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Composition-property extrapolation for compositionally
complex solid solutions based on word embeddings

Lei Zhang,∗a Lars Banko,b Wolfgang Schuhmann,c Alfred Ludwig,b and Markus Stricker a

Mastering the challenge of predicting properties of unknown materials with multiple principal el-
ements (high entropy alloys/compositionally complex solid solutions) is crucial for the speedup in
materials discovery. We show and discuss three models, using experimentally measured electrocat-
alytic performance data from two ternary systems (Ag-Pd-Ru; Ag-Pd-Pt), to predict electrocatalytic
performance in the shared quaternary system (Ag-Pd-Pt-Ru). As a starting point, we apply Gaussian
Process Regression (GPR) based on composition as the feature, which includes both Ag and Pd,
achieving an initial correlation coefficient for the prediction (r) of 0.63 and a determination coeffi-
cient (r2) of 0.08. Second, we present a version of the GPR model using word embedding-derived
materials vectors as features. Using materials-specific embedding vectors significantly improves the
predictions, evident from an improved r2 of 0.65. The third model is based on a ‘standard vector
method’ which synthesizes weighted vector representations of material properties as features, then
creating a reference vector that results in a very good correlation with the quaternary system’s ma-
terial performance (resulting r of 0.94). Our approach demonstrates that existing experimental data
combined with the latent knowledge of word embedding-derived representations of materials can be
used effectively for materials discovery where data is typically scarce.

1 Introduction
Material science is a driver of technological progress by devel-
opment of innovative materials that enable advancements across
industries from electronics to aerospace.1,2 Novel materials are
the driver because of new properties or property combinations or
by replacing existing critical or expensive materials with less crit-
ical ones while at the same time not sacrificing performance. Dis-
covering new materials (fast) requires to accurately predict mate-
rial properties, particularly in compositionally complex materials
with four or more primary elements. Such systems show promise
as Discovery Platforms, e.g. for electrocatalysis.3 However, they
pose significant challenges for discovery since the possible combi-
nations of elements and their compositional ratios renders brute-
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force screening approaches practically impossible. Additionally,
predicting their properties is difficult due to their complex com-
positional interactions and the intricate ways in which these in-
teractions affect material behavior.4 As such, the acceleration of
the discovery process for new materials necessitates the develop-
ment of new methods to navigate complex composition-structure-
property relationships of promising material systems.

The integration of computational power and data analysis is
necessary in overcoming the challenges presented by these ma-
terial systems.5 Machine learning has emerged as a useful tool,
providing a path for material scientists to predict and understand
the properties of materials system.6,7 This transition from tradi-
tional, heuristic approaches to data-driven, computational strate-
gies signifies a transformation of the field8,9, aligning with the
complexity of the possible materials of interest.

Among data-centered approaches, Gaussian Process Regres-
sion (GPR) has demonstrated exceptional versatility and efficacy
across multiple domains, illustrating its capacity to model com-
plex relationships.10 The adaptability of GPR stems from its non-
parametric approach which allows to adjust its complexity based
on the dataset, a feature that sets it apart from models like
neural networks.11 This flexibility renders it particularly valu-
able in applications for complex non-linear relationships in high-
dimensional data spaces.

However, the usefulness, i.e. the predictive power, hinges on
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available data and meaningful representations of materials. Of-
ten, sophisticated adjustments to such models are necessary to
effectively capture complex correlations.12 Possible modifications
include appropriate accounting for noise in data and customiza-
tion of kernel functions.

A critical part of any data-based approach is the representa-
tion13–15 of the input. In particular, the challenge of how to
represent a material. A simple approach is to just use the com-
position.16 This is often sufficient for interpolation. However, if
the goals is to predict into unknown spaces, any existing knowl-
edge about a material or similar materials and their properties is
desirable.

In this, the vast expanse of scientific literature represents a
rich, yet not fully exploited, resource.17 Through literature min-
ing18,19 and vector analysis20, we can convert the latent knowl-
edge contained in scientific texts into formats amenable to ma-
chine learning in form of representations.21,22 The integration of
word embedding-based vector analysis, derived from literature
mining, with machine learning models like GPs, represents a new
path for improving predictive capabilities in for materials discov-
ery, particularly for complex systems such as ternary and quater-
nary materials.

In our example, we present the problem of predicting the per-
formance of a quaternary materials system for electrochemical
applications, specifically the oxygen reduction reaction (ORR).
Here, “performance” is defined as the current density of electro-
catalysis of the ORR at an overpotential of 850 mV. We use ex-
isting measurements of ternary systems in conjunction with rep-
resentations of materials and properties based on word embed-
dings. We examine three distinct approaches: standard GP mod-
eling based on composition, GP augmented with material vectors
based on word embeddings, and our ‘standard vector method’.

Our approach improves the prediction capabilities for compo-
sitionally more complex materials by combining measured data
from compositionally less complex materials, combined with ad-
vanced representations of materials through word embeddings.
We illustrate its predictive power and compare it with the ref-
erence approach that solely relies on materials representations
based on composition.

2 Methods

2.1 Dataset Description

For our demonstration we use two datasets from two different
overlapping ternary systems (Ag-Pd-Ru and Ag-Pd-Pt) to train
models for property prediction of a shared quaternary system
(Ag-Pd-Pt-Ru). The basic idea is to use compositionally less com-
plex systems (ternary materials systems) to predict the behavior
of more complex ones (quarternary) in the context of electrocatal-
ysis, specifically the ORR23–25.

Two ternary datasets are used to fit models that capture their
correlation with electrocatalytic properties, specifically a current
at a fixed applied overpotential. These models are then used to
predict the electrocatalytic properties of the shared quaternary
system, which includes all the elements present in the ternary
systems.

The experimental data is sourced from composition-spread ma-
terials libraries (CSML) and described in detail elsewhere.26 Nev-
ertheless, we provide a brief description here for completeness.
The materials libraries were fabricated by co-sputtering thin films
on 100 mm diameter sapphire wafers (c-plane) from 4 elemental
targets. The targets were confocally aligned to a 100 mm sub-
strate (target-substrate distance approx. 12 cm). Target materials
had a purity of 99.99,%. Ar (99.9999 %) was used as a sputter
gas. The deposition pressure was 0.667 Pa. The film thickness
was 100 - 150 nm. The chemical composition of the materials
libraries was measured by energy dispersive X-ray spectroscopy
(EDX) with an acceleration voltage of 20 kV. 81 measurements
were done on a regular grid of 9x9 (8.5 mm spacing) on each
library. Linear regression was used to interpolate the composi-
tion over the 342 measurement areas of a 4.5 mm grid that were
electrochemically characterized using scanning droplet cell (SDC)
experiments.

Electrochemical measurements were conducted with the use of
a high-throughput SDC. The SDC head incorporates counter (Pt
wire) and reference (Ag|AgCl|3 M KCl) electrodes and a teflon
tip with 1 mm diameter. The materials library is connected as
working electrode, e.g. the surface of the investigated sample in
every spot where the tip touches the sample. The electrolyte was
replaced for every measurement area. Linear sweep voltammo-
grams were measured in 0.05 M KOH, pH 12.5, with a scan rate
of 10 mV/s. All potentials are reported versus the RHE according
to the following equation: URHE (V) = U(Ag|AgCl|3 M KCl) +
0.210 + (0.059 pH), where U(Ag|AgCl|3 M KCl) is the potential
measured versus Ag|AgCl|3 M KCl reference electrode, 0.210 V
is the standard potential of the Ag|AgCl|3 M KCl reference elec-
trode at 25◦C. Note that 0.059 is the result of (RT ) ·(nF)−1, where
R is the gas constant, T is the temperature (298 K), F is the Fara-
day constant, and n is the number of electrons transferred during
the reaction.

2.2 Modeling Approaches

2.2.1 Method 1: Gaussian Process (GP) Model with Elemen-
tal Composition

A Gaussian Process (GP) model based of elemental composition
derived from the ternary datasets is fit to predict the electrochem-
ical current at a potential of 850 mV for the quaternary system.
This sort-of traditional approach provides a reference for predic-
tions about electrocatalytic performance. In materials science, GP
models have been effectively applied to predict various proper-
ties, including thermal conductivity27and electronic structure.28

This model serves as our baseline, allowing us to evaluate the
models with more nuanced representations against a reference
standard.

2.2.2 Method 2: Enhanced GP Model with Material Vectors

The second model is different to the standard GP model by em-
ploying ‘material vectors’ instead of the elemental composition
as a representation for materials. Material vectors are obtained
from a Word2Vec model based on a comprehensive literature re-
view.29 We retrieve a 200-dimensional vector representation of
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each pure element. Within this 200-dimensional space, we create
representations for materials by a weighted linear combination
of the elemental representations, in line with vector operations
in word embedding space.30 By employing material vectors, we
use the latent knowledge from scientific literature and transform
it into an explicit, quantitative form, to improve our model’s pre-
dictive power. Like our baseline GP model, we predict each mate-
rial’s electrocatalytic performance, enabling a direct comparison
between these two approaches.

2.2.3 Method 3: Standard Vector Method

The third method is different from the GP-based models in two
aspects. For one, we introduce a novel approach based on the
concept of a ‘standard vector’. Fig. 1 shows the process how
we construct this ’standard vector’. The idea is to substitute
representations of compositions based on word embeddings of
elements and their linear combinations with a similarity vec-
tor obtained by comparison with known terms related to elec-
trocatalysis, thereby encoding explicit domain knowledge in the
representation of a material. The similarity of each word em-
bedding representation of the composition with the term con-
stitute one dimension of the standard vector. The process be-
gins with the assembly of a list of material properties relevant
to electrocatalysis, from which vector representations are gener-
ated. Our property list include “electrocatalyst”, “overpotential”,
“tafel slope”, “exchange current density”, “stability”, “durability”,
“surface area”, “active site”, “turnover frequency”, “electrocat-
alytic activity”, “faradaic efficiency”, “charge transfer”, “adsorp-
tion energy”, “electronic structure”, “electronegativity”, “crystal
structure”, and “surface morphology” – a 17-dimensional space.
Fig. 2 shows a dimensionality-reduced map of the vector repre-
sentations of the listed terms using t-SNE.31

Each property in the list is chosen based on its known relation-
ship to electrocatalytic performance and its role in determining
the efficiency of the ORR. For instance, properties such as over-
potential, tafel slope, and exchange current density are critical for
assessing the electrocatalytic performance of materials. Stability,
durability, and surface area affect the longevity and effectiveness
of catalysts in practical applications. Other properties like ad-
sorption energy, electronic structure, and crystal structure offer
deeper insights into the interaction mechanisms at the molecular
level which might influence catalytic behavior and performance.
The relative distance of word embeddings of materials to these
properties capture the co-occurrence, and therefore proximity in
embedding space. Our hypothesis is that proximity of properties
and materials representations in embedding space captures cor-
relations and thereby provides an improved representation of ma-
terials, not based on their composition, but based on their latent
properties and their relationships.

However, the novelty of our approach is in how these property
vectors are combined. Instead of simply merging the individual
17 similarity values, we calculate a ‘standard vector’ that repre-
sents an ideal electrocatalyst by weighting each property vector
based on the experimental data for the two ternary systems to re-
flect its importance w.r.t. known catalytic activity in this material
system.

In essence, we create a reference vector based on measured data
which represents optimal characteristics for ORR performance for
the given materials system. The weighting step, a fitting proce-
dure, is a minimization with constraints. The weights are ad-
justed to minimize the squared difference between ‘experimental
indicators’ (current at potential) and similarity dimensions. In our
case, we use measured activity as experimental indicator, but any
reliable known data for materials correlating with the predicted
property could be used in general.

We then assume that materials which are ‘closer’ in vector space
to this standard vector – measured by similarity metrics such as
cosine similarity – are more likely to exhibit good electrocatalytic
performance. By evaluating materials based on their proximity
to this ‘ideal’ vector, we predict and identify promising electrocat-
alysts without relying solely on compositional or structural data
features.

Once defined, the standard vector based on the two ternary
systems is a benchmark representation for evaluating materials
in the shared quaternary system. Rather than predicting perfor-
mance by predicting the (measured) current directly, we apply
similarity measures to pinpoint materials that align closely with
the ideal standard vector, thereby identifying candidates with po-
tentially high electrocatalytic performance.

2.2.4 Mathematical Details of the Standard Vector Method

To further clarify the Standard Vector Method, we formulated
the process as follows:

1. Representation of Compositions via Word Embeddings

Let vi be the word embedding representation of element
i, and let a material composition M consisting of elements
{E1,E2, . . . ,En} be represented as a linear combination:

vM =
n

∑
i=1

civi, (1)

where ci represents the fractional contribution of element i in the
material.

2. Property-based Similarity Encoding

A set of domain-specific properties {P1,P2, . . . ,Pd} with cor-
responding embedding representations p j (where j = 1, . . . ,d)
forms a basis for similarity comparisons. The similarity score be-
tween a material M and a property Pj is computed using cosine
similarity:

S(M,Pj) =
vM ·p j

∥vM∥∥p j∥
. (2)

The vector sM containing these similarity values forms a standard
vector representation:

sM = [S(M,P1),S(M,P2), . . . ,S(M,Pd)] ∈ Rd . (3)

3. Construction of the Standard Vector

Instead of treating the similarity values independently, we de-
fine an optimal standard vector s∗, which represents an ideal
electrocatalyst. This vector is obtained through a weighted fit-
ting procedure using experimental data. Given a set of materials
{M1,M2, . . . ,Mk} with experimentally measured catalytic activities
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Fig. 1 Illustration plot of standard vector method.

Fig. 2 Dimensionality reduced (t-SNE) map of vector representations for the chosen electrocatalytic properties and materials.
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yi, the weight optimization problem is formulated as:

min
w

k

∑
i=1

(
yi −

d

∑
j=1

w jS(Mi,Pj)

)2

, subject to
d

∑
j=1

w j = 1. (4)

Solving this constrained optimization problem provides an opti-
mal weight vector w∗ = [w∗

1,w
∗
2, . . . ,w

∗
d ], which defines the stan-

dard vector:

s∗ =
d

∑
j=1

w∗
j p j. (5)

4. Evaluation of New Materials
For a new material M′, its proximity to the standard vector s∗

is evaluated using cosine similarity:

Similarity(M′,s∗) =
sM′ · s∗

∥sM′∥∥s∗∥
. (6)

Materials closer to s∗ are predicted to exhibit superior electrocat-
alytic performance.

2.3 Model Evaluation

The performance of the first and second GP model is quantita-
tively assessed using the Pearson’s correlation coefficient (r) be-
tween the actual and predicted current densities, alongside the
coefficient of determination (r2), to gauge the models’ ability to
capture variance in the actual measurements.

The third model, employing the standard vector method, is as-
sessed differently. Given the different nature of its output, we
adapt our evaluation strategy using the correlation coefficient be-
tween the actual current densities and our predictions, the simi-
larity scores. This metric reflects the model’s performance in iden-
tifying materials with high electrocatalytic performance based on
their conceptual proximity to the ‘ideal’ electrocatalyst as defined
by the standard vector.

To further underscore the models’ applicability to high-
performance electrocatalysts, we introduce a filtering crite-
rion, focusing on data points where the current at 850 mV
(Current_at_850mV) is below -0.2 mA/cm2. This is designed
to improve the models’ ability to identify materials with signifi-
cant electrocatalytic activity. By focusing on data points where
the current at 850 mV indicates notable activity, we tailor our
analysis to emphasize materials that, based on our dataset, stand
out for their electrocatalytic performance. This method allows us
to direct our model’s focus and analytical efforts towards those
candidates most likely to impact future electrocatalysts. In other
words, for materials displaying low activity, we are not interested
in ‘how low’.

2.4 Model Reproducibility

MatNexus29 underpins our data processing, analysis, and visual-
ization workflows. MatNexus supports the standardized handling
of materials science data, ensuring the reproducibility of our find-
ings through a workflow. We use it for all parts of the analy-
sis: from initial data preprocessing to feature extraction, structur-
ing for word embedding model training, and the visualization of
datasets and analysis results.

We also use it to create a word embedding model to generate
material vectors, which are then used in conjunction with the GP
model as well as in the standard vector method for predictive
analysis.

MatNexus is used to conduct targeted literature queries, focus-
ing on articles indexed in Scopus with keywords ‘electrocatalyst’
and ‘high entropy alloy’ published before the year 2024. We re-
strict our search to Open Access (OA) articles. This approach not
only aligns with our commitment to open science but also en-
sures compliance with copyright laws. Furthermore, in building
our word embedding model, we limit our analysis to the abstracts
of these papers, not the full texts, balancing depth of analysis
with the accessibility of data (See the Supplementary Bibliogra-
phy document).

For details of the implementation of MatNexus and its function-
ality, refer to our MatNexus repository on PyPI (https://pypi.
org/project/matnexus/)29.

All relevant codes, experimental datasets, and model predic-
tions are publicly accessible via GitHub (https://github.com/
lab-mids/ccss_word_embedding_prediction), ensuring that
our research can be validated, replicated, or expanded upon by
others.

3 Results

3.1 Dataset overview

This section provides an overview of the datasets used for model
training and prediction (Table 1, Table 2), Fig. 3, Fig. 4, Fig. 5).
The training datasets comprise two ternary systems (Ag-Pd-
Ru;Ag-Pd-Pt), the prediction target data set is their shared qua-
ternary system (Ag-Pd-Pt-Ru).

3.1.1 Ag-Pd-Ru system

The Ag-Pd-Ru system contains a range of element composition,
with Pd showing the highest compositional range from 23% to
87%, followed by Ru ranging from 0 % to 45 % and Ag from
10 % to 40 %. In terms of electrochemical performance, this sys-
tem shows a mean current in ORR of -0.278 mA at 850 mV. A
correlation analysis reveals a significant negative correlation of
Pd with electrochemical performance (-0.905), suggesting that
higher contents of Pd lead to improved performance (lower cur-
rent indicated better performance). Conversely, Ru and Ag show
positive correlations, +0.719 and +0.766 respectively, indicat-
ing that increases in their contents may not favor performance.
This suggests that optimizing Pd content while minimizing Ru
and Ag could enhance the system’s efficiency(Fig. 6,Fig. 7(a)),
in line with chemical intuition32.

3.1.2 Ag-Pd-Pt system

The Ag-Pd-Pt system exhibits a compositional range with Pd be-
tween 0 % and 47 %, Ag between 1 % and 70 %, and Pt between
17 % and 69 %.

The mean current at 850 mV for the Ag-Pd-Pt system is -
0.342 mA, displaying a slightly better performance compared to
the Ag-Pd-Ru system. The correlation analysis shows a strong
negative correlation with Pd (-0.771) and a very weak negative
correlation with Pt (-0.017), suggesting that Pt’s influence on per-
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Table 1 Comparative elemental composition across systems.

System Element Minimum Content (%) Maximum Content (%)
Ag-Pd-Ru Ag 10 40

Pd 23 87
Ru 0 45

Ag-Pd-Pt Ag 1 70
Pd 0 47
Pt 17 69

Ag-Pd-Pt-Ru Ag 3 39
Pd 0 28
Pt 0 56
Ru 7 67

0 20 40 60 80 100
Concentration (%)

3 39
0 27
0 56

7 67

Ag-Pd-Pt-Ru

1 69
0 46

17 68
Ag-Pd-Pt

9 40
22 86

0 45
Ag-Pd-Ru

Ag
Pd
Pt
Ru

Fig. 3 Compositional ranges of synthesised materials.

Table 2 Comparative metrics of current at 850mV across systems and their correlations with elements.

Metric Ag-Pd-Ru Ag-Pd-Pt Ag-Pd-Pt-Ru
Mean Current (mA) -0.278 -0.342 -0.159
Standard Deviation (mA) 0.114 0.098 0.074
Minimum Current (mA) -0.673 -0.583 -0.366
25% Quantile (mA) -0.348 -0.423 -0.195
Median (mA) -0.248 -0.372 -0.131
75% Quantile (mA) -0.189 -0.271 -0.110
Maximum Current (mA) -0.065 -0.063 -0.060
Correlation with Ag +0.766 +0.587 +0.440
Correlation with Pd -0.905 -0.771 -0.502
Correlation with Pt N/A -0.017 -0.771
Correlation with Ru +0.719 N/A +0.719
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Fig. 4 Current density ranges of synthesised materials.
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Fig. 5 Stacked step histogram of current density across the samples.
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Fig. 7 Color-coded plot of current density gradients in: (a) Ag-Pd-Ru system and (b) Ag-Pd-Pt system.
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formance is minimal. Ag’s positive correlation (+0.587) further
implies that, similar to the Ag-Pd-Ru system, increasing Ag con-
tent does not benefit the system’s performance (Fig. 8,Fig. 7(b)).

3.1.3 Ag-Pd-Pt-Ru system

The quaternary system displays a spread of elemental composi-
tion with Ru vary from 7 % to 67 %, Pd from 0 % to 28 %, Ag
from 3 % to 39 %, and Pt from 0 % to 56 %. (Table 1). The per-
formance metrics show a mean current of −0.159mA at 850 mV,
which is less negative than the other two systems, suggesting a
comparative decrease in performance (Table 2).

The correlation coefficients present a complex picture. Pd’s
negative correlation (−0.502) is less pronounced than in the other
systems, indicating its diminished influence in the presence of Pt,
which shows a strong negative correlation (−0.771) with the cur-
rent. This suggests that in this system, Pt plays a more critical
role in enhancing performance than Pd. Ru and Ag show positive
correlations, similar to the Ag-Pd-Ru system, suggesting their less
favorable impact on performance.

3.2 Results of method 1: GP Model with elemental compo-
sition

Table 3 and Fig. 10(a,b) present the results of the application
of Gaussian Process (GP) based solely on elemental composi-
tions. This approach demonstrates a baseline predictive capabil-
ity with an overall correlation coefficient (r) of 0.85 and a coef-
ficient of determination (R2) of 0.08. The mean electrochemical
current was measured at −0.16mA/cm2 with a standard devia-
tion of 0.07 mA/cm2. The model’s predictions deviate slightly,
with a mean predicted current of −0.22mA/cm2 and a compa-
rable standard deviation of 0.07 mA/cm2. This method demon-
strates a Mean Absolute Error (MAE) of 0.06 mA/cm2 and a Root
Mean Square Error (RMSE) of 0.07 mA/cm2, indicating a moder-
ate level of accuracy in the predictions.

3.3 Results of method 2: Enhanced GP model with material
vectors

The GP model’s performance significantly improved using a word
embedding-derived representation of materials as input (Table 3,
Fig. 10(a,c)). Most notably, the overall R2 increases to 0.65, in-
dicating that the model accounts for a much larger proportion of
the variance in the data. This suggests a significantly stronger
relationship between the predictions and actual measurements
when using material vectors. While the correlation coefficient (r)
slightly decreases to 0.83, the model’s ability to capture the gen-
eral trend of the dataset is markedly improved. This is evidenced
by the mean predicted current of −0.15mA/cm2, which closely
matches the actual mean current. Additionally, with a standard
deviation of 0.05 mA/cm2, the predictions are more precise com-
pared to the composition-based representation. Finally, the MAE
and RMSE values decreased to 0.03 mA/cm2 and 0.04 mA/cm2,
respectively, further confirming the improved accuracy of the
model using material vectors.

3.4 Results of method 3: Standard vector method

The standard vector approach which uses weighted vec-
tor representations of material properties results in very
promising improvements of the prediction (Table 3,F
ig. 10(a,d),Fig. S1,Fig. S2). Specific statistical metrics are
not provided for this model such as R2, MAE, or RMSE because
the mode does not predict the current directly but a similarity
measure which strongly correlates with the currents at 0.94.
This value proves a significant correlation with the quater-
nary system’s material performance, particularly in predicting
lower electrochemical currents, that is predicting compositions
with higher eletrocatalytic performance, which are promising
candidates for experimental assessment.

Figure 11 shows all model predictions in comparison to
the experimental data discarding outliers above a threshold of
−0.075mA/cm2 along a line across the CSML from the minimum
to the maximum of the activity. The location of the measured
data points are shown as gray background markers, the color-
coded line represents the continuous interpolation of current val-
ues across this direction. Figure 11 (b) shows the predictions
from the three models along the interpolated measured data. It is
notable that the GP model captures the non-linear behavior of the
data more effectively while the standard vector method exhibits
noticeable deviations w.r.t. the trend across the CSML.

4 Discussion

4.1 Interpretation of results

The outcomes of our study demonstrate that the choice of repre-
sentation in computational models is critical for prediction perfor-
mance. Model 1, GP based on elemental composition provides a
reference prediction. However, its comparatively lower predictive
accuracy (R2 of 0.08) suggest complex (nonlinear) interplay of
composition and catalytic performance in the quaternary system,
where interactions between elements may not be fully captured
using only a compositional representation.

Model 2, the GP model based on word-embedding based repre-
sentations of materials, shows a significant improvement in pre-
dictive accuracy (R2 of 0.65). We attribute this improvement to
the latent knowledge captured through word embedding repre-
sentations of the compositions. It demonstrates that the com-
plex interactions between materials beyond elemental composi-
tion can be captured in representations and effectively used for
prediction.

Model 3, the standard vector approach, further exploits re-
lationships of word embeddings by not directly predicting per-
formance but instead focusing on the optimization of a similar-
ity measure between materials vector representation and a stan-
dard vector based on known correlations of certain terms with
electrocatalytic performance and experimental data from the two
ternary systems. The high correlation (r) of 0.94 for specific con-
ditions indicates a success, emphasizing the method’s capability
to identify potential high-performing materials within a defined
extrapolation space. Our approach highlights the potential of
using latent knowledge from scientific literature about materials
and their relationships and represents a new approach for the
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Fig. 8 Color-coded plot of compositional gradients in Ag-Pd-Pt dataset
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Fig. 9 Color-coded plot of compositional gradients in Ag-Pd-Pt-Ru system.
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Table 3 Consolidated statistical analysis of actual vs. predicted electrochemical currents across different models.

Metric Gaussian Process (GP) GP with Embeddings Standard Vector Method
Mean (Actual) (mA/cm2) -0.16 -0.16 -0.16
Mean (Predicted) (mA/cm2) -0.22 -0.15 -
Standard Deviation (Actual) (mA/cm2) 0.07 0.07 0.07
Standard Deviation (Predicted) (mA/cm2) 0.07 0.05 -
Minimum (Actual) (mA/cm2) -0.37 -0.37 -0.37
Minimum (Predicted) (mA/cm2) -0.35 -0.07 -
Mean Absolute Error (MAE) 0.06 0.03 -
Root Mean Square Error (RMSE) 0.07 0.04 -
Overall coefficient of determination (r2) 0.08 0.65 -
Overall Correlation (r) 0.85 0.83 0.80
Correlation (r) for Current < -0.2 mA/cm2 0.63 0.60 0.94
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Fig. 10 Experimental results of Ag-Pd-Pt-Ru system (a) and prediction results using GP model (b), enhanced GP model with material vectors (c)
and standard vector method (d).
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Fig. 11 Interpolation results across the whole dataset: (a) Illustration of used line from the maximum and minimum current values with interpolated
results, (b) Experimental data and predictions from all models along the direction indicated in (a).

representation of materials in combination with experimentally
measured data. Nevertheless, the word embedding-based mate-
rial representation and the standard vector method offer greater
flexibility. Unlike the GP model, which is fixed to the specific
dataset, in particular its elements, the other approaches are ap-
plicable to other material compositions. Future work will explore
non-linear combinations which likely improve the accuracy of the
proposed standard vector approach.

4.2 Comparison with existing literature

Our findings resonate with and extend existing research in mate-
rials science, particularly the use of machine learning and vector-
based representations for materials prediction.33,34 Several stud-
ies have demonstrated the potential of machine learning models,
especially those incorporating innovative data representations,
to outperform traditional computational methods.35 Our work
aligns with these findings, showcasing the effectiveness of ma-
terial vectors for capturing complex interactions. However, we
introduce a unique focus on similarity measures combined with
word embedding-derived representations of materials, a less ex-
plored approach within materials property predictions.

4.3 Advantages of the proposed methods

Word embedding-based representations are directly combined
with experimental data to predict unknown, more complex
composition-property spaces. By using latent knowledge encoded
in word embeddings we counterbalance data scarcity typically
prevalent in experimental discovery campaigns, thereby acceler-
ating the discovery process.

Our standard vector approach introduces a novel approach
by focusing on ‘similarity’ rather than direct prediction. Our
method’s success in identifying high-performing materials based
on their similarity to an optimized standard vector highlights
based on experimental data is a tool for material selection and
discovery, especially in systems where direct performance data
may is scarce or hard to predict because of yet-unknown cor-

relations. In our approach, we combine reliable but expensive-
to-obtain experimental data with the fuzzy but cheap-to-obtain
correlations in word embeddings. Our ‘standard vector’ can be
viewed as a electrocatalysis-specific sequence of materials fea-
tures36 for specific materials systems and is particularly useful
in scenarios where data is scarce.

4.4 Limitations and challenges

While our methods demonstrate significant advancements, they
are not without limitations. For one, the word embeddings de-
pend on the corpus from which they are built. We have re-
stricted ourselves to literature with open access licenses. More
text data, e.g. from copyright-protected material, could in prin-
ciple improve word embeddings. The past and current publish-
ing routes, however, restrict usage of the knowledge in litera-
ture without special agreements with publishers. Second, we rely
on comprehensive and accurately labeled (ideally experimental)
datasets for training the models and finding the ‘standard vector’.
This, in general poses a challenge, particularly in material science,
where experimental data can be scarce, incomplete, or inconsis-
tent. Additionally, the complexity of the models, especially the
standard vector approach, may introduce difficulties in interpre-
tation and implementation, potentially limiting their accessibility
for broader application.

Future research will focus on addressing these limitations, pos-
sibly through the development of more robust models that can
handle even more sparse or noisy data, and the exploration of
methods to simplify model interpretations without sacrificing pre-
diction accuracy.

4.5 Implications for future research

Our study highlights the usefulness of material vectors based on
word embeddings and similarity measures for predicting mate-
rial performance, paving the way for advancements in materials
prediction for under-explored compositional spaces where partial
high-quality data already exists. Here are specific directions for
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future research:
Integration with experimental approaches: Combining these

computational methods with targeted experimental validation
can lead to iteratively more refined models and accelerated ma-
terials discovery. Experiments can verify predictions, identify re-
gions where models need improvement, and provide new data to
further enhance predictive power to include elements for predic-
tions of different properties.

Hybrid models: Combining our methods with other predic-
tive techniques like ab initio simulations or machine learning al-
gorithms37 could create more robust hybrid, multimodal mod-
els. These models could leverage the strengths of different ap-
proaches, potentially addressing shortcomings and enhancing
predictive accuracy across varied, multimodal datasets.

Complex material systems: The success shown in this study
encourages applying these methods to other properties of com-
plex material systems. These could include structural, energy
storage, magnetic properties, etc., i.e. any system where proper-
ties are mainly a function of composition and not of microstruc-
ture. In contrast to composition-based models as presented
here, the word embedding-derived representations allow arbi-
trary choices of elemental combinations. We expect that the near
future will allow to use more experimental data for refinement
of ‘standard vectors’. Provided more reliable data for specific
composition-property relationships is be available, ‘standard vec-
tors’ for specific use cases could be defined as references against
which new compositions could be assessed. New compositions
could then be judged w.r.t. (theoretical) suitability be useful for
a specific use case. If several such standard vectors can be de-
fined, new compositions could be assessed for their suitability for
multi-functional purposes.

5 Conclusions
Our study has successfully demonstrated the potential of machine
learning and vector analysis techniques in predicting materials
performance in ternary and quaternary compositionally complex
solid solutions based on parameter-free Gaussian Process (GP)
and literature-derived materials representations. The use of a GP
model with elemental composition established a baseline for pre-
dictive accuracy, achieving a coefficient of determination value
(r2) of 0.08. An improved version of the GP model based on
material vectors as representations for the composition derived
from literature mining marks a significant improvement, with
an improved r2 value of 0.65. However, the most notable ad-
vancement was achieved with our proposed similarity vector ap-
proach. This method, which relies on the construction and op-
timization of property vectors, demonstrates a remarkable corre-
lation with experimental outcomes, evidenced by a correlation
value of 0.94. The superior performance underscores the po-
tential of word embedding-based methods to leverage knowledge
and material correlations from existing literature.
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2. Model Predictions: Scripts for this paper are publicly accessible on Zenodo at 
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available on Zenodo at https://doi.org/10.5281/zenodo.13992986.

For additional information regarding dataset access or specific use, please contact the 
corresponding author.
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