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ry of new medicine formulations
using a semi-self-driven robotic formulator†

Helena Ros, Youssef Abdalla, Michael T. Cook* and David Shorthouse *

We present the discovery of new medicine formulations using a semi-self-driven robotic formulator.

Solubilising drugs is a significant challenge in the pharmaceutical industry, with the majority of active

molecules in development for therapies being poorly soluble. The discovery of high solubility drug

formulations, is a highly complex challenge involving the mixing of drugs with excipients in thousands of

potential combinations. We have developed a self-driving laboratory process for the production,

assessment, and optimisation of solubility of liquid formulations suitable for injectable medicines, and

apply it to the example molecule curcumin. Our system discovered 7 lead formulations with high

solubility (>10 mg mL−1) after sampling only 256 out of 7776 potential formulations (∼3%) in only a few

days. Beyond presenting an efficient workflow for the optimisation and discovery of new liquid

formulations, this work forms the basis for a more generalised optimisation workflow that could be

applied to any formulation problem in the future, especially those where no prior information is known.
Introduction

Integrating data science techniques with high-throughput labo-
ratory automation allows for reconceptualization of scientic
workstreams. Whilst automation has widely been used to increase
the throughput of established assays or manufacturing processes,
emerging techniques allow for automation processes to be
focussed on discovery.1–4 Recent advances in this area include the
mobile robot chemist, a robotic platform that performs experi-
ments in a chemical laboratory, interprets the results of those
experiments, predicts which experiment to perform next, then
executes that experiment.1 Systems such as these which can
proceed autonomously without human intervention are termed
“self-driving” or “closed-loop” laboratories.5,6 These types of
approach are delivering step-wise advancements in the chemical
sciences using innovative batch and ow reactor systems. The
most progressed examples of closed-loop discovery are in chem-
istry and materials science, including organic synthesis,7,8 catal-
ysis,1,9 polymerisations,10,11 and battery applications.3 Whilst some
processes exist as “fully self-driving”, dened as systems where
human operators have almost no input to the workow, a spec-
trum of self-driving laboratories exists, including hybrid “semi-
self-driving” or “semi-closed-loop” systems where a bulk of the
work is carried out in an automated fashion, with key components
still requiring human intervention.12 This allows researchers to
incorporate self-driving workows without full commitment to the
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cost of robotics required in an entirely automated lab. Minimal
examples of self-driving systems include materials discovery
platforms using optical assessments that cost around $100.13 The
opportunity of the autonomous laboratory is enormous and
becoming increasingly accessible due to reducing costs of robotics
and efficiency of machine learning (ML) techniques. Further
development of self-driving laboratories across the sciences has
enormous potential to expand current scientic frontiers.5,14,15

Pharmaceutical formulation is an area that could be revo-
lutionised by self-driving laboratories. The development of
a medicine from a lead drug compound requires multifactorial
optimisation in a complex but well-constrained design space.
Formulators require substantial experience and expertise to
guide formulation using scientic principles in a eld where the
complexity of the nal mixture of chemicals means that system
behaviours are extremely challenging to predict from rst
principles. In silico tools have been developed to try and aid
formulation decisions by prediction of crucial endpoints, such
as solubility,16,17 however these predictions oen do not hold in
multicomponent mixtures and prediction across the entire
chemical landscape is challenging. Furthermore, as complex
modern medicines such as PROTACS18 appear in pharmaceu-
tical pipelines, formulation scientists are not equipped with the
a priori knowledge oen used currently to solve problems of
formulation. Whilst automation is oen used as a tool for high-
throughput analysis or manufacture in the pharmaceutical
sector,19,20 the use of closed-loop approaches is limited. Lipids
have been designed and synthesised for lipid nanoparticle-
assisted RNA delivery using a closed-loop platform seeded
from a literature dataset.4 Furthermore, the principle of closed-
loop formulation has been demonstrated in consumer
Digital Discovery
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products.21 ML has been demonstrated to be a powerful tool for
pharmaceutical formulation,22 but the necessity of high-quality
datasets restricts the application of ML to well-studied prob-
lems. As such, experimental processes which pair automated
workows with data science techniques towards closed-loop
automation are exceedingly valuable. For example, Bao et al.
demonstrate the data-driven development of an oral formula-
tion of lipid nanoparticles by pairing ML to rapid nano-
precipitation in a liquid-handling robot.23 However, the design
space in this study was relatively small (∼1215 formulations)
which allowed production of an initial dataset representing
∼10% of the possible formulations. Thus, there is a need to
develop approaches which can solve formulations with a much
larger number of possible permutations, which in principle
could cover the plausible formulation space in its entirety.

One major challenge in formulation is the delivery of poorly-
soluble actives, which represent 40% of the currently licensed
medicines and 90% of small-molecule drugs in the develop-
ment pipeline.24 Poor solubility in water can render a drug
undeliverable, leading to product failure, or necessitate such
large volumes of water to deliver that process, such as infusions
over multiple hours, which require administration by health-
care professionals in a hospital setting. Regulatory constraints
on the composition of medicines are such that innovation must
Fig. 1 A workflow and timelines for semi-self-driven formulation of a m
misation. (B) Timeline for semi self-driving workflow compared to a trad

Digital Discovery
occur with a limited selection of pharmaceutical excipients
known to be safe, leading to formulators needing to innovate
within a constrained chemical space.

This study reports the successful formulation of a poorly-
soluble active molecule using an automated semi-self-driving
workow driven by an ML algorithm. The approach is driven
without a priori knowledge or modelling to select excipients,
instead using an unbiased experimental design to search
a formulation landscape consisting of 7776 possible excipient
combinations, of which we generate 256 across our entire study
(3.3%). Automation and miniaturisation allows for rapid
formulation, experimentally validating mathematical models as
they are developed in a semi-self-driven manner. Lead medicines
are identied by successful solubilisation of the target active
(curcumin) which are then conrmed by a secondary manual
batch preparation. Overall, a blueprint for pharmaceutical
formulation using data-driven automation is presented.
Results
A semi-self-driving system for discovery of parenteral
formulations

To generate and explore the parenteral formulation space for
a given molecule, we employed a semi-automated, high-
olecule. (A) Schematic workflow for formulation discovery and opti-
itional approach.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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throughput sample preparation and analysis workow (Fig. 1A).
This workow is capable of working with molecules for which
there is no a priori knowledge, and so is highly adaptable to any
molecule of therapeutic interest. The workow involves dening
the potential state space available for exploration (i.e. the
potential combinations of excipients and concentrations
thereof), generating and characterising a diverse “seed” dataset
through applying k-means clustering to the state space, and then
using this collected data to begin a series of Bayesian optimisa-
tion (BO) driven iterative and semi-automated learning loops to
optimise the solubility of amolecule in an excipientmixture. This
results in an efficient discovery of formulations optimised for
solubility of the subject molecule. Sample preparation is carried
out automatically through a liquid handling robot, the samples
are centrifuged, diluted with a liquid-handling robot, character-
isation is performed rapidly using a spectrophotometer plate
reader, that absorbance data is handled automatically, a new
round of experimentation is designed by an automated script
running BO, which is then automatically coded to instruct the
execution of that experiment by the liquid-handling robot. The
only manual operation required is the loading of powder into
plates, and transfer of well plates between devices. To demon-
strate the applicability of this workow, we applied it to an
example of the poorly soluble molecule curcumin.25,26

Our designed workow is signicantly more efficient than
manual equivalents (Fig. 1B). Within 6 days of operation the
system can test 7 times as many formulations as a representa-
tive skilled formulator, whilst requiring only 25% of the human
time. Furthermore, these samples are selected by BO and thus
designed to optimise the formulation for solubility through
a predictive model without need for human decision-making.
Furthermore, in comparison to purely in silico approaches
such as predictive models, the workow delivers real experi-
mental data to validate these predictions.
Efficient discovery of seven novel curcumin formulations

Curcumin represents a good test case for our formulation
workow, as its colour allows easy by-eye conrmation of the
veracity of generated formulations. We tested our system's
ability to generate potential liquid formulations of curcumin by
mixing it with 5 approved excipients/surfactants (Tween 20,
Tween 80, Polysorbate 188, dimethylsulfoxide, and propylene
glycol), which were available to the system in 6 percentages (0%,
1%, 2%, 3%, 4%, 5%) leading to a total of 7776 potential
combinations. We applied our workow, rst generating a seed
dataset of 96 diverse formulations (generated in triplicate) by k-
means clustering and performing formulation using an OT-2
liquid handling robot with end-points determined spectropho-
tometrically. We then initiated 5 learning loops where 32
formulations each time were generated according to BO. Over
the 5 loops, the algorithm was applied to optimise the solubility
of curcumin, determined through absorbance in a plate reader.
Assessing the nal dataset, we applied a ML model to predict
the concentrations of every possible formulation and used this
to estimate the concentration range of the entire dataset (ESI
Fig. S1†). Through this estimate, we determined that a dissolved
© 2025 The Author(s). Published by the Royal Society of Chemistry
concentration of 10 mgmL−1 was within the predicted top 0.1%
of formulations and used this threshold to determine “highly
soluble” formulations.

The system quickly discovers highly soluble formulations
(Fig. 2A) and increasing numbers of highly soluble formulations
per loop (Fig. 2B). To validate these lead formulations, the
discovered mixtures were manually generated in triplicate, and
characterised again using absorbance spectroscopy. This valida-
tion conrmed three lead formulations (2, 3 and 7) maintained
solubility levels around 10 mg mL−1 (Fig. 2C), predicted to be
within the top 0.1% of all possible formulations (ESI Fig. S1†).
Visual inspection of the well plate generated in the nal loop
conrmed a range of different solubilities, with a number of wells
being bright yellow, indicating a high amount of curcumin has
been dissolved (Fig. 2D). Finally, uniform manifold projection
(UMAP) analysis demonstrates the formulation landscape
discovered by our workow (Fig. 2E). In this analysis, every
possible formulation is represented and coloured by their pre-
dicted solubility according to the surrogatemodel used in the BO.
Our discovered highly soluble formulations generally sit in the
regions of the landscape predicted to have higher solubility, and
formulations towards the mixed high and low solubility area of
the landscape (formulations 1 and 6) were characterised as
comparatively lower solubility compared to those within the high
solubility region (formulations 2, 3, and 4). We interpreted this
landscape by calculating a Pearson correlation of every excipient
concentration against each UMAP dimension (ESI Fig. S2†),
nding the concentration of all excipients except T20 is nega-
tively correlated with UMAP dimension 1, and T20 is strongly
negatively correlated with UMAP dimension 2. In particular,
there is a tendency for formulations with a higher concentration
of excipients to be more soluble (Pearson correlation of −0.82).
We also compared the total amount of excipients in each
formulation to the mean absorbance and found only a small but
statistically signicant correlation (r = 0.31, p = 4.4 × 10−7) (ESI
Fig. S3†), suggesting that while excipient quantity inuences
solubility, the relationship is not straightforward.

During our workow, we quickly discover formulations with
a signicantly higher solubility than those in our seed dataset
from round 2 onwards (Fig. 3A). Comparing each loop to the
seed dataset, which is optimised only for distance between
samples, BO driven sample sets all contain signicantly higher
(Student's t-test p value < 0.05) average solubility formulations,
demonstrating that our BO loops optimise the average of the
explored samples to increase solubility as expected with our
sample size of 32. We next explored the makeup of our 7 highest
concentration lead formulations, performing hierarchical
clustering on the excipient contents, we nd that they broadly
cluster into three categories, split predominantly by their
overall concentration and amount of DMSO included (Fig. 3B).
Bayesian optimisation is signicantly more efficient than
random approaches for discovering high solubility
formulations

We next sought to demonstrate the value and efficiency of our
BO driven approach over random sampling. Our approach
Digital Discovery
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Fig. 2 Novel formulations for curcumin discovered using our workflow. (A) Maximum solubility discovered at each step. (B) No. of samples with
>10 mg mL−1 curcumin dissolved at each step. (C) Validated curcumin concentration of the 7 highest concentration samples discovered. (D)
Image of well plate from final loop. (E) Solubility predictions of the final ML coloured on a umap projection of every possible formulation.
Highlighted are the locations in state space where the discovered formulations sit.
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involves the generation of a seed dataset used to initially train
the model and we chose to use k-means to ensure diversity of
starting samples. Assessment of the locations of the 96 starting
samples on our umap projection of the complete dataset indi-
cates that they are fairly evenly distributed across the landscape
(Fig. 4A).
Digital Discovery
To more quantitatively benchmark our approach, we simu-
lated a dataset with the same degrees of freedom. This dataset
consists of 5 excipients with 6 degrees of freedom each (Totaling
7776 combinations), and their output solubility is a complex
function consisting of all excipients, with a random noise term
to ensure a true minimum. We rst compared our k-means
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Assessment of Bayesian optimisation driven formulations discovered. (A) Per-round concentrations of curcumin, averaged to nearest
0.5 mg mL−1. Inset: curcumin concentration in each round. (B) Excipient makeup for each of the 7 high solubility formulations. Hierarchical
clustering is shown above with nearest linkages colored separately. P values represent two-tailed Student's t-test.
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driven seed dataset sampling method to randomly sampling the
same number of datapoints (Fig. 4B). A Gaussian process
regressor (GPR) t to 1000 repeats of k-means clustered vs.
randomly determined sets of 96 datapoints generates signi-
cantly lower (Student's t-test p = 8.60 × 10−91) error models,
demonstrating that this sampling method is quantitatively
better than random sampling for training a surrogate model to
initiate BO. Simulating BO vs. random selection protocols on
this same dataset demonstrates that over 1000 protocols BO
© 2025 The Author(s). Published by the Royal Society of Chemistry
reaches a minimum close to the true minima reliably within 2
batches, having collected only 2% (160/7776) of potential
samples (Fig. 4C). Similarly, BO rapidly discovers samples in the
optimum 0.01% (the top sample) on average within 2 batches
(160/7776 samples) compared to random sampling which
almost never discovered and samples in the optimal 0.01%
(Fig. 4D). Finally – to demonstrate that our collected data is
descriptive and suitable for BO, we performed a post-hoc BO
protocol on the 256 samples collected during our solubility
Digital Discovery
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Fig. 4 Assessment of our workflow compared to random sampling. (A) Umap of the formulation landscape with samples collected for seed
dataset (determined using k-means clustering) highlighted in black. (B) Mean squared error for GPR fit to simulated data collected randomly vs. k-
means clustering (n = 1000). (C) Minimum discovered value for 1000 simulated runs of BO compared to random sampling (D) No. samples
discovered in the most optimal 0.01% for 1000 simulated runs of BO compared to random sampling. (E) Number of samples required to find the
optimum for our collected dataset of 256. Samples are selected from the pool randomly, or using a Bayesian optimisation protocol, repeated
1000 times. P values represent two-tailed Student's t-test.
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workow (Fig. 4E). We provided this set of samples to a BO
algorithm, and allowed it to select from them one at a time
measuring how many samples were required for the algorithm
to nd the optimum. We performed this 1000 times for a BO
protocol based on our workow, and with a seed sample size of
5, and compared it to randomly selecting samples, and nd that
BO is signicantly (p = 1.40 × 10−203) more efficient at nding
the true minimum in our data. This demonstrates that our
workow for seed selection and BO is effective and appropriate
Digital Discovery
for this system, and that our collected data is able to be used
predictively by a BO protocol.
Gaussian process regression predicts accurately from data
collected during the workow

Finally, to demonstrate that the data collected during our
workow is predictive, we demonstrate the accuracy of our
surrogate mode, trained on only ∼3% of the total potential data
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Assessment of GPR fit to collected solubility data. (A) Parity plot of log(mg ml−1) curcumin concentration showing real vs. predicted
concentration of 256 formulations collected as part of our workflow. (B) Shapely (SHAP) analysis of the GPR fit to 256 formulations collected as
part of our workflow.
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(256/7776 samples). Parity plots demonstrate that our model is
reasonably accurate, with a test set mean squared error of
0.19 mg mL−1. Spearmans rank analysis of the predictions
shows a test set correlation coefficient of 0.51, indicating that
the model can predict rank order of formulations somewhat.
We note that the model appears to overpredict poorly soluble
formulations, and slightly underpredict highly soluble formu-
lations (Fig. 5A). Shapely (SHAP) analysis27 of the nal model
reveals that the proportion of Tween 20 is the most important
predictor of solubility, with Tween 80 and dimethylsulfoxide
also having a strong inuence (Fig. 5B). Interestingly, Poly-
sorbate 188 and propylene glycol (P188 and PG) did not appear
to have a high importance, suggesting that they have a lesser
effect on the solubility of the formulation. The observed accu-
racy gives some condence that using a GPR on this data as
a surrogate for BO is suitable.

Discussion

We have demonstrated that a BO driven, robotically assisted,
semi-self driving workow is able to efficiently map a formula-
tion space and discover lead formulations for a hard-to-dissolve
molecule. With this workow we have discovered 7 novel
formulations of the hard-to-dissolve molecule curcumin that
are similar in concentration to reported highly concentrated
formulations of this molecule investigated for medicinal
use.26,28 We demonstrate that our surrogate model is able to
generate predictive insights from the collected data, and that
our novel workow discovers samples close to an optimum
signicantly more efficiently than random approaches. SHAP
analysis demonstrates that the impact on solubility of our test
molecule is mostly constrained to changes in only 3 of the 5
excipients, and so future expansions to this workow aiming to
increase solubility further would utilise this information to
explore wider ranges of only these 3 molecules.

Our workow requires signicantly less time, fewer plates
and materials, and can sample more formulations in the same
time period compared to a traditional approach, and represents
a near tenfold efficiency increase compared to traditional
© 2025 The Author(s). Published by the Royal Society of Chemistry
formulation workows. Moreover, with the affordability of the
setup used in this process (including the use of an entry-level
liquid handling robot), this workow is cost effective to
establish.

A major limitation of our current system is the noise present
in samples collected. High standard deviations between exper-
imental repeats demonstrate inaccuracies likely induced by the
liquid handling robot, such as droplet retention on pipette tips,
incomplete mixing of viscous excipients, and inconsistences in
manual plate handling, all of which can be overcome with
development and improvement of protocols and adaptations to
our workow. This noise signicantly reduces the efficiency of
the optimiser algorithm12 which is evident in our post-hoc
analysis of samples, where ∼50 samples were needed on
average to discover the minima of our data. We expect that
a reduction in system noise, or more advanced Bayesian opti-
misation techniques incorporating the experimental noise will
signicantly accelerate our optimisation. We also note slight
deviation (<5 nm) in peak maxima following determination of
absorption spectra, which is small but may lead to a propensity
to slightly undermeasure true concentration values. Further-
more, in the present study we only measure a single output
(concentration), and further expansions of this work must
explore multiple end-points to determine the Pareto fronts that
trade off important pharmaceutical processing parameters such
as solubility and stability, as has been performed in other self-
driving laboratories for different purposes.29,30

Our work links formulation science, data science, and
automation in a step towards signicantly more efficient
formulation design and discovery. Future strides must be made
towards “closing the loop” by incorporating more advanced
automated processes, further reducing manual load, but our
results demonstrate the initial feasibility and efficiency of this
process. Our workow is applicable to any formulation task
requiring the handling and mixing of liquids – which includes
pharmaceutical use cases such as biologic formulations and
lipid nanoparticles, as well as other formulation tasks such as
those involving paints and inks. In conclusion, we demonstrate
Digital Discovery
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a semi-self-driving workow where a liquid handling robot,
formulation scientist, and surrogate ML model work in concert
to discover novel liquid formulations with optimal solubility.

Materials and methods
Materials

Propylene glycol (PG, >99.9%) was purchased from Fisher-
Scientic (UK). Dimethyl sulfoxide (DMSO, >99.9%), Tween 80
(T80), Tween 20 (T20) and curcumin were purchased from
Sigma-Aldrich (UK). Poloxamer 188 (P188) was obtained from
Thermo-Fisher (UK). Deionised water (dH2O) was used in all
experiments and all chemicals were used as received.

Seed data selection

A full factorial combination of ve excipients – Tween 20, Tween
80, poloxamer 188, DMSO and propylene glycol – at six
concentration levels (integers between 0 and 5%) was gener-
ated, resulting in a total of 7776 possible formulations. To
efficiently explore the entire formulation space, k-means clus-
tering implemented using scikit-learn31 was used to select 96
formulations most evenly distributed across the formulation
landscape. k-means clustering was applied with a number of
clusters of 96, and the formulations closest to the centroid of
each cluster chosen to be part of the seed dataset.

Solubility analysis

The 96 selected seed formulations were prepared using the
Opentrons OT-2 liquid handling robot (server version 7.2.1),
with protocols designed using the Opentrons python protocol
API (version 2.17).

Stock solutions of 20% (w/w) Tween 20, Tween 80, and
poloxamer 188, and 50% (w/w) propylene glycol in dH2O were
prepared. 96 well-plates were lled with curcumin by use of
a pocked steel dispenser, loading each well with a volume of 48
mm3 of curcumin. Stock solutions were then combined in the
wells according to the selected formulations and prepared by
the OT-2 in 96-well plates containing curcumin. For human-
operated batch analysis, formulations were prepared at 5 mL
volume according to the ratios described in the BO. Excess
curcumin was then added. The prepared samples were incu-
bated overnight on a plate shaker (SciQuip Microplate Shaker)
at room temperature. Following incubation, the samples were
centrifuged at 2000 rpm for 20 minutes. The supernatant was
then diluted 1000-fold in a 50% (w/w) DMSO/dH2O solution.

Spectrophotometry was performed using the ClariostarPlus
spectrophotometer (BMG LabTech) with absorbance spectra
recorded between 200 and 1000 nm at 5 nm intervals. Maximum
absorbance was observed at 435 nm at which there was no
absorbance from the constituent excipients (Fig. S2†).

Bayesian optimisation

All computational analyses were performed using Jupyter
Notebook (version 7.0.8) running python3. Absorbance data
obtained at 435 nm were used as input to a surrogate model.
GPyOpt32 was used to perform BO, training a Gaussian process
Digital Discovery
regressor. Loops were performed by training the surrogate
model on the collected data (the rst loop used our 96 “seed”
samples), and the next data points for collection determined
through maximising expected improvement using Thompson
sampling – rst described in ref. 33. Aer each round of
experiments all collected data was used to retrain the surrogate
model, and a further set of data points determined for
collection.

Lead formulation characterisation

Following 5 rounds of BO, 7 formulations with a curcumin
concentration greater than 10 mg mL−1 were selected as lead
formulations. These formulations were prepared at a 1 mL
volume by hand and excess curcumin added. The samples were
le to shake overnight, ltered, and analysed by the absorption
method described previously.

Umap

Umap was performed using the umap-learn python
implementation.34

Hierarchical clustering

Hierarchical clustering was performed on selected nal
formulations using scipy.35

Statistical analysis

All statistical analysis was performed using scipy.35 All tests
performed were two tailed Student's t-tests.

Gaussian process modelling

A Gaussian process model was t to our data using the Gaus-
sianProcessRegressor in scikit-learn.31 Data was log-
transformed, before being split 80 : 20 in a training and
external validation set. The training set was then hyper-
parameter optimised using 5-fold cross validation, and the
optimal parameters used to retrain the model on the full
training set. This model was then tested against the external
validation set to generate the nal score. Model interpretation
was performed using Shapely analysis.27

Data availability

Final solubility data generated in this study is available in ESI,†
and all code used and generated in this publication is available
at www.github.com/shorthouse-lab/Ros_SDformulation,
published at https://doi.org/10.5281/zenodo.15861258.
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