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Abstract—Two-dimensional (2D) hybrid organic-inorganic per-
ovskites (HOIPs) are promising materials for addressing the
stability challenges in perovskite solar cells due to their excep-
tional environmental stability, exciton dynamics, and broad-band
emission. However, research on the structure-directing role of
organic cations in 2D HOIPs remains limited, and existing models
for predicting their band gap lack sufficient accuracy. Here,
we develop ensemble learning models and a site-attention-based
graph convolutional neural networks (SATGNN) to predict the
dimensionality of lead iodide-based HOIPs and the band gap of
2D HOIPs, respectively. The ensemble learning models leveraging
molecular descriptors with eXtreme Gradient Boosting achieving
88% cross-validation accuracy and MaxAbsEStateIndex, Chi2n
and Kappa2 are identified as critical features for dimensionality
determination. The SATGNN model incorporates a convolution
function tailored to the unique layered structure of 2D HOIPs
and a novel site-attention mechanism to prioritize elemental
contributions. The SATGNN significantly outperforms existing
approaches by accurately capturing structural interactions and
spatial configurations. Furthermore, the visualization of SAT-
GNN confirms model’s ability to identify structural features of 2D
HOIPs and distinguishes the effects of different elemental types
on material properties. By revealing interpretable molecular
descriptors that govern 2D HOIPs formation and integrating
accurate band gap prediction, this two-stage framework offers
both actionable design guidelines for organic cation selection and
a scalable tool for the accelerated discovery of 2D HOIPs with
targeted optoelectronic properties.

I. INTRODUCTION

Hybrid organic-inorganic perovskites (HOIPs) as promising
next-generation photovoltaic materials have attracted great
attention in recent years. Since the first successful report of
HOIPs solar cell (CH;NH3PbX3) by Kojima et al. in 2009(1]],
they have been investigated extensively. The power conversion
efficiency (PCE) of HOIPs-based photovoltaic systems has
increased from 3.8% to 26% in only 10 years[2]. Although
HOIPs-based solar cells have made great progress, most
HOIPs suffer from poor stability. Fortunately, compared with
three-dimensional (3D) HOIPs represented by CH3;NH3;PbX3,
two-dimensional (2D) HOIPs exhibit improved environmental
stability due to the incorporation of bulky organic cations,
which form hydrophobic layers and sterically shield the in-
organic framework from moisture and oxygen ingress. The
different structures of perovskites are shown in Fig. [T} The
structure of 3D HOIPs consists of a 3D network of corner-
sharing metal halide octahedra, with organic cations occu-
pying the 12-fold coordinated sites between the octahedra.

3D 2D

Fig. 1. Structures of 3D, 2D, 1D, and OD perovskites.

The 2D structures are formed by taking n-layer thick cuts
along a particular crystallographic plane of the 3D structure
and stacking these slabs in alternation with organic cation
layers. 1D structures are formed from chains or ribbons of
metal halide octahedra surrounded by organic cations, and
0D structures consist of isolated octahedra or clusters of
connected octahedra. Compared to 3D HOIPs, 2D HOIPs
offer the advantages of compositional diversity, quantum-well
electronic structure, broad-band emission, and layer-tunable
photoelectronic properties[3]], [4]. However, a major limitation
remains: achieving 2D HOIPs with a band gap close to the
theoretical Shockley-Queisser limit (1.34 eV)[3]], a critical
parameter for their optoelectronic applications, is challenging.
In order to achieve 2D HOIPs with specific band gap, re-
searchers must continually synthesize new materials through
trial-and-error experiments until perovskites with the desired
band gap are identified, or employ density functional theory
(DFT) calculations to predict and screen potential candidates,
both of which are very expensive in terms of time and cost.
Recently, high throughput computational material design
based on machine learning (ML) method has emerged as an
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efficient approach for discovering new materials. The main
advantage of the ML method is that it bypasses complex
calculations involved in solving quantum mechanics equa-
tions, allowing it to learn the relationships between materials
structure and properties from materials data and can rapidly
predict target properties with less computational resources.
There are currently a few published studies that use ML to
guide the design of perovskites with specific dimensions. Lyu
et al.[6] developed a linear regression (LR) model with 11
penalty to predict whether low-dimensional HOIPs belong to
the 2D group, achieving 82% accuracy on the test set, and
subsequently analyzed four features of organic cations that
influence the formation of 2D HOIPs. However, their model
construction relied on a limited set of features that could
not accurately capture the characteristics of organic cations,
resulting in a lower prediction accuracy and adversely affecting
the features analysis outcomes. Yuan et al.[7] developed a K-
Nearest Neighbour (KNN) model to classify the dimension of
low-dimensional HOIPs into OD, 1D and 2D, and then ana-
lyzed two key features that influenced the dimension of these
materials. However, the KNN model employed in their work
is an instance-based non-parametric model, which can capture
some nonlinear relationships but has limitations when dealing
with high-dimensional data, potentially missing features that
significantly impact the dimensions of HOIPs. The properties
of organic cations in HOIPs are important factors affecting
their dimension, but there is a lack of studies on the structure-
directing effect of organic cations on 2D HOIPs.

In addition, the predictions of material band gap have
been made using both traditional ML methods and deep
learning (DL) models based on graph neural networks (GNN).
Marchenko et al.[8] used a ML model to predict the band
gap of 2D perovskites with the database they developed,
resulting in a mean absolute error (MAE) of 0.103 eV on
the test set. Traditional ML methods, when dealing with 2D
HOIPs with complex structures, fail to adequately capture the
mapping relationships between their structures and properties.
In contrast, DL methods such as GNN, demonstrate excellent
performance in dealing with these intricate relationships. Xie
et al.[9] were among the first researchers to apply GNN
to material property prediction, proposing a crystal graph
convolutional neural networks framework that learns material
properties directly from the connections of atoms in crystals.
Their model demonstrated excellent prediction performance
across various material properties, including formation energy,
absolute energy, and band gap. Louis et al.[10] developed a
graph convolutional neural networks composed of augmented
graph-attention layers and global attention layer, improving the
prediction accuracy on a broad array of material properties.
Moreover, Chen et al.[11] developed universal GNN models
for accurate property prediction in molecules and crystals.
Choudhary et al.[12] presented a GNN architecture that per-
forms message passing on both the interatomic bond graph
and its line graph corresponding to bond angles. Recent work
has also advanced perovskite-specific band gap prediction.
For example, Gao et al. [13]], utilized cluster-level descriptors
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for electronic property estimation, and complementary exper-
imental efforts have demonstrated effective band gap tuning
via compositional engineering [14], [15], offering practical
pathways toward optimized materials. However, existing GNN
models are not specifically developed for the structural charac-
teristics of 2D HOIPs, making it difficult to accurately capture
their unique structural properties and resulting in lower predic-
tion accuracy. Moreover, few studies have sought to combine
dimensionality classification with band gap prediction into a
unified framework specifically designed for 2D HOIPs.

Based on these issues, we report a two-stage strategy for
both design guidance and band gap prediction of 2D HOIPs.
Rather than merely reproducing established findings, this work
aims to establish a generalizable framework that can accelerate
the discovery of 2D HOIPs beyond the limitations of existing
datasets. Firstly, we present a classification strategy assisted
by supervised ML to explore how organic cations affect
the dimensionality of HOIPs. The organic cation data are
obtained from open-access database and existing publications,
and classification models are used to fit the data based on 2D
and low-dimensional (1D and 0D) categories. By analyzing the
decision-making process of the model, fundamental chemical
and structural insights about the dimensional effects of organic
cations can be obtained, which will be useful for the design
of 2D HOIPs. Secondly, we propose a site-attention-based
graph convolutional neural network (SATGNN) tailored to the
structural characteristics of 2D HOIPs for improved band gap
prediction. In this model, we perform convolution separately
on atoms at different positions in 2D HOIPs to more effec-
tively capture their respective interaction strengths and spatial
configurations. Additionally, we propose site-attention mecha-
nism to enable the model to capture the distinct contributions
of different layer components in 2D HOIPs to the material
properties. Visualization of the learned element representations
confirms that the SATGNN captures key structural features and
differentiates the effects of various elemental types on material
behavior. Overall, this approach delivers a fast, interpretable,
and transferable toolset for screening and designing 2D HOIPs,
offering practical value for data-driven materials discovery that
extends beyond conventional DFT-based workflows.

II. METHODS AND RESULTS
A. Exploration of 2D HOIPs

The dimensionality of HOIPs structure is strongly influ-
enced by the size and shape of the organic A-site cation (A™).
When the cation becomes sufficiently bulky, it hinders the
3D connectivity of the inorganic octahedra, thereby favoring
the formation of low-dimensional perovskite structures. This
phenomenon, commonly referred to as the structure-directing
role of organic cation, arises because its molecular geome-
try and steric constraints govern the stacking, spacing, and
connectivity of the inorganic layers. In addition to the A*
cation, the type of [BX]™ octahedra also has an effect on
the dimensionality of the HOIPs structure due to electro-
static interactions between the AT organic cations and [BX]™
octahedra[7]]. Hence, the study of how the structure of organic
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for predicting the band gap of 2D HOIPs.

cations affects the dimensionality of HOIPs needs to be based
on a single type of [BX]~ HOIPs. In this work, we select the
most widely studied lead iodide perovskites. To ensure that the
classification model learns to distinguish between structurally
similar HOIPs, OD and 1D structures are included in the
training set as low-dimensional (LD) references. In contrast,
3D HOIPs are excluded because their fundamentally different
structural characteristics and formation mechanisms introduce
excessive heterogeneity. Including them could obscure key
trends across the 0D, 1D, and 2D series and reduce the model’s
ability to identify relevant structural features.
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The workflow for exploring 2D HOIPs is shown in Fig.
[Zh. We first review the literature and open-access database to
obtain all reported lead iodide perovskites. Organic cations in
perovskites are extracted and classified into “2D” and “LD”
on the basis of the dimensionality of formed perovskites. The
molecular features of these organic cations (input X) and their
classification (output Y) constitute the training data and are
used to build predictive models. Then the prediction capability
of the optimal model is tested with several untested organic
cations. The details are shown below.

The organic cation of lead iodide perovskites are obtained
from the literature [6], [[16l], [17], [18] and the open-access 2D
perovskites database[8]. In the process of collecting data, we
remove the organic cations that can form different perovskite
structures due to different synthesis methods. Finally, a total
of 144 organic cations are collected, with 42 classified into
the LD group (0D and 1D perovskites) and 102 classified into
the 2D group (2D perovskites). Based on this classification,
the label Y is set to 0 and 1, where O represents the LD group

R N
1.82,2.13, 1.95 ... 4(

Fig. 2. (a) Machine learning-assisted workflow for predicting the dimensionality of lead iodide-based HOIPs. (b) Graph neural network-assisted workflow
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and 1 represents the 2D group.

For ML method that targets specific material properties,
it usually relies on a certain number of feature descriptors.
The python package RDKit[[19], an open source toolkit for
chemical informatics, is used to create feature descriptors in
this work. We first convert the collected organic cations into
the corresponding molecular files (.mol). Subsequently, var-
ious descriptor functions including solid geometry, hydrogen
bonding, charge, elemental analysis, topology analysis, efc. are
called in RDKit to calculate the features. These descriptors
capture steric, topological, and electronic characteristics with-
out requiring explicit crystal structure information, enabling
efficient pre-screening across large chemical spaces. However,
selecting a broad range of features can increase computational
costs and potentially lead to the curse of dimensionality[20].
Therefore, it is important to screen the key features for
constructing the model, which directly affects the accuracy
of the model. We screen the key feature in three steps as
follows: (I) remove features with variance less than 1.0. (II)
remove features with correlation higher than 80% by checking
the Pearson correlation coefficients between features. (III)
employ the Recursive Feature Elimination (RFE) method to
further eliminate unimportant features. Upon completion of
feature preprocessing, the retained numerical descriptors are
standardized using z-score normalization to ensure zero mean
and unit variance. Finally, a total of 11 features is selected and
used as inputs for building the ML models.

After obtaining features and labels, different classification
models are trained and evaluated. We note that there is less
data in the LD group compared to the 2D group. When the
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number of categories in the classification task is imbalanced,
the model tend to predict class that appear more frequently
and ignore minority class, making the model perform poorly
when predicting minority class. To address this issue, class
weights are automatically assigned based on the inverse class
frequency, allowing the model to emphasize the minority
class during training without manual intervention. Moreover,
ensemble learning (e.g. boosting methods) is useful for dealing
with class imbalance problem. Finally, K-Nearest Neighbor
(KNN), Logistic Regression (LR), Support Vector Machine
(SVM), random forest (RF), eXtreme Gradient Boosting
(XGBoost), Gradient Boosting Decision Tree (GBDT), and
Adaptive Boosting (AdaBoost) are employed in this work. For
each ML algorithm, hyperparameter tuning is performed using
grid search with 5-fold cross-validation on the training set.
The optimized parameters are then used to evaluate model
performance on the test data. The dataset is randomly split
into training and test sets in an 80:20 ratio. To prevent data
leakage and ensure robust evaluation, the test samples are kept
completely separate from the training set, with strict separation
to avoid data leakage and ensure a fair evaluation. We use
classification accuracy which is defined as the number of the
correct predictions divided by the total number of predictions
as the metric for evaluating the models.

Table || shows the accuracy of 5-fold cross-validation for
different ML models. The XGBoost model achieves the
highest accuracy of 0.88, indicating its superior efficiency
in learning the mapping relationship between features and
labels. Therefore, the XGBoost model is finally chosen for
this study. To evaluate the performance of the XGBoost model
on unseen data, we assess its predictive accuracy using the
organic cations from the test set and present the results through
a confusion matrix, as shown in Fig. 3. Only one LD sample
among the nine samples is incorrectly classified as a 2D
sample, which demonstrates the feasibility of our model in
practical applications. The proposed dimensionality classifier
enables rapid prediction of structural dimensionality solely
from molecular descriptors of A-site organic cations, thereby
bypassing the need for computationally expensive quantum
mechanical calculations. This approach can serve as a high-
throughput pre-screening tool for navigating vast chemical
spaces in future materials design.

TABLE 1
ACCURACY OF 5-FOLD CROSS-VALIDATION FOR DIFFERENT ML MODELS
ML model Accuracy Hyperparameter
LR 0.66 C: 1.6, penalty: 11
KNN 0.85 leaf_size: 10, n_neighbors: 9
SVM 0.82 C: 8.5, gamma: 0.1
RF 0.85 min_samples_leaf: 3
XGBoost 0.88 subsample: 0.6, learning_rate: 0.2
GBDT 0.87 subsample: 1.0, learning_rate: 0.2
AdaBoost 0.85 n_estimators: 100, learning_rate: 0.01

In order to further confirm the key features that affect the
structural dimensionality of HOIPs, we use SHapley Additive
exPlanations (SHAP)[21]] to analyze the XGBoost model.
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SHAP is a game theoretic method to explain the output of
ML model by considering the contribution of each feature to
the predictions, helping researchers clearly understand how
much importance the model gives to different features, where
the ranking of feature importance is determined by the SHAP
value. The 11 features are ranked by the calculated SHAP
value based on the optimal XGBoost model, as shown in Fig.
[Bb. A point in the Fig. Bp corresponds to a sample, with red
and blue color indicating high and low values of a particular
feature, respectively. The x-axis labeled as the SHAP value
represents the impact of features on the HOIPs dimensionality,
where positive and negative SHAP value representing positive
and negative effect on the prediction results, respectively. We
find that the top three features (MaxAbsEStateIndex, Chi2n
and Kappa2) play a decisive role in the prediction results of
the model, as shown in the inset of Fig. [3p.

MaxAbsEStateIndex is a derivation based on the electro-
topological state (E-state) proposed by Hall and Mohney[22].
The E-state is developed from chemical graph theory as an
index of the graph vertex (or skeletal group). This index
combines both the electronic character and the topological
environment of each skeletal atom in a molecule. The E-state
of a skeletal atom is formulated as an intrinsic value I; plus
a perturbation term AI;, which is arising from the electronic
interaction and is modified by the molecular topological en-
vironment of each atom in the molecule. The E-state, S;, for
atom 1 is defined as S; = I; + AI;. The MaxAbsEStateIndex
descriptor calculates the maximum absolute value of the E-
state index for all atoms in the molecule, which reflects the
most significant electronic and topological properties of the
molecule. It can be seen from Fig. |3p that the larger value of
MaxAbsEStateIndex, the easier it is to form 2D HOIPs.

Chi2n is a derivation based on the chi indexes proposed
by Hall and Kier[23]. The chi index is a weighted count
of a given type of subgraph, where each subgraph is a
fragment decomposed from the molecular graph. There are
two attributes of chi index, the order and the type. The order of
a chi index is the number of graph edges in the corresponding
subgraph. The type refers to the particular arrangement of
the edges in the subgraph. The descriptor Chi2n selected in
this study represents the second-order chi index. For the first
three lower order indexes (order<3), there is only one type of
subgraph. Therefore, the Chi2n descriptor is not given a type
designation, and its calculation formula is given by > Zc,,
where 2¢, denote all subgraphs with two edges. For 2¢,, the
node information in the subgraphs is calculated by H(éi)gl/ 2,
where §; encodes the electronic identity of the atom ¢ in
terms of both valence electron count and core electron count,
and the subscript s designates atoms that belong to the
subgraph. In the subgraphs with two edges, there should be 3
6 terms. Therefore, the Chi2n descriptor encodes the structural
information resident in the entire molecular skeleton, reflecting
the constitutive nature of molecular structure. As shown in Fig.
[Bb, we find that the smaller value of Chi2n, the easier it is to
form 2D HOIPs.

kappa index is calculated from the molecular graph[23]],
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(a) Confusion matrix for prediction results of the XGBoost model on test set. (b) The feature importance ranking generated by the SHAP library

displays the XGBoost model’s features in descending order of importance. The inset shows the prediction accuracy of the model as features are incrementally

added from the top-ranked to the sixth feature.

which is used to describe the shape of the molecule and is
calculated by quantifying the structural characteristics of the
molecule. Kappa2 is the second-order Kappa index, which
reflects the spatial density of atoms within the molecule and
is related to the degree of star pattern or linear pattern of
the molecule. Kappa2 is calculated as (A + o — 1)(A4 +
a — 2)?2/(?P; + «)?, where A represents the number of
atoms in the molecule, 2 P; represents the number of two-path
fragments, i.e., two adjacent bonds, in the molecular graph,
and o encodes the atom identity. And the atom identity is
represented by the ratio of the covalent radii. It can be seen
from Fig. Bp that the larger value of Kappa2, the easier it is
to form 2D HOIPs.

These three key features, which influence the dimensionality
of HOIPs, characterize the topology and electronic states
of the organic cation. Therefore, it can be concluded that
the topology and electronic states of the organic cation are
critical factors determining the dimensionality of HOIPs,
which is consistent with literature reports[24], [25]. Based
on these findings, we provide preliminary design guidelines
for screening and selecting organic cations likely to form 2D
HOIPs. Specifically, organic cations meeting the following
criteria favor 2D HOIPs formation: (I) MaxAbsEStateIndex
between 5.68 and 13.04, (II) Chi2n between 0.33 and 2.50,
and (III) Kappa2 between 5.06 and 17.96. These descriptors
capture essential aspects of molecular topology and electronic
structure and can serve as effective filters in high-throughput
screening workflows. This preliminary guidance complements
our subsequent band gap prediction model, together enabling
a two-stage strategy for the efficient discovery and rational
design of 2D HOIPs. Unlike conventional DFT approaches,
which offer accurate but case-specific predictions, our model
extracts interpretable structure-property relationships from a
chemically diverse dataset. Notably, the identification of Max-
AbsEStateIndex, Chi2n, and Kappa2 as key descriptors gov-
erning 2D structural formation provides valuable, generaliz-
able insights for the rational design of organic cations.

B. Band gap prediction of 2D HOIPs

The band gap is a key parameter that describes the op-
toelectronic properties of materials, and accurate prediction
of the band gap can accelerate the application of 2D HOIPs
in optoelectronics. GNN specifically designed for handling
graph-structured data, have demonstrated excellent perfor-
mance in various materials property prediction tasks. GNN
converts the crystal structure into graph-structured data, which
can flexibly represent chemical bonds between atoms, lattice
structure, spatial symmetry, efc. Consequently, we develop a
graph convolutional neural networks based on the structural
properties of 2D HOIPs for accurate band gap prediction,
with the workflow illustrated in Fig. 2b. We first screen 2D
HOIPs with DFT calculated band gap from an open-access
database of 2D perovskites. Subsequently, these 2D HOIPs
are transformed into corresponding crystal graph. The graph
data, along with their band gap values, are then input into the
model for training and subsequent band gap prediction.

The crystal graph created in this study is an undirected
multigraph that allows multiple edges between the same pair of
nodes, which is characteristic of crystal due to their periodicity.
The crystal graph G is defined as a tuple (V, E), where V
defines a set of nodes and E defines a set of edges. Here,
v € V and e € E are the feature vectors corresponding
to atoms and the edges connecting atoms in the crystal,
respectively. Each atom ¢ is represented by a feature vector
v;, which encodes properties of the atom, such as electroneg-
ativity, covalent radius, atomic volume, etc. Each edge (4, j)x
is represented by a feature vector e(; ;),, which corresponds
to the k-th bond connecting atom ¢ and atom j, and encodes
the distance between these atoms. For the band gap prediction
task, where the target property is highly sensitive to the full
crystal geometry and the local bonding environment at all
lattice sites (A, B, and X), we employed a site-attention-
based graph convolutional neural networks (SATGNN) to learn
directly from the crystal graph. This architecture enables the
model to effectively capture complex interatomic interactions
and local distortions critical for accurate band gap estimation.
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Fig. 4. Architecture of SATGNN model. Molecules at the A-site and BX-site are convolved separately, allowing each atom to encode information about its
local environment. The pooling layer is then performed independently for the molecules at each positions, generating two vectors that represent the A-site and
BX-site molecule, respectively. The site-attention layer subsequently updates these vectors and then concatenates them to from a single vector that represents
the entire crystal. This vector is then fed into the fully connected layers, followed by the output layer to provide the prediction.

As illustrated in Fig. ] SATGNN comprises three main
components: convolution layers, a pooling layer, and a site-
attention layer.

Based on the crystal graph G, we design a site-attention-
based graph convolutional neural networks, named SATGNN,
which consists of three major components: convolution layers,
pooling layer, and site-attention layer, as shown in Fig. [4]

In the convolution layer, atomic feature vectors are iter-
atively updated by convolution with surrounding atoms and
bonds, enabling the capture of complex interactions within the
material. Notably, the structure of 2D HOIPs is different from
that of 3D materials, in which the A-site organic cations and
the BX-site octahedra are stacked alternately in a layered struc-
ture to form 2D HOIPs. We utilize “v and ZX v to distinguish
atoms in 2D HOIPs into A-site atoms and BX-site atoms. In
order to accurately capture the features and interactions of the
various layers within the 2D HOIPs, we perform convolution
separately on the atoms located at different positions, which
can be represented by the following equation.

(tH) = Conv (Avgt%Av(.t),e(i_’j)k) Avi,Avj e v

BX (t+1) — Conv (B (t) x, ()

B X
v e(%])k) Vi,

BX’U

ey
The choice of convolution functions in neural network archi-
tecture has a great impact on prediction performance. Previous
graph convolution functions failed to account for atoms at
different positions in 2D HOIPs, resulting in inadequate rep-
resentation of local features and loss of spatial information,
thereby reducing the accuracy of the model. Inspired by
the CGCNN model developed by Xie et al.[9], we perform
convolution by,

A (t+1) BX (t+1)
_Z ((A 8)]

©g ((A Ef)J)k
(Mol Pxel)

v; €

BX (1)
(4,9 k

Jwi b))

Jwi +el?)
2

BX (t)
(Z J)k

where Amgz)j)k nd BX Ei)') are constructed by concate-

nating atoms at the A-site and BX-site in 2D HOIPs along
with their neighboring atoms that belong to the same position
and the edge vectors between them. Wgt) and Wét) are the
learnable weight matrices of the ¢-th layer. bgt) and bgt) are
the learnable bias of the ¢-th layer, and o and g are nonlinear
activation functions. In Eq. , the o (+) function as a learned

weight matrix to differentiate interactions between neighbors

and adding (A (¢ ) BX 5 )> makes learning deeper networks

easier. After multlple convolutions, the feature vector of each
atom incorporates the surrounding environmental information
corresponding to its spatial position within the 2D HOIPs
structure.

The pooling layer is then used to generate the overall feature
vectors 4v and BXv of the A-site and BX-site of the 2D
HOIPs. Pooling is also applied to atoms separately according
to their different positions in 2D HOIPs, which is represented
by the following equation,

A = Pool (v(()T),ng), e vg)) V[o,1,...,N] € Av
3
BXy = Pool (v(()T),ng), . 'US\,T)) Y[o,1,.,N] € BXy

In this work, the mean function is employed as the pooling
operation to aggregate information from different atomic po-
sitions in 2D HOIPs. This approach can effectively reduce
the dimensionality of the feature space while preserving the
fundamental characteristics of atomic configurations.

In 2D HOIPs, the A-site organic cations influence the
band gap of the material through steric hindrance and elec-
tronic effects, while the BX-site octahedra modulate the band
gap via octahedral distortions and the selection of different
elements[26], [27]. Since the A-site organic cations and BX-
site octahedra affect the band gap of 2D HOIPs through dis-
tinct mechanisms, significant differences exist in their effects
on the band gap of the material. To effectively capture the
varying degrees of contribution from the A-site organic cations
and the BX-site octahedra to the material properties, we design
the site-attention layer based on attention mechanism. The
attention mechanism was originally proposed in the field of
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Natural Language Processing (NLP) to improve neural net-
work translation models[28]]. Subsequently, its application has
expanded to various tasks beyond NLP[29], [30], [31], [32].
Here, we introduce the attention mechanism for the first time
to predict the band gap of 2D HOIPs, allowing the model to
more effectively capture the distinct contributions of different
layer components to the material properties, thereby enhancing
the model’s understanding of the material structure. The site-
attention layer updates the vectors 4v and ZXv based on
the different contributions of A-site and BX-site components
to material properties, generating new feature vectors v’
and BXv’. Subsequently, we concatenate these two vectors
to obtain the overall feature vector v, for the crystal. This
process is represented by the following equation.
(Av’, BXy') = Attention (A'U, BXv) A
'vg:Av’ | BX o S

The specific formula for the attention function is as follows,

T
Attention (Av, BX'U) = softmax ( K ) \%4

Vd &)

Q, K,V =W WE WY (4, PXv)

where (4v, BXv) represents a vector with the components v
in the first row and ®X v in the second row, W%, W, and
WYV are trainable parameter matrices. (), K, and V represent
the vectors obtained from (4v, PXwv) after transformation by
these matrices, maintaining the same dimensionality. Addition-
ally, v/d is the scaling factor, where d is equal to the dimension
of (“v,BXv). In Eq. (5, the softmax(-) function is used
to calculate the attention coefficient between vectors 4v and
BXy. In addition to the convolution layer, pooling layer, and
site-attention layer, we add a fully connected layer to capture
the complex mapping between crystal structure and band gap.
Finally, an output layer is used to predict the band gap .

The objective of training the neural network model is to
find a set of parameters that minimizes the difference between
the predicted band gap value y and the DFT calculated
band gap value y, defined by the loss function. During the
training process, the model parameters are updated through
multiple iterations until the loss function reaches a satisfactory
level. Once trained, our SATGNN model enables rapid and
generalizable band gap predictions across a wide range of
2D HOIPs compositions. This capability not only accelerates
property estimation for novel compounds but also facilitates
extrapolation to hypothetical molecules beyond those previ-
ously reported or characterized by DFT.

The dataset used in this study is obtained from an open-
access 2D perovskites database developed by Marchenko et
al.[8]], containing a total of 849 2D perovskites. Accessed in
March 2024, approximately 70% of these entries have DFT-
calculated band gap values available. We screened the data to
maximize usable samples by excluding entries without DFT
band gap calculations or those not classified as 2D HOIPs.
After screening, 491 2D HOIPs remain for analysis. All band
gap data for these 491 HOIPs are calculated consistently
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within this database using the DMol3 module of Materials
Studio with the DNP+ atomic basis set and explicit spin-orbit
coupling, ensuring methodological uniformity and reliable
agreement with experimental results. This uniform dataset
maintains sufficient chemical and structural diversity to sup-
port robust and generalizable structure-property relationships.
The filtered dataset is then split into training and test set, with
80% of the data used for model training and the remaining
20% reserved for independent performance evaluation. All
test samples are strictly excluded from the training process,
ensuring no data overlap and preventing leakage, thereby
enabling a rigorous and unbiased performance assessment.
During the training process, the model exhibiting the best
performance on the test set is selected to construct the final
model. Fig. [Sh shows the decline curve of the train loss and
the test loss throughout the training process. It can be clearly
seen that overfitting does not occur. Moreover, our model,
SATGNN, achieves a MAE of 0.058 eV on the test set. Fig.[5b
presents the corresponding parity plot, and approximately 90%
of the crystals are predicted within 0.025 and 0.06 eV errors. In
comparison, Marchenko et al. developed a ML model based on
the 2D perovskites database to predict their band gap, achiev-
ing a MAE of 0.103 eV. Our model performance improves
by 43.7%. We also compare other excellent GNN models that
have been reported for material property prediction, as shown
in Table [l Our model outperforms all other models on the
band gap prediction task, showing an improvement of 15.9%
over CGCNN and 25.6% over GATGNN in terms of MAE.
Given the comparison, our SATGNN model demonstrates
reliable band gap predictions and has potential applications
in predicting other properties of 2D HOIPs. Additionally, it is
important to note that the dataset used in this study is relatively
small for constructing neural network models. Furthermore,
the structures of 2D HOIPs are very similar, and the range
of band gap values calculated by DFT in the dataset is very
small. Thus, we argue that our model can effectively learn
useful patterns from this dataset. This inference is supported
by the experimental results presented above, as our model
demonstrates good predictive performance without overfitting.

TABLE I
PERFORMANCE COMPARISON OVER BAND GAP PREDICTION PROBLEM OF
OUR MODEL COMPARED TO OTHER MODELS.

Model MAE Units
Marchenko et al. 0.103 eV
CGCNN 0.069 eV
GATGNN 0.078 eV
SATGNN 0.058 eV

We next investigate which aspects of our model contribute
to performance improvement. For this purpose, we compare
the performance of different models in predicting band gap,
including a variant of our model, 2D-GCNN, which ex-
cludes the site-attention mechanism, as shown in Table
It is evident that without employing the convolution method
specifically designed for the structural characteristics of 2D
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Fig. 5. (a) Trend of loss decline during training for the SATGNN model. (b) Parity plot showing the predicted band gap against DFT calculated band gap.
(c) Visualization of the element representations learned from the 2D HOIPs dataset, with elements colored according to their elemental groups.

HOIPs, CGCNN shows significantly lower performance in
band gap prediction. In contrast, the 2D-GCNN model, which
employs this convolution method, achieves approximately 10%
improvement in performance compared to CGCNN. This
phenomenon indicates that the convolution method we de-
signed effectively addresses the layered structure of 2D HOIPs
and accurately captures and utilizes features from different
sites within these materials. Moreover, the SATGNN, which
integrates the convolution method specifically designed for
2D HOIPs and the site-attention mechanism, demonstrates
approximately 6% improvement in performance compared to
2D-GCNN. The incorporation of the site-attention mechanism
leads to further improvements in model performance, as it is
consistent with the physical intuition that the A-site cation
and BX-site octahedra in 2D HOIPs contribute differently to
the material properties. In the band gap prediction problem
for 2D HOIPs, our convolution method combined with the
site-attention mechanism yields significant improvements in
model performance, achieving superior results compared to
other excellent models.

TABLE III
PERFORMANCE COMPARISON OF BAND GAP PREDICTIONS FOR CGCNN,
2D-GCNN, AND SATGNN.

Model MAE Units
CGCNN 0.069-0.073 eV
2D-GCNN 0.062-0.065 eV
SATGNN 0.058-0.060 eV

Model interpretability is highly desirable in materials sci-
ence, especially for complex neural networks, as it provides
valuable insights to guide material design. In our model, each
atom 1is initially represented by a feature vector v;, which
encodes basic elemental properties such as group number,
electronegativity, covalent radius, and other relevant descrip-
tors [9]. This vector corresponds to the atom’s element type
and is further refined during training via the embedding layer.
Since 2D HOIPs share similar crystal structures but vary
widely in composition, understanding how the model encodes
and organizes elemental information is crucial. To probe the
model’s learned chemical representation, we extract the atom

vectors vgo) from the output of the embedding layer prior
to any convolutional operations. At this stage, these vectors
depend solely on element identity without incorporating struc-
tural context, thereby reflecting the model-inferred similarity
between elements based on their roles in forming 2D HOIPs.

The dataset that we used in this study contains 491 different
2D HOIPs, comprising a total of 15 elements: H, C, N, Pb, I,
Sn, Ge, Br, Cl, O, S, F, Bi, Cs, and Cd. After training with
the 2D HOIPs dataset, we employ t-SNE[33]] to project these
element representations onto the 2D plane, as shown in Fig.
3. From the top to the bottom of Fig. [k, the electronegativity
of elements increases progressively, which aligns with the
trends observed in the periodic table. Meanwhile, it can be
seen that elements are grouped according to their position
in the structure of 2D HOIPs. To quantitatively assess the
local organization of these embeddings, we conduct a k-nearest
neighbor (k=3) purity analysis [34] within the 2D t-SNE
projection space, grouping elements by their crystallographic
sites (A-, B-, and X-sites). This analysis yields an average
purity of 75%, demonstrating that the learned embeddings
meaningfully preserve local coherence with respect to the
elemental site roles in the crystal structure. Specifically, the
elements at the B-site (Pb, Sn, Ge, Bi, and Cd) are clustered
in the upper right part of Fig. [5c. The primary components of
the organic cation at the A-site (C, N, and H) are concentrated
in the central part of Fig. Bk, while the halogen elements at
the X-site (Cl, I, F, and Br) are predominantly located in the
lower part. In addition, as Group 12 element, Cd is positioned
relatively closer to Group 14 elements (Pb, Ge, and Sn),
while being more distantly located from Group 15 element
Bi. Similarly, the element Cs can serve as A-site element in
2D HOIPs, and since both Cs and H belong to Group 1, the
model places them in close proximity. The X-site elements (Br,
I, and F) from Group 17 are also observed to be near the A-site
elements (O and S) from Group 16. The above phenomenon
indicates that the element representations learned from our
model incorporate the structural information from 2D HOIPs
while preserving the information related to periodic trends of
elements in the periodic table, which can further demonstrate
the model’s reliability in band gap prediction.
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III. CONCLUSIONS

We report an ensemble learning model and a graph convolu-
tional neural networks model for different tasks. An ensemble
learning model is employed to classify lead iodide-based
HOIPs into LD or 2D categories. The optimal XGBoost clas-
sifier achieves 88% classification accuracy, identifying Max-
AbsEStatelndex (5.68-13.04), Chi2n (0.33-2.50), and Kappa2
(5.06-17.96) as key topology- and electronic-structure-related
features. These insights provide practical guidelines for select-
ing organic components that promote 2D HOIPs formation
and effectively narrow the search space in high-throughput
screening. Additionally, we propose a graph convolutional
neural networks model called SATGNN for predicting the
band gap of 2D HOIPs. This model outperforms baseline
approaches by at least 15.9% and generalizes well to unseen
compositions, owing to a convolution function tailored for
2D HOIPs that captures position-dependent interactions and a
site-attention mechanism that distinguishes the contributions
of different layer components. Visualization of the learned
element embeddings further reveals that SATGNN can dis-
criminate element positions within the 2D HOIPs framework
while retaining periodic table trends, thereby enabling reliable
property prediction to guide materials design. Although trained
on published DFT data, both models support high-throughput
screening, generalization to novel compositions, and extrac-
tion of interpretable design rules, collectively establishing a
predictive framework for the discovery of new 2D HOIPs with
targeted optoelectronic properties.
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