identication of
materials with B0 up to 13% higher than any observation in the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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training dataset. This result indicates that the SGs identied by
the Pareto-region analysis can point at more exceptional mate-
rials compared to the standard SGD approach. In particular, in
the present use case, materials that present higher performance
than the known compounds of the training set were more effi-
ciently selected using the focused SG rules provided by the
multi-objective optimization of SGs. We note that in previous
studies SGD was compared with global approaches such as
decision trees in the context of materials science applica-
tions.34,55 The results indicate that SGD is more efficient in
describing exceptional situations compared to the decision-tree
approach. This can be related to the fact that the objective
function of the decision tree aims at a good performance on
average, while the objective function of SGD eqn (1) can focus
on statistically exceptional situations.

The dataset utilized to train SGD and the verication of SGD
suggestions are based on DFT-PBEsol calculations. Even though
DFT-PBEsol presents an overall good accuracy for describing
properties of solid materials such as the bulk modulus,56 the
errors of DFT-PBEsol should be taken into account when
comparing the reported bulk moduli with experimental results.

3.1.5 Investigation of high-bulk-modulus perovskites that
are not captured using the SG rules. When analyzing the SG
rules, we highlighted that BeMnO3 and BeWO3 present bulk
moduli above the 95%-ile of the bulk-modulus distribution in
the training set (1.43 and 1.45 eV Å−3, respectively) but they are
not contained in the high-utility-function SG SGm

6 identied in
Fig. 2. In the perovskite structure, the A cations are larger than
the B cations and the relationships between the radii of the A
and B cations and the anions determine the thermodynamic
stability of the perovskite structure, as given by the tolerance
factors.48,57 Beryllium and magnesium are the only two A
elements in our dataset for which the radius of A (e.g., rs,A)
might be smaller than the radius of B (e.g., rs,B). This is the case
for the materials BeMnO3 and BeWO3. Indeed, rs,Be < rs,Mn and
rs,Be < rs,W. Thus, beryllium would most likely occupy the B site
of these cubic perovskite structures. Indeed, several reports
discuss the properties of perovskites composed of beryllium at
the B sites, i.e., coordinated with 6 oxygen or halide anions.58–60

This observation motivated us to evaluate the bulk modulus of
the perovskites MnBeO3 andWBeO3, where beryllium sits at the
B site and manganese or tungsten sits at the A sites. The
calculated bulk moduli are equal to 1.44 and 1.82 eV Å−3. The
bulk modulus of WBeO3 is 22% higher than the highest value in
the training set and is the highest bulk modulus identied in
this paper. We have also evaluated the bulk modulus of perov-
skites with B= Be and other transitionmetals of the third row of
the periodic table as A elements, namely hafnium, tantalum,
rhenium, osmium and iridium. The bulk modulus of the
materials HfBeO3, TaBeO3, ReBeO3, OsBeO3, and IrBeO3 are
equal to 1.70, 1.81, 1.75, 1.63, and 1.57 eV Å−3, respectively.
These values are also relatively high compared to the values of
the training set and they show that several beryllium based
materials might be exceptional. This analysis illustrates how the
exploratory nature of SGD analysis can identify unexpected
patterns and anomalies, which might lead in turn to the iden-
tication of exceptional materials.
© 2025 The Author(s). Published by the Royal Society of Chemistry
We note that the rules identied with SGD will be valid as long
as the physical processes governing the materials in the training
dataset also govern the behavior of the materials in the materials
space to be explored. This is a crucial aspect, since the choice of
the materials in the training dataset is oen inuenced by bias
and the number of materials in the training set is very small
compared to the practically innite space of possiblematerials. In
order to cover portions of the materials space where underlying
processes different from those present in the training set are
important, the incorporation of new data points and retraining of
SG rules will be required. Indeed, exceptional SGs and
phenomena might emerge in regions of the data space that are
not sufficiently covered by the training dataset. Additionally, the
identied SGs can be associated with genuinely exceptional
phenomena, but they might also correspond to measurement
artifacts when the data are generated by an experiment or calcu-
lation subjected to noise.61 These two situations would not be
distinguished by SGD. However, by analyzing the SG rules and key
identied parameters, one might be able to judge whether SGD
identied correlations that have a physicalmeaning. For instance,
the rules derived in Fig. 2(D) reect that stronger bonds between
atoms in the crystal result in short lattice constants, high cohesive
energy, and a high bulk modulus. Additionally, SGD models for
materials rely on the fact that the offered features correlate with
the underlying physical processes governing the materials. Thus,
the choice of features is critical. The performance of SGD can be
assessed by cross-validation, as described in ref. 35. Finally, useful
materials might present unusual combinations of different
materials properties. These could also be considered exceptional
materials. Identifying such materials calls for multi-objective
optimization of materials properties.62–65 SGD can be adapted
for this scenario and this aspect will be addressed in an upcoming
contribution.

4 Conclusions

We introduced an approach for the identication of coherent
collections of SGs of the “Pareto region” with respect to the SG
size and exceptionality objectives of the SGD analysis. The
concept was demonstrated by the learning of rules that describe
perovskites with a high bulk modulus. Our results show that
rules focused on exceptional materials do not necessarily
correspond to the one SG that maximizes the objective function,
but these rules can be identied with the Pareto-region concept.
This analysis does not require additional computational effort,
since the SGD solutions with high objective-function values are
obtained on the y during the optimization of the objective
function. We used the SG rules obtained by the multi-objective
approach to identify exceptional perovskites with the bulk
modulus up to 13% higher than the highest value found in the
training set of 504 materials, out of a materials space of more
than 12 000 materials.

Data availability

All input and output les of the DFT calculations and datasets
are available in ref. 52 and 66. The SGD analysis is available at
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