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earity and complexity: deep
tabular learning approaches for materials science

Vahid Attari * and Raymundo Arroyave

Materials datasets, particularly those capturing high-temperature properties pose significant challenges for

learning tasks due to their skewed distributions, wide feature ranges, and multimodal behaviors. While tree-

based models like XGBoost are inherently non-linear and often perform well on many tabular problems,

their reliance on piecewise constant splits can limit effectiveness when modeling smooth, long-tailed, or

higher-order relationships prevalent in advanced materials data. To address these challenges, we

investigate the effectiveness of encoder–decoder model for data transformation using regularized Fully

Dense Networks (FDN-R), Disjunctive Normal Form Networks (DNF-Net), 1D Convolutional Neural

Networks (CNNs), and Variational Autoencoders, along with TabNet, a hybrid attention-based model, to

address these challenges. Our results indicate that while XGBoost remains competitive on simpler tasks,

encoder–decoder models, particularly those based on regularized FDN-R and DNF-Net, demonstrate

better generalization on highly skewed targets like creep resistance, across small, medium, and large

datasets. TabNet's attention mechanism offers moderate gains but underperforms on extreme values.

These findings emphasize the importance of aligning model architecture with feature complexity and

demonstrate the promise of hybrid encoder–decoder models for robust and generalizable materials

prediction from composition data.
1. Introduction

Predicting materials behavior is inherently challenging due to
the non-linear and interdependent relationships between alloy
chemistry, processing conditions, and properties. Tabular
materials data oen include dense numerical and sparse cate-
gorical features with weaker correlations and multi-modal
characteristics, making pattern recognition more difficult.
Deep learning has found success in tasks such as sequence-to-
sequence modeling and data reconstruction, and shows
promise in capturing complex dependencies for modeling
materials properties. However, applying deep learning models
to materials data presents unique challenges. In materials
science, physics-based relationships require explicit incorpo-
ration of domain knowledge, and the “black-box” nature of
these models limits interpretability. Their success also hinges
on the availability of large, high-quality datasets, which are
oen costly and scarce. Furthermore, the signicant computa-
tional demands of deep learning raise questions about its effi-
ciency compared to simpler methods like random forests or
physics-informed neural networks. Addressing these chal-
lenges is essential to fully harness the value of materials data for
advancing predictive modeling, improving design efficiency,
eering, Texas A&M University, College

amu.edu

the Royal Society of Chemistry
and complementing traditional physics-based approaches
(Fig. 1).1–7

Deep learning has shown remarkable promise across various
domains, including materials science, where it has been
successfully applied to predict mechanical properties of
alloys,6,8,9 discover new thermoelectric materials,7 and identify
phase transitions in complex multicomponent systems.10

However, while these successes highlight its potential, applying
deep learning to tabular data, which is prevalent in materials
science, presents unique challenges. Materials science data
oen spans multiple orders of magnitude, reecting the diver-
sity of material properties and phenomena. For example,
mechanical properties like yield strength range from tens
of MPa for polymers to thousands of MPa for metals and
ceramics, while electrical conductivity varies from as low as
10−16 S m−1 in insulators to 107 S m−1 for conductors like
copper. Similarly, thermal conductivity can range from less
than 0.1 W m−1 K−1 in insulators to over 1000 W m−1 K−1 in
materials like diamond, and diffusion coefficients vary from
10−25 m2 s−1 in solids at low temperatures to 10−8 m2 s−1 in
liquids. Even creep behavior spans orders of magnitude under
high-temperature conditions, inuenced by factors such as
stress, temperature, and microstructure.

Data scarcity, challenges in data preparation, predictive
accuracy, and interpretability are all vital considerations in
materials science applications to ensure that models provide
actionable insights for experimental validation. To tackle data
Digital Discovery, 2025, 4, 2765–2780 | 2765
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Fig. 1 Framework for materials data processing and insight generation. The diagram illustrates the complete workflow from data ingestion
through machine learning to visualization. The materials data ingestion panel (bottom left) shows data streams, privacy considerations, and
statistical distributions of ingested materials data. The datasets and tables (center) explicitly represent how the processed data, including
elemental compositions, processing parameters, and derived features are structured and passed into the machine learning models. The top
panels depict different encoder–decoder architectures: (a) autoencoder models for reconstruction tasks, (b) asymmetric encoder–decoder
models (FDN-R, DNF-Net, CNN) for feature transformation and mapping, (c) variational encoder–decoder models for handling uncertainty, and
(d) encoder–decoder models with attention mechanisms for interpretability. The workflow culminates in the visualization panel (far right),
highlighting property prediction insights such as heteroscedasticity analysis. Together, this framework integrates data reconstruction, trans-
formation, uncertainty quantification, and interpretability to support robust property prediction and materials informatics analysis.
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scarcity and condentiality concerns, generative approaches
like variational autoencoders (e.g. Tab-VAE11) or Tabular
Generative Adversarial Networks12 can be employed to create
synthetic datasets, enhancing model robustness. Tackling data
preparation for largely skewed features can be achieved using
robust transformations, such as quantile transformation or log-
scaling, to ensure features are more suitable for model
training.13,14 When paired with interpretable architectures15 and
efficient inference strategies,16 these methods can advance the
use of tabular materials data in scientic discovery and design.
Recent innovations, such as transformers and hybrid models
combining tree-based methods with neural networks, show
promise in overcoming these challenges. Transformers leverage
self-attention mechanisms to capture complex feature interac-
tions, offering an advantage for the heterogeneous and multi-
scale nature of materials data. However, inconsistencies in
benchmarking practices and unequal levels of optimization
hinder direct comparisons with traditional methods like
gradient-boosted decision trees (GBDT).17–21 To fully realize
their potential, deep learning models in materials science must
balance predictive accuracy with alignment to domain-specic
physical principles and interpretability. Achieving this will
require improved benchmarking frameworks, access to diverse
and high-quality datasets, and the integration of domain
2766 | Digital Discovery, 2025, 4, 2765–2780
knowledge into model development. These advancements
could close the performance gap with traditional methods and
enable deep learning to address the unique demands of mate-
rials science and unlock its potential for solving complex
problems.

Several emerging neural architectures, inspired by concepts
from the encoder–decoder and other hybrid methods, have
shown promise in addressing the limitations of traditional
models, particularly in handling tabular data workows. For
example, TabNet enhances interpretability and performance by
dynamically selecting relevant features through attention
mechanisms.22 Neural Oblivious Decision Ensembles (NODE)
combine decision rules with neural networks to efficiently
model feature interactions.17 FT-Transformers and TabTrans-
former employ self-attention to capture complex relationships
between numerical and categorical features.23,24 Hybrid
approaches like DeepGBM integrate gradient-boosting
machines with neural networks to combine feature trans-
formation and prediction.25 These advancements, along with
models like Wide and Deep Networks26 and DNF-Net (Disjunc-
tive Normal Form Networks),27 improve scalability, interpret-
ability, and predictive performance, positioning them as robust
alternatives to traditional methods.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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In this work, we evaluate the potential of several deep
learning architectures to outperform traditional GBDTs in
accuracy and efficiency when applied to materials science
tabular datasets. Our ndings demonstrate that neural archi-
tectures tailored for tabular data can effectively handle the
complexity and wide range of property scales oen encountered
in materials science. Beyond static datasets, these models
exhibit promise in processing streams of data generated from
high-throughput experiments or autonomous systems, making
them particularly relevant for real-time analysis. Additionally,
their ability to capture intricate dependencies and handle
complex, multimodal distributions positions them as critical
tools for addressing the inherent variability in materials data.
These advancements also align with the principles of FAIR
(Findable, Accessible, Interoperable, and Reusable) data,
ensuring that the insights derived from these models can be
leveraged across diverse research and industrial contexts. In
Section 2, we detail the architectures and approaches used in
this study, while Section 4 compares the performance of deep
learning models and GBDTs, highlighting their respective
strengths in handling complex materials datasets.

2. Methods for tabular data
2.1. Baseline encoder–decoder pipeline

The encoder–decoder model is widely recognized for its ability
to reconstruct data and capture complex relationships between
features by learning a latent representation. For regression
tasks, it can be adapted to learn complex input space and
predict continuous output values. The encoder maps the input
data X into a latent space Z, which can either have a lower-
dimensional representation (undercomplete model) or
a higher-dimensional representation (overcomplete model) for
rich representative learning. The decoder then maps Z to the
predicted output Ŷ. These transformations are dened as:

Z = fq(X), Ŷ = gf(Z), (1)

where the model is trained by minimizing a loss function L,
which measures the difference between the predicted output Ŷ
and the target data Y. The objective is to nd the parameters q
and f that minimize the following:

min
q;f

L
�
Y; Ŷ

�
¼ L

�
Y; gfðfqðXÞÞ

�
(2)

Training is typically performed using gradient-based
methods. Aer training, the model can be used to transform
new data Xnew into predictions Ŷnew:

Ŷnew = gf(fq(Xnew)) (3)

This baseline encoder–decoder approach is not inherently
interpretable, primarily due to the lack of transparency in its
latent representations. However, with attention mechanisms,
feature analysis tools, and visualizations, it can become
explainable, providing some insights into its decision-making
process. Next, we will discuss three neural network
© 2025 The Author(s). Published by the Royal Society of Chemistry
architectures: regularized fully connected dense networks,
Disjunctive Normal Form Networks (DNF-Nets), and Convolu-
tional Neural Networks (CNN). These architectures, when
combined with encoder–decoder frameworks, can enhance
prediction accuracy by leveraging latent space representations
and reducing noise. Interpretability is further improved
through feature selection in DNF-Nets and lter visualization in
1D-CNNs. Interpretability ensures trust and accountability by
enabling the understanding of model predictions, feature
importance, and decision-making processes, which is particu-
larly crucial for debugging models, achieving regulatory
compliance, and gaining user acceptance.28,29

2.1.1. Regularized dense neural network block. A fully
dense neural network, also known as a fully connected or
feedforward network, is a foundational deep learning architec-
ture that remains widely used for solving diverse machine
learning problems across various dataset types.30 In this archi-
tecture, each neuron in one layer connects to every neuron in
the next, allowing the model to capture complex, non-linear
relationships between features. For a given input vector x, the
output of the i-th layer is computed as:

yi = f(Wix + bi) (4)

where Wi is the weight matrix, bi the bias term, and f a non-
linear activation function such as ReLU, sigmoid, or tanh.
Multiple layers rene the data representation, improving model
predictions. The parameters q include the weight matrices,
biases, and, if applicable, trainable activation parameters like
the slope a in LeakyReLU. Regularization terms, such as the L2
coefficient l, help control overtting by penalizing large
weights. These parameters collectively determine how the dense
block processes and learns from data. Fully connected layers are
not transparent, offering little insight into their decision-
making process.31

2.1.2. Disjunctive normal form (DNF) block. A DNF
network block is a neural network architecture designed to
model logical structures, similar to decision trees, making it
interpretable and efficient for capturing complex relationships
in tabular data. The DNF block operates by combining multiple
logical conjunctions (AND conditions), which are then aggre-
gated using disjunctions (OR conditions). Each conjunction
represents feature interactions modeled through linear trans-
formations and activation functions, mimicking the behavior of
a logical AND operation. The outputs of these conjunctions are
then aggregated to form a disjunction, effectively modeling
a logical OR operation. This hierarchical structure enables the
DNF block to identify and represent complex feature relation-
ships in a manner that is both interpretable and computa-
tionally efficient. Key parameters of a DNF block include the
number of clauses (representing distinct logical interactions),
the number of literals per clause (dening how many features
contribute to each interaction), the choice of activation function
(e.g., ReLU or Sigmoid), and regularization techniques such as
dropout to prevent overtting. This structure makes DNF
particularly suitable for applications requiring interpretability
and robust modeling of feature interactions.
Digital Discovery, 2025, 4, 2765–2780 | 2767
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2.1.3. 1D-convolutional neural network block. A 1D-
Convolutional Neural Network (1D-CNN) block is specically
designed to extract local patterns from sequential or ordered
data, such as time series or audio signals.32 The architecture
employs convolutional lters that slide across the input data,
capturing localized features through a combination of linear
transformations and non-linear activation functions. These
lters enable the model to detect patterns such as trends or
periodicities, which are essential for understanding structured
data. Typically, the convolutional layers are followed by pooling
layers that down-sample the data, reducing computational
complexity while preserving critical information. This hierar-
chical structure allows 1D-CNNs to progressively capture more
abstract patterns as the data ows through deeper layers.
Parameters of the model include the weights of the convolutional
lters, biases, and the choice of activation functions, such as
ReLU, which introduces non-linearity to themodel. 1D-CNNs can
be combined with fully connected layers to rene feature repre-
sentations, making them versatile for a variety of tasks. Recent
advancements have demonstrated the efficacy of these neural
network blocks in competitions and real-world applications by
leveraging shortcut connections and innovative architectures to
improve feature extraction and accuracy, particularly in domains
where spatial locality is less pronounced, such as tabular data.

2.2. TabNet: attentive interpretable tabular learning

TabNet employs a sequential attention mechanism to dynami-
cally select the most relevant features at each decision step,
enabling it to efficiently capture complex relationships in tabular
datasets.22 Unlike traditional fully connected neural networks,
TabNet performs feature selection dynamically, mirroring the
interpretability of decision tree models while retaining the exi-
bility and power of neural networks. The TabNet encoder is
composed of a feature transformer, an attentive transformer and
feature masking. A split block divides the processed representa-
tion to be used by the attentive transformer of the subsequent
step as well as for the overall output. TabNet decoder is
composed of a feature transformer block at each step. Attention
mechanisms have emerged as a pivotal architectural element in
deep neural networks (DNNs), signicantly enhancing their
interpretability.31 This mechanism ensures that the outputs from
one step guide the feature selection process for subsequent steps.
By iteratively rening feature selection and transformation across
multiple steps, this model's parameter set encompasses weight
matrices, bias terms, and parameters for the attention mecha-
nism, which collectively determine the feature selection and
transformation process. To prevent overtting, regularization
techniques such as L2 regularization and sparsity-inducing
penalties are commonly applied.

2.3. Generative tabular learning using VAE

The deterministic design of classical encoder–decoder models
limits their ability to generate diverse outputs, constraining
their effectiveness in capturing and navigating complex data
distributions. A VAE shares an encoder–decoder structure, but
extends it by incorporating probabilistic modeling in the latent
2768 | Digital Discovery, 2025, 4, 2765–2780
space, making it ideal for cases where uncertainty in predictions
is important and generative tasks. The encoder transforms the
input X into a distribution over the latent space, rather than
a single point. Specically, the encoder outputs the mean mi and
variance si

2 for the latent variable z:

zi ¼ mi þ si � 3; 3 � N ð0; 1Þ (5)

where zi represents a latent variable sampled from the distri-
bution, mi and si are learned parameters that describe the mean
and variance, and 3 is a random noise sampled from a standard
normal distribution, enabling stochasticity in the latent space.
The decoder then maps the data by mapping the latent variable
zi back to the output space:

ŷi = fdecoder(Wizi + bi) (6)

where fdecoder is a non-linear transformation (e.g., a fully con-
nected layer with ReLU),Wi represents the weight matrix for the
decoder, and bi is the bias term.

The objective of the variational encoder–decoder is to
maximize the evidence lower bound (ELBO), which consists of
two terms: the reconstruction loss (e.g., mean squared error
between the input x and the reconstruction ŷ) and the Kullback–
Leibler (KL) divergence between the learned latent distribution
and a standard normal distribution. The full loss function can
be written as:

L ¼ EqðzjxÞ½log pðyjzÞ� �DKLðqðzjxÞkpðzÞÞ (7)

The parameter set q in a variational encoder–decoder block
includes the weights and biases of the encoder and decoder, the
mean and variance parameters mi and si, and any regularization
terms used to control overtting.
2.4. Extreme gradient boosting

Extreme Gradient Boosting (XGBoost) is a powerful ML algorithm
based on decision trees, optimized for speed and performance. It
belongs to the family of boosting algorithms, where multiple
weak learners (typically decision trees) are combined sequentially
to form a strong predictive model.33 XGBoost works by tting
a new tree to correct the errors of the previous trees, iteratively
improving the model's predictions. Given an input vector x, the
output of the model at step t is computed as:

ŷt ¼
Xt

i¼1

fiðxÞ (8)

where fi(x) represents the prediction from the i-th tree, and ŷt is
the cumulative prediction at step t. The trees are added one by
one to minimize the residual errors of the previous trees.
XGBoost optimizes a regularized objective function that consists
of a loss term and a regularization term to prevent overtting:

L ¼
Xn
i¼1

‘ðyi; ŷiÞ þ
XT
k¼1

UðfkÞ (9)

where ‘ðyi; ŷiÞ is the loss function, which measures the differ-
ence between the true label yi and the predicted label ŷi, and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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U(fk) is a regularization term that controls the complexity of
each tree, penalizing large trees to avoid overtting. The
parameter set q for XGBoost includes the weights of the decision
trees, the regularization coefficients (L1, L2), and the learning
rate, which controls how quickly the model adapts to errors
during training where L1 (lasso) encourages sparsity by penal-
izing the absolute sum of weights, and L2 (ridge) discourages
large weights by penalizing the squared sum.

3. Implementation and optimization
of models
3.1. Bayesian hyperparameter optimization

The predictive performance and generalization ability of ML
models, particularly deep learning architectures, are highly
sensitive to their hyperparameters.34 Examples include the
number of layers, learning rate, dropout rate, and regularization
parameters. To systematically explore these, we employed the
tree-structured Parzen estimator (TPE), a versatile Bayesian opti-
mization algorithm, implemented via the Optuna framework.35–38

The objective was to minimize the loss function f(x):

xopt˛arg min
x˛X

f ðxÞ (10)

where xopt denotes the set of hyperparameters yielding the best
performance. Compared to exhaustive grid or random search,
TPE efficiently concentrates sampling in promising regions of
the hyperparameter space, signicantly reducing computa-
tional cost.

We performed hundreds of optimization trials per dataset,
tuning between 5 and 10 hyperparameters depending on the
architecture. These parameters and their range are listed in
Table S4. Each trial was evaluated over a xed training duration
of 50 epochs (or number of boosting rounds for XGBoost),
rather than using early stopping, to ensure fair comparison of
convergence behavior. To test the signicance of performance
differences across models, we applied Friedman's test at a 95%
condence level.

Prior to optimization, we quantied rst- and higher-order
statistics of each feature, such as mean, standard deviation,
skewness (asymmetry), and kurtosis (tailedness). These
moments informed our expectations for model learning chal-
lenges, such as handling heavy-tailed or skewed distributions.

To evaluate generalization, we applied a standard random
split strategy, typically reserving 10–15% of the data as a hold-
out test set, with the remaining data used for training and
internal validation during hyperparameter optimization. In
cases where the dataset was small, the validation and test sets
occasionally overlapped, serving as a pragmatic compromise to
assess performance. K-fold cross-validation was subsequently
applied using the best hyperparameters to rotate the test split,
offering a more comprehensive assessment and reducing vari-
ance in performance estimates.

3.2. Evaluation metrics

Model performance was evaluated using a range of regression
metrics designed to capture different aspects of prediction
© 2025 The Author(s). Published by the Royal Society of Chemistry
error, tailored to the challenges of materials datasets. For
targets spanning multiple orders of magnitude, we employed
scale-normalized metrics such as the Mean Squared Loga-
rithmic Error (MSLE) and the Symmetric Mean Absolute
Percentage Error (SMAPE) to balance contributions across
scales. Standard measures like Mean Squared Error (MSE) and
Root Mean Squared Error (RMSE) were also reported to main-
tain comparability with common benchmarking practices.

We note that while SMAPE is valuable for normalizing errors
relative to the combined magnitude of predictions and true
values, it introduces slight asymmetry that can favor over-
predictions. To complement accuracy-focused metrics, we
further assessed optimization efficiency and stability through
average convergence rates, calculated as the mean relative
improvement in loss across successive trials, highlighting how
quickly each model approached its best performance. Table 1
summarizes the formal denitions of these metrics.
3.3. Hyperparameter importance

To further understand the interplay between data characteris-
tics and model design, we analyzed the importance of each
hyperparameter in driving performance improvements. Hyper-
parameter importance was computed using functional ANOVA
(fANOVA) as implemented in Optuna, which estimates the ex-
pected change in the objective function when varying one
hyperparameter while holding others near their optimal values.
This helps identify which hyperparameters most inuence
model loss, guiding future tuning efforts and clarifying why
certain architectures may exhibit greater sensitivity to optimi-
zation (as evidenced by steeper convergence rates or more
variable trial outcomes).

By comparing hyperparameter importance proles across
models and datasets, we could directly connect these insights
back to our earlier statistical characterization (skewness,
kurtosis, and combined complexity measure jskewj + jkurt− 3j),
illustrating how data distribution properties impacted the
relative tuning needs of different architectures.
4. Results and discussion
4.1. Datasets: ATLAS-RHEA, BIRDSHOT, and MPEA

The ATLAS-RHEA dataset39 comprises comprehensive compu-
tational and experimental data for 10 626 refractory HEA
compositions, emphasizing creep behavior and thermophysical
properties. It includes 71 features, such as elemental compo-
sitions (e.g., Nb, Cr, V, W, Zr), thermal/mechanical properties
(e.g., coefficients of thermal expansion, thermal conductivity),
and phase stability metrics across various temperatures. The
dataset also covers creep metrics over time intervals (25–2000
minutes) and temperatures (1300 K–2000 K), along with Kou
Criteria for phase stability. While minor data gaps exist in some
properties (e.g., PROP LT, PROP ST, Kou Criteria, ∼11%
incomplete entries), the dataset provides a valuable resource for
exploring structure–property relationships and optimizing
high-performance refractory alloys.
Digital Discovery, 2025, 4, 2765–2780 | 2769
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Table 1 Evaluation metrics highlighting various aspects of prediction accuracy in materials informatics

Metric Formula

Mean squared logarithmic error (MSLE) 1

n

Xn
i¼1

ðlogðyi þ 1Þ � logðŷi þ 1ÞÞ2

Root mean squared logarithmic error (RMSLE)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

logðyi þ 1Þ � logðyi þ 1Þ2
s

Logarithmic coefficient of determination (log R2)
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Table 2 summarizes key rst-order statistics, highlighting
skewness and kurtosis as important factors inuencing model
performance. For instance, the Cobalt creep resistance at 1300 °
C in the ATLAS-RHEA dataset exhibits extreme skewness (39)
and kurtosis (1500), reecting a highly non-normal distribution
with substantial outliers. These properties underscore the
necessity for targeted pre-processing techniques, such as log or
quantile transformations. Additionally, robust models capable
of managing extreme outliers may be required. In contrast,
features with lower skewness and kurtosis, such as yield
strength 1000 °C or pugh ratio, display distributions closer to
normality, making them suitable for direct use in training
without extensive preprocessing. These features are less likely to
cause instability in the trained models and typically contribute
to more reliable and consistent predictions. Features with
moderate skewness and kurtosis, such as Scheil LT and Kou
criteria, suggest some degree of asymmetry and outliers, which
could still impact model performance if not accounted for
during pre-processing.
Table 2 ATLAS-RHEA dataset: first-order statistical summary including

Feature Mean Std. dev. Min Max

Nb 0.22 0.19 0.00
Cr 0.21 0.18 0.00
V 0.22 0.19 0.00
W 0.14 0.11 0.00
Zr 0.21 0.18 0.00
YS 1000 °C 1170.58 637.06 0.00 33
EQ 1273 K THCD (W mK−1) 14.11 12.95 0.02
EQ 1273 K density (g cm−3) 9.59 1.77 6.05
1300 min creep CB (1 s−1) 0.00 0.10 0.00
PROP 1500 °C CTE (1 K−1) 0.00 0.00 0.00
YS 1500 °C PRIOR 807.87 497.41 0.00 26
Pugh ratio PRIOR 2.60 0.51 1.45
SCHEIL LT 1620.39 163.87 1507.01 23
Kou criteria 353.63 402.90 0.13 46
Creep merit 77 876.76 431 904.11 −825.33 10 135 0

2770 | Digital Discovery, 2025, 4, 2765–2780
The BIRDSHOT dataset40 currently contains detailed infor-
mation on 147 non-equimolar Cantor high-entropy alloys
(HEAs), focusing on their composition, processing parameters,
and mechanical properties. Each alloy is characterized by its
elemental fractions (Al, Co, Cr, Cu, Fe, Mn, Ni, V) and evaluated
for key properties such as YS, ultimate tensile strength (UTS),
tension elongation, and hardness. The dataset also includes
computationally derived parameters such as stacking fault
energy, valence electron concentration, and the Pugh ratio,
providing insights into the alloys' mechanical behavior and
stability. For example, the yield strength of the alloys ranges
from 310 MPa to 537 MPa, while tension elongation varies from
18.3% to 25.7%. First-order statistics for this dataset is
summarized in Table 3.

Despite its comprehensive nature, the dataset includes
minor missing data across key properties. Measured properties
like YS and UTS have 141 complete entries (∼96%), while
computed parameters such as stacking fault energy, valence
electron concentration, and hardness are available for 131
skewness and kurtosis of some features

Median 25% 75% Skewness Kurtosis Complexity

0.95 0.20 0.05 0.35 0.909 3.289 1.20
0.95 0.15 0.05 0.30 0.955 3.458 1.41
0.95 0.20 0.05 0.35 0.940 3.400 1.34
0.90 0.10 0.05 0.20 0.699 3.143 0.84
0.90 0.15 0.05 0.30 0.915 3.300 1.21

99.29 1111.17 673.36 1599.91 0.478 2.742 0.74
62.92 9.27 3.43 22.70 0.974 3.009 0.98
16.94 9.33 8.29 10.65 0.773 3.563 1.34
4.01 0.00 0.00 0.00 39.012 1524.244 1560.26
0.00 0.00 0.00 0.00 1.124 3.353 1.48

89.29 738.53 415.22 1127.56 0.656 2.995 0.66
4.52 2.56 2.23 2.92 0.390 2.914 0.48

53.37 1541.34 1529.62 1599.97 1.954 5.858 4.81
56.12 240.34 62.72 463.10 2.184 9.764 8.95
45.82 507.71 40.83 6176.66 11.793 199.473 208.27

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Birdshot dataset: first-order statistical summary including skewness and kurtosis for experimental data, contained 147 rows on March
2025

Feature Mean Std. dev. Min Max Median 25% 75% Skewness Kurtosis Complexity

Al 1.68 2.34 0.00 15.00 0.00 0.00 4.00 1.564 8.058 6.62
Co 18.57 14.24 0.00 75.00 16.00 8.00 25.00 1.014 4.235 2.25
Cr 7.84 6.32 0.00 25.00 8.00 4.00 10.00 0.875 3.225 1.10
Cu 1.63 3.88 0.00 24.00 0.00 0.00 2.00 3.531 16.961 17.49
Fe 15.07 11.89 0.00 75.00 15.00 5.00 20.00 1.686 7.613 6.30
Mn 5.33 8.10 0.00 40.00 0.00 0.00 8.00 1.602 5.256 3.86
Ni 39.28 14.23 0.00 75.00 40.00 31.00 50.00 −0.521 3.051 0.57
V 10.59 8.17 0.00 30.00 10.00 4.00 15.50 0.545 2.252 1.29
Yield strength (MPa) 388.41 125.27 176.82 790.00 367.00 282.19 460.50 0.630 2.802 0.83
UTS true (MPa) 952.40 239.12 333.00 1581.00 958.00 802.50 1096.62 0.012 2.867 0.15
Elongation (%) 33.65 12.12 0.00 55.70 34.00 26.10 42.25 −0.627 3.307 0.93
Hardness (GPa) SRJT 2.52 0.67 1.63 6.04 2.39 2.09 2.77 2.516 12.689 12.21
Modulus (GPa) SRJT 196.84 22.44 141.59 263.51 193.38 180.73 212.70 0.216 2.798 0.42
Avg HDYN/HQS 1.15 0.04 1.06 1.25 1.15 1.13 1.17 −0.107 3.008 0.11
Depth of penetration (mm) FE 2.86 0.27 2.22 3.46 2.87 2.66 3.05 −0.140 2.429 0.71
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samples (∼89%). While the dataset remains highly usable,
handling these missing values through imputation or focusing
on well-reported features will be critical for accurate analysis
and predictive modeling. The dataset contains 22 features,
capturing both experimental and computational results, and is
suitable for developing predictive models, investigating struc-
ture–property relationships, and advancing the discovery of
novel high-performance alloys.

The Multi-Principal Element Alloy (MPEA) dataset41 contains
information on 1545 alloys across 23 columns, focusing on
chemical composition, microstructure, processing methods, and
mechanical properties. Key attributes include alloy formula,
microstructure classication (e.g., FCC, BCC, or mixed phases),
grain size, processing methods (e.g., casting), and mechanical
properties such as hardness (HV), YS, UTS, elongation, and
Young's modulus. The dataset also includes test conditions (e.g.,
temperature, test type), computationally derived parameters (e.g.,
calculated density and Young's modulus), and bibliographic
details such as DOI references and publication metadata. The
rst-order statistics about this dataset is summarized in Table S3.

The dataset exhibits signicant variability in data
completeness, with properties like grain size (∼15%), hardness
(∼34%), and elongation (∼40%) moderately reported, while
others, such as experimental density (∼7%) and Young's
modulus (∼9%), are highly sparse. Elemental contamination
data (e.g., oxygen, nitrogen, and carbon content) are particularly
limited, with only 57, 45, and 4 entries, respectively. These data
gaps may introduce biases and limit usability for certain anal-
yses. Well-reported features like yield strength (∼69%) and
processing methods can be prioritized for modeling, while
missing values in moderately sparse features may be addressed
using imputation. Highly sparse features, such as carbon
content, should be treated cautiously or excluded from predic-
tive tasks to ensure result integrity.
4.2. Hyperparameter optimization: ATLAS-RHEA data

We selected the Kou criterion for single-feature hyperparameter
optimization due to its relatively high statistical complexity,
© 2025 The Author(s). Published by the Royal Society of Chemistry
characterized by notable skewness (2.2) and kurtosis (6.8).
These properties make it a challenging yet informative objec-
tive, which is advantageous for evaluating model's ability to
explore a broader and less symmetric parameter space effec-
tively. Fig. 2a shows the variance in model performance during
hyperparameter optimization, comparing multiple encoder–
decoder regressor architectures with VAE and XGBoost con-
ducted using BO. The y-axis represents the objective value on
a log scale, while the x-axis shows the number of trials, sorted by
their objective performance. The goal is to minimize the loss,
with lower curves indicating better optimization results. The
individual convergence plots (Fig. 2a) reveal model-specic
responses to BO, offering insights beyond the sorted view. The
optimization speed and behavior vary signicantly across the
models. Both the FDN-R and DNF models exhibit rapid initial
improvements, with sharp drops in objective values within the
rst 20–30 trials, quickly converging to stable solutions. In
contrast, models like VAE and XGBoost show slower, more
gradual improvements across trials, requiring more extensive
exploration to identify optimal congurations. This variation in
convergence speed has practical implications: while FDN-R and
DNF can quickly nd strong solutions with fewer trials, models
like VAE and XGBoost benet from longer optimization runs to
thoroughly explore their parameter spaces. Understanding
these differences is crucial for efficiently allocating computa-
tional resources during hyperparameter tuning, particularly
when scaling to larger datasets.

Table 4 highlights the tailored hyperparameter congura-
tions across models. To reduce the hyperparameter search
space and streamline optimization, the number of layers in
both the encoder and decoder is initially xed. This strategy is
effective when a baseline architecture demonstrates satisfactory
performance. As model development advances, relaxing this
constraint allows the architecture to adapt to data-specic
complexity and potentially enhance generalization. This exi-
bility becomes particularly important when optimizing models
for datasets with varying feature dimensions and complexity,
such as BIRDSHOT and MPEA. As Table 4 shows the FDN-R and
Digital Discovery, 2025, 4, 2765–2780 | 2771
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Fig. 2 Bayesian hyperparameter optimization history across models (left) based on ATLAS-RHEA data and target properties (right) based on
BIRDSHOT data. Embedded labels (a1–a6 and b1–b6) correspond to individual model or target plots. (a) ATLAS-RHEA dataset: optimization
history bymodel. (a) Shows sorted trials across all models. (a1–a6) Correspond to FDN-R, DNF, 1D CNN, VAE, TabNet, and XGBoost, respectively.
(b) Birdshot HEA dataset: optimization history by target feature. (b) Shows combined trial history, followed by (b1–b6): yield strength, UTS, elastic
modulus, hardness, elongation, and HDYN/HQS ratio.

Table 4 Best Hyperparameters for different models using ATLAS-RHEA dataset

Study name Layers
Latent
dim

Drop-out
rate

Learning
rate Optimizer

Batch
size Epochs Additional hyperparameters

Regularized
FDN-R

Fixed 192 0.1 1.26 × 10−4 adam 96 50 l = 3.69 × 10−6, a = 0.0164

DNF 64 0.1 5.39 × 10−4 adam 32 50 n_conj = 10, conj_units = 112
CNN 64 0.1 3.77 × 10−4 adam 32 50 Kernel size = 4
TabNet — — 4.24 × 10−3 RMSprop 72 50 nd = 24, na = 32, l = 7.98 × 10−4

VAE 16 0.2 3.58 × 10−4 adam 128 50 l = 2.87 × 10−5, a = 0.045
XGBoost — — 9.58 × 10−2 — — — n_estimators= 50, max depth= 10
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DNF employ smaller learning rates (∼10−4) compared to the
higher rates used by TabNet and XGBoost (∼10−2). Batch sizes
also vary, with DNF using smaller batches (32), while VAE
benets from larger batches (128). Regularization terms (l) are
applied in FDN-R, DNF, and VAE to prevent overtting. Adam is
the preferred optimizer for most models, except for TabNet,
which beneted using RMSprop. Additionally, architecture-
specic parameters like conjunction units (112) are critical for
DNF performance.

Fig. 2b illustrates the target-wise hyperparameter optimiza-
tion history for the BIRDSHOT HEA dataset using the FDN-R
model. Rather than optimizing across multiple models, the
focus here is on individual target properties, such as yield
strength, ultimate tensile strength, elastic modulus, hardness,
2772 | Digital Discovery, 2025, 4, 2765–2780
elongation, and the HDYN/HQS ratio, each treated as a distinct
regression task. The objective value, SMAPE, exhibits different
convergence behaviors depending on the target, highlighting
the varying difficulty and noise levels associated with predicting
each property. This target-based optimization approach is more
appropriate in this context, as it allows ne-tuning of the FDN-R
model architecture and learning parameters to the specic
statistical characteristics of each property, thereby maximizing
predictive performance due to small nature of this dataset and
ensuring model generalization across diverse features.

Fig. 3 shows the hyperparameter importance for all investi-
gated models. The hyperparameter importance quanties the
average inuence of each hyperparameter on the optimization
objective (loss), estimating how much the loss increases when
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Ranking of hyperparameter importance for differentmodels, where importance reflects the average increase in the optimization objective
(loss) when each hyperparameter is perturbed from its best value. Panels show results for: (a) DNF, (b) FDN-R, (c) CNN, (d) VAE, (e) TabNet, and (f)
XGBoost. In panel (d), the inset plot is a separate trial conducted with a fixed optimizer to show the sensitivity of the VAE model to other
hyperparameters. (g) The enclosed table summarizes the best loss values, selected optimizers, trial durations, test set R2, and average
convergence rates for each model trained on the “Kou Criteria” feature. Convergence rates appear as negative because they represent
reductions in loss across trials; larger magnitudes indicate faster decreases but may also suggest increased sensitivity to hyperparameter tuning.
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that hyperparameter is varied across its sampled range while
others are held near optimal. Each subplot shows the relative
importance of various hyperparameters in determining model
performance, providing insights into which parameters have
the greatest impact on the objective value during optimization.
For example, the DNF and FDN-R models (Fig. 3a and b) high-
light distinct hyperparameters as the most inuential, whereas
the CNN and VAE models (Fig. 3c and d) demonstrate different
sensitivity patterns. The variation in hyperparameter impor-
tance across models underscores the unique tuning needs of
each architecture.

Among the hyperparameters tuned, the optimizer choice
oen emerged as particularly inuential, likely due to its direct
role in controlling how model weights are updated during
training. Optimizers like Adam and RMSprop can signicantly
inuence convergence speed, training stability, and the quality
of the nal solution by adapting learning rates and managing
gradients effectively. This adaptability oen makes the opti-
mizer more impactful than other hyperparameters like dropout
rate or batch size, which primarily regulate model complexity or
regularize training without fundamentally altering the learning
process.

For FDN-R architecture, the type of optimizer (Adam, SGE,
Adadelta) has signicant impact on the model performance,
contributing 100% to the objective value's reduction. If we x
the optimizer to adam, themost important hyperparameters are
the latent dimension contributing 75%, learning rate contrib-
uting 11%, and negative slope of activation function contrib-
uting 6%, and the rest of the parameters show minor
© 2025 The Author(s). Published by the Royal Society of Chemistry
importance. The FDN-R model shows consistent improvement
across multiple runs with the best hyper-parameters, with
progressively lower validation losses. Friedman's test reveals
a signicant difference in performance between the runs, with
a test statistic of 191.176 and a p-value of 1.11 × 10−18, indi-
cating that the observed performance variations are statistically
meaningful. This suggests that factors such as random initial-
ization or data splits may inuence the model's performance,
warranting further investigation to enhance consistency. Alter-
natively, for VAE, the results of Friedman's test, with a test
statistic of 28.70 and a p-value of 0.052, suggest that there is no
statistically signicant difference in the performance of the
model across multiple training runs at a 95% condence level.
Although the p-value is close to the threshold of 0.05, it is
slightly higher, indicating that we cannot reject the null
hypothesis of no signicant difference. This implies that the
variations observed in the validation loss across the runs are
likely due to random chance rather thanmeaningful differences
in the model's performance.

The enclosed table in Fig. 3 offers key insights into model
performance, highlighting variations in optimization efficiency,
test R2 values, and average convergence rates. We dene the
convergence rate as the average relative improvement in the
objective value across successive trials, calculated by
Li�1 � Li
Li�1

� 100, where Li denotes the loss at trial i. A larger

magnitude of this metric (appearing as more negative in our
plots, reecting sharper decreases) indicates faster reductions
in loss, typically when the hyperparameter search discovers
Digital Discovery, 2025, 4, 2765–2780 | 2773
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narrow optimal regions. While such behavior accelerates
convergence, it may also imply increased sensitivity to specic
hyperparameter settings, which could impact both the robust-
ness of optimization and the reproducibility of scientic results.
In many high-throughput or industrial settings, consistent and
stable model behavior, without extensive hyperparameter
retuning, is essential to maintain both operational efficiency
and scientic precision. Models that depend heavily on nely
tuned parameters, reected by large convergence jumps, may
therefore be less suitable for rapid deployment pipelines.

Among the models evaluated, XGBoost emerges as particu-
larly well-suited for high-throughput or industrial applications.
It achieves a competitive loss value (0.00327) and solid test set
R2, while demonstrating the shortest trial duration (0.63
seconds) and a moderate convergence rate (−75.2%) that
suggests reliable optimization without reliance on extremely
narrow hyperparameter congurations. In contrast, although
the DNFmodel attains the lowest loss (0.00316) and highest test
R2 (0.962), its steep convergence trajectory (−232.7%) and
greater sensitivity to hyperparameter selection could complicate
use in workows that demand reproducibility and minimal
tuning. TabNet and VAE, while offering valuable features such
as interpretability or probabilistic exibility, are characterized
by longer trial durations and less stable convergence behavior,
which may limit their practicality in time-sensitive applications.
These insights help guide model selection by emphasizing the
trade-offs between predictive performance, optimization
stability, computational demands, and the need for scientic
accuracy across repeated experiments.

This relationship is evident across the models evaluated. The
DNF model stands out with the lowest loss value (0.00316) and
the highest test R2 (0.962), demonstrating strong predictive
capabilities. However, its large magnitude of convergence rate
(−232.7%) combined with variability across optimization trials
suggests greater sensitivity to hyperparameter choices, which
may complicate its application in high-efficiency contexts.
XGBoost, with a slightly higher loss (0.00327), exhibits excep-
tional computational efficiency, achieving the shortest trial
duration (0.63 seconds), making it well-suited for large-scale
datasets where time is a critical factor. Despite its speed,
XGBoost's convergence rate (−75.2%) still indicates moderate
optimization variability over extended trials. TabNet, while
competitive in loss value (0.003586), shows a substantially longer
trial duration (152.17 seconds) and a convergence rate of
−95.0%, suggesting that its attention mechanism, although
valuable for interpretability, adds computational overhead. The
VAE, while achieving reasonable test R2 scores, faces challenges
with prolonged trial durations and less consistent convergence
behavior, indicating inefficiencies in both computational cost
and optimization robustness. These ndings suggest that DNF
and XGBoost are particularly promising for applications
requiring a balance of predictive accuracy and efficiency, whereas
models such as VAE and TabNet, with their longer runtimes and
sensitivity to optimization, may be better suited for exploratory or
interpretability-focused studies. These insights help guide model
selection by highlighting the trade-offs between predictive
performance, stability, and computational demands.
2774 | Digital Discovery, 2025, 4, 2765–2780
4.3. Generalization of models to complex features

This section evaluates how different models generalize to
output features of varying statistical complexity in the ATLAS-
RHEA dataset. Parity plots in Fig. 4 compare the predictive
performance of the XGBoost, regularized FDN-R, and 1D CNN
models across four features: YS 1000 °C, EQ 1273 K density, Kou
Criteria, and 1300 Min Creep CB. Extended comparisons,
including TabNet, DNF-Net, and VAE, are provided in Fig. S4.
Model complexity increases from top to bottom, while feature
complexity increases from le to right. Model complexity was
evaluated based on structural metrics such as the number of
trainable parameters for neural networks (regularized FDN-R,
DNF-Net, VAE, 1D CNN) and the number of trees, maximum
depth, and total nodes/splits for the XGBoost model. Feature
complexity was calculated as the sum of the absolute skewness
and the absolute excess kurtosis (jskewnessj + jkurtosis− 3j) for
each output feature. The displayed metrics, including MSLE,
RMSLE, log R2, GMAE, SMAPE, MASE, and RMSPE, capture
various aspects of generalization.

The main observation in Fig. 4 is that as both model
complexity and feature complexity increase, predictive perfor-
mance varies signicantly across models. While XGBoost (a)
performs well for relatively simple features such as yield
strength and density, its performance deteriorates for the most
complex feature, 1300 Min Creep CB, indicating limited
generalization to highly skewed or outlier-heavy data. In
contrast, the encoder–decoder model based on regularized
FDN-R architecture maintains strong performance across all
features and demonstrates superior generalization on the most
complex output, achieving lower error metrics and higher
alignment with the parity line. The 1D CNN, despite being the
most complex model, fails to consistently improve performance
and struggles with both simple and complex features, suggest-
ing that higher model complexity does not always translate to
better generalization, especially for skewed or outlier-prone
data. This highlights the importance of appropriately
balancing model complexity with feature distribution
characteristics.

For features like YS 1000 °C and density, both exhibiting low
feature complexity, models such as XGBoost, regularized FDN-
R, and DNF-net show strong predictive performance with low
error metrics and high log R2 values. However, as feature
complexity increases with Kou Criteria and 1300 Min Creep CB,
model behavior diverges. Among all models, the regularized
FDN-R shows the highest robustness and generalization to this
severe skewness, achieving an R2 of 0.856 and SMAPE of 56.8%
on the Creep feature, outperforming all other methods
including XGBoost and VAE. This indicates that the regularized
FDN-R's architectural simplicity combined with its ability to
regularize through sparsity allows it to handle extreme data
distributions effectively, even outperforming models that typi-
cally exhibit higher expressiveness.

While models like CNN begin to struggle with Kou Criteria
and Creep due to the presence of extreme values and long tails
in the distribution, the regularized FDN-R and DNF-net
encoder–decoder models retain relatively stable performance
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Parity plots comparing the predictive performance of models (a) XGBoost, (b) regularized fully dense network ((1437381 model
parameters)), and (c) 1D convolutional neural network (1D CNN) across four output features from the ATLAS-RHEA dataset. Model complexity
increases from top to bottom (XGBoost / regularized FDN-R/ 1D CNN), while feature complexity increases from left to right, corresponding
to yield strength (0.73), density (1.33), Kou criteria (9.94), and creep (1560.0). For the complete set of parity plots and clear training history, refer to
Fig. S4 in the SI document. The smaller insets in each row display the training and validation history corresponding to each model and are
available in the SI document.
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across all feature complexities. XGBoost and VAE models also
show notable resilience across the board, particularly on
skewed features, though it slightly underperforms the regular-
ized FDN-R for Creep. In contrast, 1D CNN model exhibit sharp
performance degradation on highly skewed features, high-
lighting the limitations of more complex or generative archi-
tectures in handling rare or extreme data cases without
additional regularization or specialized training strategies.

Skewed distributions, especially with long tails, pose signif-
icant challenges for regression models. They can violate
assumptions such as residual normality, introduce leverage
points, and cause heteroscedasticity ultimately degrading
model accuracy. These effects underscore the importance of
data transformations and robust model selection tailored to
feature distribution properties.

Table 5 summarizes the performance of various models in
predicting the features analyzed in Fig. 4, with the addition of
© 2025 The Author(s). Published by the Royal Society of Chemistry
thermal conductivity (THCD) at 1273 K, a critical property oen
used as a target or constraint in materials optimization. Results
are presented as Mean Squared Error (MSE) alongside R-
squared (R2) values, reecting each model's capacity to capture
variance across features. XGBoost demonstrates strong overall
performance, particularly for less complex features, but its
accuracy declines for highly complex properties such as creep.
Encoder–decoder models like FDN-R and DNF-net show
comparable or superior performance on certain features, espe-
cially under higher complexity, while more expressive models
such as 1D CNN exhibit inconsistent results, oen struggling
with extreme values. Notably, the VAE maintains stable
predictive performance across increasing feature complexity, as
evidenced in Fig. S4 by relatively aligned parity plots even for
challenging targets like creep. This suggests that incorporating
latent probabilistic representations can help the model capture
distributions with heavy tails or multi-modality. Overall, while
Digital Discovery, 2025, 4, 2765–2780 | 2775
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Table 5 Test results on tabular dataset after hyper-parameter tuning. Presenting the performance for each model. MSE (R2) are presented for
five features

Model-feature name YS 1000 C 1273 K density 1273 K THCD Kou criteria 1300 °C creep CB

Skewness 0.48 0.77 0.97 2.2 39
Complexity 0.74 1.34 0.98 8.95 1560
XGBoost 1613 (R2: 0.995) 0.141 (R2: 0.920) 17.70 (R2: 0.936) 2.61 × 104 (R2: 0.854) 0.111 (R2: −3.06 × 1021)
Encoder–decoder (DNF-net) 8949 (R2: 0.976) 0.2755 (R2: 0.902) 15.43 (R2: 0.913) 2.59 × 104 (R2: 0.855) 1.19 × 10−23 (R2: 0.671)
Encoder–decoder (FDN-R) 5443 (R2: 0.985) 0.2106 (R2: 0.925) 14.56 (R2: 0.918) 1.93 × 104 (R2: 0.892) 8.32 × 10−24 (R2: 0.771)
TabNet 1210 (R2: 0.969) 0.2501 (R2: 0.919) 13.73 (R2: 0.917) 1.36 × 105 (R2: 0.161) 2.58 × 10−23 (R2: 0.403)
Encoder–decoder (1D CNN) 4348 (R2: 0.881) 0.4662 (R2: 0.833) 22.76 (R2: 0.872) 4.48 × 105 (R2: −1.5) 2.91 × 10−23 (R2: 0.201)
Encoder–decoder (VAE) 1115 (R2: 0.969) 0.2482 (R2: 0.911) 19.53 (R2: 0.889) 1.64 × 104 (R2: 0.908) 1.14 × 10−23 (R2: 0.683)
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XGBoost is generally robust, the regularized FDN-R and the VAE
show better adaptability to complex features, highlighting the
importance of balancing model architecture with feature
distribution characteristics.
4.4. Scaling and quantile effects on model performance

Fig. 5 presents a comparative analysis of the impact of various
data scaling strategies on the predictive performance of the
FDN-R model aer just 50 training epochs. The parity plots
show predictions on the original output scale, while the insets
display model performance during training on the scaled data.
For composite transformations (e.g., NormalQuantile followed
by MinMax scaling), inverse transformations were applied in
reverse order to ensure predictions were accurately mapped
back to the original scale. Without any scaling (Fig. 5a), the
model fails to generalize, resulting in severely underestimated
predictions and a negative R2 value. This underscores the
necessity of appropriate preprocessing, particularly when target
distributions exhibit large variance or skewness.

Applying quantile transformations alone (Fig. 5b and d)
improves training accuracy but fails to preserve this perfor-
mance when outputs are inverse-transformed, resulting in
a noticeable gap between predictions and the ground truth on
the original scale. Although, uniform quantile transformation
greatly improves the prediction accuracy. In contrast,
combining normal quantile transformation with MinMax
scaling (Fig. 5c) enhances model generalization across the
output range which is comparable with uniform quintile
transformation alone. This two-step normalization technique
enables better distribution matching and numerical stability
during training, which translates into more accurate predic-
tions post-inversion.

Among the methods tested, MinMax scaling alone (Fig. 5e)
yields the highest R2 and lowest MSE on the original scale,
indicating that for non-complex (moderately skewed or boun-
ded) targets with narrow range, simpler transformations may
suffice. The results suggest that normalization prior to training,
especially when followed by an appropriate inverse trans-
formation, plays an important role in ensuring the FDN-R
model's robustness and generalization. MinMax and quantile-
based strategies stand out as the most effective preprocessing
methods, providing stable learning dynamics and superior
performance in extrapolating complex material properties.
2776 | Digital Discovery, 2025, 4, 2765–2780
4.5. Suitability of models for predicting complex features

Several methods have been proposed to address the challenge
of predicting highly skewed and complex properties like creep
purely from a ML standpoint. First, more advanced pre-
processing pipelines—such as adaptive or learned normaliza-
tion layers—can help stabilize training on skewed targets. Fig. 5
highlights the critical impact of data pre-processing on the
predictive performance. Second, loss functions tailored to
emphasize performance on underrepresented or extreme values
(e.g., quantile loss, SMAPE, or hybrid losses) can guide models
to focus on the tail behavior of the distribution. Third, model
architectures that are robust to non-Gaussian distributions,
such as attention-based models (e.g., TabNet) or uncertainty-
aware frameworks (e.g., Bayesian neural networks), can
improve generalization. Lastly, data augmentation tech-
niques—such as synthetic minority oversampling or generative
modeling—can help rebalance skewed distributions and reduce
overtting. Together, these approaches offer a practical path to
improve prediction of complex features even in the absence of
additional physics-based inputs.

In addition to advanced pre-processing pipelines, we also
explored TabNet, an attention-based model for tabular data. As
shown in the second row from the bottom in Fig. S4, TabNet
achieves competitive performance for moderately complex
features such as density and thermal conductivity but begins to
show limitations with the Creep CB, the most skewed feature.
While its use of attentive feature selection allows it to prioritize
important signals and maintain relatively strong predictions on
moderately non-Gaussian distributions, its performance deterio-
rates on severely skewed data, consistent with models that lack
explicit handling of tail behavior. This suggests that while TabNet's
inductive bias is useful for structured data, additional architectural
or training modications are necessary for generalizing to extreme
outputs like creep. Overall, the results underscore the importance
of aligning model choice with feature complexity.
4.6. Generalization of models to other datasets

To assess the robustness and portability of deep tabular models
beyond a single dataset, we evaluated their generalization
performance on two additional datasets: BIRDSHOT andMPEA.
These datasets differ signicantly from ATLAS-RHEA in terms of
size, data sparsity, property types, and statistical distributions,
providing a diverse testing ground for model adaptability.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Parity plots showing the effect of different scaling methods on the FDN-R model's predictive performance (test data) after 50 epochs for
single-task prediction of the Kou criteria feature. (a) No scaling, (b) normal quantile transformation, (c) normal quantile followed by MinMax
scaling, (d) uniform quantile transformation, and (e) MinMax scaling only. The smaller insets show training performance on the scaled data.
Applying normalization followed by appropriate inverse transformations leads to substantial improvements in accuracy, with MinMax and
quantile-based methods yielding the best generalization on the original scale. Inset plots specifically show predictions on data scaled via
sequential NormalQuantile and MinMax transformations, then accurately mapped back to the physical scale using inverse operations.
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In the BIRDSHOT dataset, which focuses on non-equimolar
Cantor HEAs with moderately skewed mechanical properties (e.g.,
yield strength, elongation, hardness), both XGBoost and the regu-
larized FDN-R maintained strong predictive performance.
However, the DNF-Net demonstrated superior resilience to
moderate outliers and class imbalance in features such as hard-
ness (skewness = 2.5, kurtosis = 10), outperforming XGBoost in
terms of both R2 and SMAPE. For the MPEA dataset, where feature
completeness and measurement consistency varied across prop-
erties, encoder–decoder models, particularly the regularized FDN-
R, showed strong generalization despite the absence of hyper-
parameter tuning. Without task-specic optimization, the FDN-R
model produced high-quality predictions for key properties such
as ultimate tensile strength and calculated density, with parity plots
conrming alignment between predicted and observed values.

The generalization trends indicate that model architecture
must be matched not only to the statistical characteristics of the
target feature but also to the broader dataset conditions such as
sample size, missingness, and feature granularity. The over-
complete encoder–decoder models with Regularized FDN-R and
DNF-Net architectures offer a promising balance between
expressiveness and robustness, while simpler models like
XGBoost remain effective baselines in small or sparse datasets.
© 2025 The Author(s). Published by the Royal Society of Chemistry
4.7. Graphical interface for data-driven materials modeling

To support reproducible, efficient, and user-friendly deploy-
ment of the encoder–decoder workows explored in this study,
we developed an interactive graphical user interface (GUI)
(Fig. 6). The application integrates all essential steps, from
dataset upload, feature selection, and preprocessing, including
thresholding and advanced scaling transformations, to cus-
tomizable neural network architecture denition, training
execution, and results visualization. This allows researchers to
iteratively explore how preprocessing choices and hyper-
parameter congurations affect model generalization, offering
immediate insights into complex feature–property relation-
ships within tabular materials data.

Beyond accelerating exploratory research, the GUI serves as
an effective educational platform. It enables graduate students
and interdisciplinary collaborators to experiment with data
transformations, model architectures, and training regimes in
a transparent, hands-on manner, reinforcing foundational
machine learning concepts without requiring extensive
programming expertise. This lowers the barrier for adoption of
advanced encoder–decoder techniques in materials science,
supporting a broader community of practitioners aiming to
leverage data-driven strategies.
Digital Discovery, 2025, 4, 2765–2780 | 2777
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Fig. 6 Overview of the GUI application developed for interactive encoder–decoder learning on tabular materials data. Left-hand side: sequential
application sections guiding the user through dataset upload, feature and target selection, optional thresholding, scaling transformations, train-
test split configuration, and neural network architecture specification. Right-hand side: outputs from the application including the dataset
preview (step 1), kernel density estimates comparing original and scaled target distributions (step 4), automatically generated encoder–decoder
architecture diagrams (step 6), training history and parity plots (step 7), and an interface for predicting target properties from user-defined inputs
(step 8).
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Importantly, the soware is designed to be modular and
extensible, providing a foundation for future integration of
uncertainty quantication, multi-objective optimization, and
autonomous decision-making workows. By openly sharing this
tool, we aim to promote collaborative exploration and accelerate
the application of robust machine learning approaches to the
discovery and design of advanced materials systems.
5. Conclusion

This study systematically evaluated the use of encoder–decoder
model for data transformation using FDN-R, DNF-Net, 1D CNN,
TabNet, and VAE architectures, against the benchmark XGBoost
model for tabular materials data. While tree-basedmethods like
XGBoost maintained competitive performance and fast
convergence across balanced features, encoder–decoder
models, particularly using DNF-Net and regularized FDN-R
architectures, showed improved generalization to highly
skewed and non-linear properties such as creep resistance.

Our results indicate that these neural architectures can rival
and, in some cases, surpass traditional models in accuracy,
particularly for complex distributions, provided that
2778 | Digital Discovery, 2025, 4, 2765–2780
appropriate data scaling and regularization techniques are
applied. Regularized FDN-R models showed robust generaliza-
tion across varying feature complexities, while DNF-Nets offered
a favorable trade-off between interpretability and performance.
Conversely, models with higher capacity, such as CNNs, were
more sensitive to outliers and skewed data, highlighting the
importance of matching architecture complexity to feature
distribution.

Beyond predictive tasks, encoder–decoder frameworks offer
exciting potential for downstream applications in materials
discovery pipelines, including real-time optimization, synthetic
data generation for privacy preservation, and closed-loop
predictions acting as machine learning priors in Bayesian
discovery of materials. Future progress will depend on
addressing challenges around convergence stability, uncer-
tainty quantication, and computational efficiency for small
datasets.

In summary, while no single model universally outperforms
across all scenarios, hybrid and interpretable deep learning
approaches, when thoughtfully applied, can enhance the accu-
racy, adaptability, and utility of machine learning in materials
science, particularly for complex applications.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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