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Abstract

The ability to generate 3D multiphase microstructures on-demand with targeted attributes can greatly accelerate
the design of advanced materials. Here, we present a conditional latent diffusion model (LDM) framework that
rapidly synthesizes high-fidelity 3D multiphase microstructures tailored to user specifications. Using this approach,
we generate diverse two-phase and three-phase microstructures at high resolution (volumes of 128 × 128 × 64
voxels, representing > 106 voxels each) within seconds, overcoming the scalability and time limitations of traditional
simulation-based methods. Key design features, such as desired volume fractions and tortuosities, are incorporated
as controllable inputs to guide the generative process, ensuring that the output structures meet prescribed statistical
and topological targets. Moreover, the framework predicts corresponding manufacturing (processing) parameters
for each generated microstructure, helping to bridge the gap between digital microstructure design and experimental
fabrication. While demonstrated on organic photovoltaic (OPV) active-layer morphologies, the flexible architecture
of our approach makes it readily adaptable to other material systems and microstructure datasets. By combining
computational efficiency, adaptability, and experimental relevance, this framework addresses major limitations of
existing methods and offers a powerful tool for accelerated materials discovery.

1 Introduction

Understanding and controlling a material’s microstructure is critical for optimizing its properties and performance. In
materials science, the mapping between structure and property is a foundational concept, with microstructural features
often serving as primary drivers of a material’s physical characteristics and behavior [1–4]. However, directly observing
or reconstructing 3D microstructures through experiments is expensive and technically challenging, making it difficult to
explore processing–structure–property relationships at scale [5–8]. Consequently, there is a strong motivation to develop
computational methods for generating realistic microstructures. The ability to produce statistically representative
microstructure samples on-demand would greatly aid in virtual testing, microstructure-sensitive property prediction,
and computational materials design.

Various approaches have been explored for microstructure generation [9, 10]. Classical statistical methods, such as
Markov random fields [11], Gaussian random fields [12], and descriptor-based reconstructions [13, 14], can produce
microstructures that match certain target statistics. While these methods have proven useful, they suffer from important
limitations. In general, statistical models are computationally intensive and do not scale well to generating large 3D
volumes or numerous samples. They often rely on strict assumptions (e.g. stationarity or isotropy of features) and
tailored mathematical descriptors, which limits their flexibility and generalizability to different materials or complex
structures. Adapting such models to incorporate new microstructural constraints or application-specific objectives is
non-trivial and typically requires substantial rederivation or optimization changes. These challenges highlight the need
for a more flexible, data-driven generative framework for microstructures.

Recently, deep generative models have shown great promise in capturing complex microstructural features from
data [15, 16]. Approaches like variational autoencoders (VAEs) [17], generative adversarial networks (GANs) [18], and
diffusion models (DMs) [19] have been applied to microstructure generation tasks. VAEs can learn low-dimensional
representations of microstructures but often produce blurry outputs that lack sharp detail [20]. GAN-based models
have succeeded in generating 3D microstructures with improved visual fidelity [21–23], but they do not allow user
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control over generated structures and are notorious for training instabilities [24]. Moreover, GANs and similar networks
can be computationally demanding for 3D data, sometimes requiring extensive resources for training and generation.
Diffusion models offer even higher output quality, often surpassing GANs, but their iterative sampling process makes
inference slow and resource-intensive[25]. At this time, no prior generative approach has simultaneously provided high
fidelity, user controllability, and computational efficiency for 3D microstructure generation.

Latent diffusion models (LDMs) have emerged as a compelling solution to address these gaps [26, 27]. LDMs combine
the strengths of VAEs and DMs by operating in a compressed latent space to dramatically reduce computational costs
while preserving the ability to generate high-quality, diverse microstructures. This latent-space approach yields orders-
of-magnitude speed-ups over conventional pixel-space diffusion models. Importantly, LDM architectures naturally
support conditioning mechanisms that enable users to steer generation towards desired attributes. They also exhibit more
stable training dynamics and avoid mode collapse, yielding a broader variety of outputs compared to GANs [28–31].
These advantages make LDMs well-suited for fast and controllable 3D microstructure synthesis.

To date, applying diffusion-based generative models to microstructure design has predominantly focused on uncon-
ditional generation [32–34]. In our prior work, Herron et al. [35] applied a diffusion model to 2D organic solar cell
microstructures without enabling user-specified target features. While recent advances [36, 37] have begun exploring
conditional generative approaches to microstructure reconstruction and design, these have typically not integrated
predictions of corresponding manufacturing parameters. Our current work introduces a conditional latent diffusion
modeling (LDM) framework that not only allows user-defined control over critical microstructural descriptors but
also uniquely predicts manufacturing parameters likely to produce such microstructures experimentally. This two-fold
capability addresses key challenges in computational materials design [38, 39]: not only can we generate microstructures
with tailored properties, but we can also provide insight into how to manufacture them – thereby tackling the oft-cited
“manufacturability gap” in microstructure design.

We demonstrate the framework using organic photovoltaic (OPV) active-layer microstructures as a representative
example. OPV active layers typically consist of a donor material and an acceptor material, forming a complex two-phase
(or three-phase with a mixed phase) morphology [40]. Two microstructural descriptors are particularly crucial for OPV
performance: the donor (acceptor) phase volume fraction and the tortuosity of the percolating pathways [41, 42]. The
volume fraction (the ratio of donor to acceptor material in the blend) directly influences the balance between charge
generation and transport, while tortuosity reflects the complexity of pathways that charge carriers must navigate to reach
the electrodes. By conditioning on these properties in the LDM, we can generate microstructures that meet specific
targets (e.g. a desired donor volume fraction and phase connectivity) known to optimize OPV efficiency. We quantify
volume fraction and tortuosity for each generated sample using established computational techniques [43].

The key contributions of this work include: (1) Scalable high-resolution 3D microstructure generation: Leveraging
an LDM, we rapidly produce diverse multiphase 3D microstructures (including two-phase and three-phase examples)
at a resolution of 128 × 128 × 64 voxels (over one million voxels each), which is orders of magnitude larger than
those demonstrated in prior studies. Our approach generates these 3D microstructures in seconds per sample. (2)
Conditional generation with user-defined features: Our framework introduces controllability to microstructure
synthesis by allowing users to specify target volume fractions and tortuosities; the LDM then generates microstructures
that faithfully realize these input parameters, ensuring the output matches desired structural characteristics. (3) Linking
microstructure to manufacturing: We integrate a predictive module that outputs relevant processing parameters (e.g.
annealing or fabrication conditions) corresponding to each generated microstructure, facilitating a direct connection
between the digital microstructure design and its experimental realization. These advances collectively overcome
the scalability, controllability, and manufacturability limitations of existing methods. By enabling fast generation
of application-specific microstructures along with guidance for their fabrication, our conditional LDM framework
illustrates the promise of AI-driven approaches in computational materials science and microstructure design.
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2 Results and Discussion

To demonstrate our framework’s capabilities, we evaluated its performance using both synthetic microstructures
generated via physics-based simulations (Cahn–Hilliard equation) and experimentally obtained (via tomography)
organic photovoltaic (OPV) morphologies. We will refer to these datasets as the CH dataset and the experimental
dataset, respectively. The results illustrate the advantages of our conditional latent diffusion modeling (LDM) approach
in generating diverse, high-quality microstructures efficiently and with precision.

Our proposed generative modeling framework, schematically illustrated in Figure 10, consists of three sequentially
trained modules: a Variational Autoencoder (VAE), a Feature Predictor (FP), and the Latent Diffusion Model (LDM).
Initially, the VAE compresses complex, high-dimensional 3D microstructures into compact latent representations,
drastically reducing computational complexity. The FP network subsequently predicts relevant microstructural features
(e.g., volume fractions and tortuosities) and manufacturing parameters directly from these latent representations.
Finally, the conditional LDM leverages these predictions to generate realistic 3D microstructures, guided explicitly by
user-specified conditions.

In the following sub-sections, we detail our evaluation of the framework’s generative capabilities, including the quality
and diversity of generated microstructures, the effectiveness of conditional sampling for targeted microstructure design,
and the model’s unique capacity to predict experimental manufacturing parameters.

2.1 Sampling quality

Figure 1 shows representative examples of microstructures generated by our Latent Diffusion Models (LDMs), separately
trained for the CH dataset’s two-phase and three-phase systems. In the two-phase microstructures, the blue domains
represent a donor phase (denoted phase A), and the red domains represent an acceptor phase (denoted phase B),
corresponding to typical organic photovoltaic (OPV) active-layer morphologies. For the three-phase microstructures,
an additional gray phase delineates a mixed region, that typically exists as an interfacial region between donor and
acceptor phases.

Each generated microstructure spans a volume of 128× 128× 64 voxels, corresponding to over one million voxels
(1,048,576), allowing detailed resolution of intricate morphological features. Importantly, our LDM framework achieves
this generation within approximately 0.5 seconds per microstructure using an NVIDIA A100 GPU, significantly
outperforming traditional physics-based simulation methods, which typically require hours or days of computation
for similar-sized volumes [44–46]. The transition from two-phase to three-phase systems maintains high quality
and fidelity, demonstrating the flexibility and scalability of our framework. Without any modification to the core
architecture, retraining on a three-phase dataset successfully generated microstructures exhibiting smaller domains and
more complex, finely detailed features. This ease of adaptability underscores the potential for further extension of our
approach to accommodate additional phases.

(a) Two phase (b) Three phase

Figure 1: Samples from LDMs trained on (a) two phase and (b) three phase microstructures.
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2.2 Conditional sampling

In this work, conditional sampling refers to the approach of providing the generative model with additional in-
formation—termed a conditioning vector—to guide the synthesis of microstructures toward specific, user-defined
characteristics. We implemented this conditional generation by embedding the conditioning vector directly into the
latent diffusion model (LDM), allowing precise control over the structural features of the generated microstructures.
Specifically, the LDM architecture incorporates the conditioning vector into the embedding layers of the U-Net
backbone, facilitating effective guidance during the diffusion process.

The LDM is conditioned on two crucial microstructural descriptors relevant to organic photovoltaics: the volume
fractions and tortuosities of the phases (A, B, and the mixed phase). However, our flexible conditioning framework is
easily extensible to other relevant morphological descriptors, depending on the application requirements (see additional
examples provided in the Supplementary Results). Figure 2 illustrates representative examples of conditionally
generated microstructures, clearly demonstrating the effectiveness of the model in synthesizing morphologies tailored
to user-specified volume fractions and tortuosities.

To evaluate the model’s ability to generate conditional outputs, we created 3,200 microstructures with different targeted
volume fractions and tortuosity values. We systematically compared these microstructure attributes with the user-
specified conditioning parameters, as depicted in Figure 3. Our analysis reveals a high degree of accuracy in conditional
generation, achieving Pearson correlation coefficients (R²) of 0.93 or greater. This robust correlation underscores the
LDM’s effectiveness in adhering to precise user-defined constraints, thereby enabling targeted material design and
optimization that surpasses prior methods in versatility and computational efficiency [22, 23].

As with most data-driven generative frameworks, the proposed LDM model learns and reproduces the joint distribution
of microstructural features in the training data. In physics-based datasets such as our CH dataset, certain features (e.g.,
volume fraction and tortuosity) naturally exhibit correlations due to underlying physical constraints. Consequently, the

(a) Predominant phase A - more than 0.5 (b) Predominant phase mixed - more than 0.5

Figure 2: Conditional microstructure generation: Sample microstructures from user inputs - (a) Predominant phase A, and
(b) Predominant phase mixed. First column shows the total microstructure. Second, third and fourth columns show the thresholded
versions of the phase A, phase B and mixed components, respectively.

(a) Phase A volume fraction (b) Phase B volume fraction (c) Mixed volume fraction (d) Tortuosity A (e) Tortuosity B

Figure 3: Statistical analysis of conditional microstructure generation: Correlations between all features of interest, user inputs,
and the corresponding features measured from generated microstructures.
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generative model tends to reflect these correlations and may struggle to generate feature combinations that are poorly
represented or absent in the training dataset. However, the framework remains flexible and, in principle, capable of
learning a broader range of feature combinations if provided with sufficiently diverse and decorrelated training data. As
the diversity and coverage of the training dataset increase, the model’s ability to generate microstructures with uncommon
or more complex feature relationships is expected to improve accordingly. We conducted experiments using more
conditioning parameters to assess the framework’s capacity for higher-dimensional conditioning. Appendix Figure A.5
presents the results with seven conditioning parameters. Increasing the number of conditioning parameters introduces
two challenges. First, the model must learn more complex and potentially correlated feature relationships. Second, as
the dimensionality grows, the volume of the conditioning space expands rapidly, resulting in a sparser sampling of the
parameter space, which in turn demands a larger and more diverse training dataset. Figure A.5 shows a decline in R2

between the input features and the measured features of the generated microstructures, yet the model still maintains
strong correlations. If the conditioning features are not fully independent but exhibit correlations, care must be taken to
ensure that valid and physically meaningful combinations are used during inference. In such scenarios, dimensionality
reduction techniques (e.g., principal component analysis or other embedding methods) may be employed to reduce the
effective dimensionality of the conditioning space prior to model training.

Alternative conditional generative approaches for microstructure design have recently been reported. For example,
Gao et al. [36] introduced a deep learning framework for multi-scale prediction of mechanical properties from
microstructural features in polycrystalline materials, while Lee and Yun [37] developed a denoising diffusion-based
method for generating three-dimensional anisotropic microstructures from two-dimensional micrographs. While these
works incorporate conditional elements, they do not provide the combined capability of user-defined control over
specific microstructural descriptors and simultaneous prediction of manufacturing parameters. Our conditional latent
diffusion framework thus addresses a different design space—high-resolution descriptor-controlled generation.

2.3 Diversity and prediction of manufacturing parameters

We further assessed the LDM’s capability to generate diverse microstructures from identical conditional inputs.
Specifically, we sampled 3200 microstructures using consistent input parameters (volume fractions: 0.3 for phase A,
0.2 for the mixed phase; tortuosities for both phases: 0.3). The resulting microstructures, detailed in the Supporting
Information, exhibit significant morphological diversity despite identical conditioning parameters. Figure 4a illustrates
the distributions of the extracted microstructural features, clearly aligning with the specified input values (indicated by
vertical dotted lines). The strong alignment confirms that the LDM reliably generates diverse yet precisely targeted
microstructures.
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(a) Distribution of features measured from generated microstructures given specific
conditional feature inputs. The vertical dotted black lines indicate the user inputs.
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(b) Contour plot of manufacturing parameters χand timesteps
for desired microstructure generation.

Figure 4: Variety of microstructures generated by the LDM given identical user inputs. The model can also suggests the manufacturing
conditions required to generate such microstructures.
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Moreover, Figure 4b presents contour plots predicting the manufacturing parameters — the blend ratio, the interaction
parameter (χ), and the annealing time (timesteps) — required for realizing these microstructures. Notably, the LDM
framework identifies multiple feasible fabrication pathways: a combination of higher χ values with shorter annealing
durations, or lower χ values with extended annealing periods. This data-driven insight aligns well with the known
physical behavior of phase-separating systems described by the Cahn–Hilliard model, where increased interaction
parameters accelerate phase separation, thereby requiring less annealing time, whereas lower interaction parameters
necessitate longer annealing to achieve comparable morphologies. This pathway prediction capability illustrates
the integration of computational design with experimental manufacturability, thus significantly advancing current
microstructure design methodologies [22, 23]. Such an approach could be expanded to include other manufacturing
parameters, making the model applicable across various material systems and manufacturing processes [22, 23].

Although the training dataset includes time-dependent snapshots generated from Cahn–Hilliard simulations, the
generative model itself operates solely on static 3D microstructures paired with their corresponding morphological
descriptors. The time-dependent simulations are used primarily to provide a diverse and physically meaningful
training set across a range of morphologies. The generative model remains agnostic to the physical dynamics or
governing equations responsible for generating the dataset. This formulation enables flexible, descriptor-driven
microstructure generation. Future work could explore the incorporation of additional physics-based constraints, such as
mass conservation or dynamic evolution, for applications requiring dynamic modeling.

2.4 Experimental Microstructures

We further demonstrated our framework’s applicability using the experimental dataset comprising voxelized organic
photovoltaic (OPV) morphologies from spin-cast P3HT:PCBM thin films, reconstructed through tomographic energy-
filtered TEM [47, 48] (additional methodological details are provided in the Methods section).

Using the experimental dataset, we generated 1000 microstructures conditioned on user-specified inputs. Figure 5
shows the correlation between the specified inputs and the corresponding measured features, with Pearson R² values
of 0.89 for volume fraction, 0.86 for acceptor tortuosity, and 0.77 for donor tortuosity. These values are somewhat
lower than those observed for the CH dataset; however, they remain reasonably strong given the characteristics of the
experimental data. First, the experimental microstructures are lower in resolution but contain finer-scale features, which
limits the ability of the latent diffusion model to capture the details. Second, the experimental dataset is less diverse:
the subvolumes are extracted from only two larger tomographic samples, with overlapping subregions, resulting in a
narrower sampling of the feature space. These factors inherently constrain the achievable correlation between target
features and generated structures. Nevertheless, the model captures the volume fraction with higher accuracy, as it is a
simpler global descriptor. In contrast, tortuosity, a more localized and structurally complex feature, potentially requires
better resolution and poses greater modeling challenges.

Additionally, Figure 6a presents six representative microstructures generated from identical conditioning inputs (volume

(a) Donor volume fraction (b) Tortuosity acceptor (c) Tortuosity donor

Figure 5: Statistical analysis of conditional microstructure generation: Correlations between all features of interest, user inputs,
and the corresponding features measured from generated microstructures.
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(a) Samples microstructures generated from same conditional feature inputs.
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(b) Distribution of features measured from generated microstructures given specific conditional feature inputs. The vertical dotted black lines indicate
the user inputs.

Figure 6: Variety of microstructures generated by the LDM given identical user inputs. The model can also suggest the manufacturing
conditions required to generate such microstructures.

fraction: 0.5; donor and acceptor tortuosities: 0.2 each), illustrating notable morphological diversity. The kernel density
estimation (KDE) plots shown in Figure 6b confirm that the generated feature distributions are closely centered around
the specified target values, with standard deviations of 0.02 or less, highlighting the precision and robustness of the
conditional LDM in practical, experimental contexts.

2.5 Inference Performance Analysis

Table 1 summarizes both datasets’ model sizes and parameter counts. The CH dataset contains microstructures with 4
times more voxels than the Experimental dataset. However, the latent dimension is 2 times larger for the Experimental
dataset. We used a lower compression ratio to capture finer details in the Experimental structures. In the CH dataset, the
latent representation has four channels, while the Experimental dataset uses only one channel. During tuning, increasing
the number of channels for the Experimental dataset did not improve reconstruction loss. These choices were based
on empirical hyperparameter tuning without a specific rule. Despite differences in image size and latent space, both
models have comparable VAE and DDPM parameter counts, as the encoder-decoder architecture remains consistent
mainly across datasets. The feature predictor has a smaller parameter count for the Experimental dataset because it
predicts fewer conditional and manufacturing parameters.

Figure 7 presents a breakdown of inference performance for both datasets across varying batch sizes. For each
dataset, we report the total inference time, along with a decomposition into denoising and decoding times. The model
demonstrates parallel scalability up to a batch size of 32, beyond which the time per sample plateaus at approximately
0.5s for the CH dataset and 0.8s for the Experimental dataset. Although the Experimental dataset has a smaller total
latent size, its latent representation has fewer channels and larger spatial dimensions per channel, which leads to
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Table 1: Model configurations and sizes for both datasets.

Model Component CH Dataset Experimental Dataset
Input Size 128× 128× 64 64× 64× 64
Latent Dimension 4× 8× 8× 4 1× 8× 8× 8
Conditional Parameters 4 3
Manufacturing Parameters 3 0
VAE Size (MB) 178.97 178.96
VAE Parameters 46,916,781 46,912,836
DDPM Size (MB) 575.55 575.23
DDPM Parameters 150,871,044 150,786,561
Feature Predictor Size (MB) 2.51 0.63
Feature Predictor Parameters 657,927 164,611
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Figure 7: Inference time per sample breakdown as a function of batch size for both the CH and Experimental OPV datasets. Shaded
regions indicate min-max variation across runs.

less efficient parallelization. In contrast, the CH dataset, with more channels, better utilizes GPU parallelism at the
kernel level. Across all configurations, denoising remains the dominant computational cost, while decoding contributes
minimally. For example, at a batch size of 32, denoising takes over 200 times longer than decoding for both datasets.
This behavior is consistent with diffusion models, where the denoising process involves iterative sampling—in our case,
1000 iterations per sample.

3 Conclusions

Conditional microstructure generation can be useful across different fields. For example, energy storage, biomedical
devices, and additive manufacturing. We have presented a conditional latent diffusion framework capable of generating
high-fidelity 3D multiphase microstructures conditioned on user-specified features. Our framework has been tested
on both experimental and physics-based simulation datasets. It demonstrates strong control over key morphological
descriptors, showing high correlations between the target and generated features. Currently, the three components of
the framework (Variational Autoencoder, Feature Predictor, and Denoising Diffusion Probabilistic Model) are being
trained sequentially. Future work includes streamlining and parallelizing the training process to reduce overall training
time. We aim to incorporate parameter validation and automatic parameter selection for the conditional inputs in the
inference pipeline. Future research will also explore applying this framework to other datasets across various domains.
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Figure 8: A sequence of 10 snapshots from one time series out of 67 in the entire dataset, illustrating the evolution of phase
separation in a 3D simulation of the Cahn-Hilliard equation.

4 Methodology

4.1 Training dataset

The computational dataset used in this project was synthesized from three-dimensional simulations of the Cahn-Hilliard
equation, solved using the Finite Element Method (FEM). It comprises a wide range of phase separation scenarios,
captured through simulations under varying conditions defined by two parameters: the initial volume fraction (ϕ) and
the Flory-Huggins interaction parameter (χ). The Cahn-Hilliad equation represents a microstructure by modeling the
spatial variation of two or three components. In our dataset, ϕ is varied systematically to explore a wide spectrum of
initial mixture compositions, capturing the dynamics of phase separation. The interaction parameter, χ, is another key
variable in the dataset. It quantifies the degree of affinity or aversion between the mixture’s components. A higher
χ value signifies a strong tendency towards phase separation due to energetically unfavorable interactions, while a
lower value suggests better miscibility. By altering χ, we probe different interaction regimes, from weak to strong
phase-separating tendencies. For each combination of ϕ and χ, the dataset captures over 400 time-stamped snapshots
of a 3D Cahn-Hilliard simulation at 128× 128× 64 resolution, providing a detailed temporal sequence of the phase
separation process. There are 67 such time series, resulting in a total of over 26,800 3D microstructures. The dataset
was divided into training and validation sets, with 80% of the data allocated to training and 20% to validation.

From these microstructures, we performed thresholding to obtain two-phase and three-phase representations. In the
two-phase case, for example, voxels with values below 0.5 were assigned to one phase (0), while those above 0.5 were
assigned to the other phase (1). The three-phase microstructures were generated by applying multi-level thresholding
to the simulated continuous microstructure fields. Two threshold values were selected to partition the field into three
distinct regions (donor, acceptor, and interface), each corresponding to one of the phases. There were no fixed threshold
levels; the levels were adjusted based on the original microstructure to ensure that the interface did not become too thick
compared to the donor and acceptor phases. Based on the thresholded microstructures, morphological descriptors such
as volume fractions and tortuosities were calculated. The volume fraction was computed as the ratio of the number of
voxels belonging to a given phase to the total number of voxels in the microstructure. In the context of OPV, tortuosity
is quantified as the fraction of phase-connected voxels exhibiting straight rising paths (i.e., with a tortuosity of 1) to
their respective electrodes [43, 49]. Specifically, donor tortuosity refers to the fraction of black voxels (donor phase)
that are connected to the anode (top electrode or top edge of the microstructure) via straight rising paths, while acceptor
tortuosity refers to the fraction of white voxels (acceptor phase) connected to the cathode (bottom electrode or bottom
edge). Tortuosity is a critical microstructural descriptor in OPV because it captures the efficiency of charge transport
pathways within the active layer. We used the graph-based tool GraSPI [50] to compute these descriptors. GraSPI
provides a suite of microstructural descriptors that are particularly relevant to the analysis and performance evaluation
of organic solar cells.
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Figure 9: Visualization of spin-cast P3HT:PCBM thin film, fabricated using chlorobenzene reconstructed using tomographic
energy-filtered TEM. The main image shows the reconstructured 3D morphology, with blue and red domains representing the
electron-donating (donor) and electron-accepting (acceptor) materials, respectively. The inset provides a zoomed-in view of a cubic
subvolume extracted from the full morphology.

Figure 8 shows snapshots from a single time series within the training dataset. The snapshots represent the temporal
evolution of phase separation during the 3D simulation of the Cahn-Hilliard equation, illustrating the dynamic changes
in microstructures over time. The Cahn-Hilliard model accounts for both thermodynamic forces and kinetic processes
driving phase separation, providing insights into how processing conditions, such as annealing, influence the final
morphology of the active layer. This understanding can aid to the optimization of material processing to improve
organic solar cell (OSC) performance [51, 52].

In addition to the computational dataset, we also utilized voxelized experimental OPV morphologies from spin-cast
P3HT:PCBM thin films fabricated using two different solvents: chlorobenzene (CB) and dichlorobenzene (DCB).
These morphologies were fabricated and reconstructed using tomographic energy-filtered TEM (see Heiber et al.
[47], Herzing et al. [48] for details). The imaging volume had approximate dimensions of 1µm × 1µm × 100 nm,
with the EF-TEM-based reconstruction achieving a voxel resolution of approximately 2.12 nm. The CB morphology is
depicted in Figure 9, where blue domains represent the electron-donating (donor) materials and red domains indicate the
electron-accepting (acceptor) materials. The voxelized resolutions of the CB and DCB morphologies are 466×465×50
and 478×463×60, respectively. To generate a uniform dataset, we extracted cubic subvolumes spanning the full z-axis
of each morphology and resized them to 64× 64× 64 using nearest-neighbor interpolation. In the x and y directions,
we used a step size of 4 voxels, resulting in over 10,500 cubic subvolumes of size 64× 64× 64 from each of the two
main morphologies. This process yielded a total of over 21,000 64× 64× 64 3D microstructures. A similar subvolume
extraction and segmentation strategy has been used in related 3D microstructure studies [53], where high-resolution
FIB-SEM images were segmented into voxelized phase maps for downstream model training. Similar to the synthetic
dataset, this dataset was also divided into training and validation sets in the usual 80% - 20% split.

4.2 Generative model architecture

The architecture of the training framework is provided in Figure 10. The core of our generative framework is the
LDM, which offers several advantages over traditional DMs. LDMs are superior in computational efficiency, memory
usage, generation speed, and scalability [26, 30]. They excel in processing 3D data, operating in a lower-dimensional
latent space that significantly reduces the computational load. This approach not only accelerates generation but also
decreases memory requirements—crucial for handling complex 3D datasets. The reduced computational and memory
demands allow for quicker iterations, making LDMs ideal for applications that require rapid prototyping or extensive
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Figure 10: Overview of the proposed LDM-based framework’s three-step training process: VAE training and latent representation
dataset creation, training of the FP, training of DM in the latent space

simulations.

Additionally, the scalability of LDMs enables them to manage larger datasets and more complex microstructures
without a proportional increase in resource consumption, unlike traditional DMs. This combination of factors renders
LDMs a more efficient and practical choice for generating detailed 3D microstructures in a resource-conscious manner.
Our LDM framework comprises three components: a VAE, a Feature Predictor (FP), and a DM, which are trained
sequentially. The encoder and decoder of the VAE are trained simultaneously to obtain the latent space from which the
FP is trained. Once the VAE and FP are trained, we train the DM using the latent space and the predicted features.

4.2.1 Variational Autoencoder

Contrary to classic Autoencoders that transform an input x directly into a latent representation z, VAEs convert x into
a probability distribution [17]. In VAEs, the encoder doesn’t predict a single point but instead determines the mean
and variance of this distribution. The latent variable z is then derived from this distribution. This is done by initially
sampling from a standard normal Gaussian distribution, then scaling this sample with the predicted variance, and finally,
adding the predicted mean to this scaled value.

To generate a sample z from the latent space, the VAE uses a random sample ϵ drawn from a standard normal distribution:

z = µϕ(x) + σϕ(x)⊙ ϵ, ϵ ∼ N (0, I) (1)

where ⊙ denotes element-wise multiplication. The encoder maps the input x to two parameters in the latent space - the
mean µ and the log-variance (log-var):

qϕ(z|x) = N (z;µϕ(x), exp(log-varϕ(x))) (2)
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The decoder maps the latent representation z back to the input space:

pθ(x|z) = N (x;µθ(z), exp(log-varθ(z))) (3)

The loss function in VAEs consists of two terms, the reconstruction loss and the KL divergence:

L(θ, ϕ;x) = −Eqϕ(z|x) [log pθ(x|z)] + KL(qϕ(z|x)||p(z)) (4)

This function balances the accuracy of reconstruction with the regularization of the latent space.

The VAE is the entry point for our architecture. The VAE employed in this work consists of an encoder-decoder
structure with residual blocks for feature extraction and reconstruction. The encoder comprises five 3D convolutional
layers, each followed by Instance Normalization and a residual block to capture spatial dependencies in the input
data. The latent space is parameterized by a mean (‘mu‘) and log-variance (‘logvar‘), both of which are obtained
through additional 3D convolutional layers. The decoder mirrors the encoder’s structure, using transposed convolutions
to upsample the latent space back to the original input dimensions with residual blocks and Instance Normalization
for stable training. A final Sigmoid activation is applied to the output to generate the reconstructed data. Once the
VAE is trained, we use its encoder to compress microstructures with over a million voxels into a compact encoded
representation of size 1024 (4× 8× 8× 4), while for experimental VAE inputs of 64× 64× 64 (over 262K voxels), the
output is further reduced to 512 (1× 8× 8× 8). This reduced-dimensional latent space, distinguished by its efficiently
learned data distribution, facilitates more efficient and stable diffusion processes.

4.2.2 Feature predictor

The feature predictor is a fully connected neural network designed to predict specific microstructural and manufacturing
features based on encoded representations of 3D morphological data. The model architecture includes an input layer, two
hidden layers, and an output layer. The input layer receives a flattened latent representation of size 1024, generated by a
pretrained VAE. This representation is then processed through two hidden layers, each reducing the data dimensionality
while applying Instance Normalization and Dropout (dropout=0.1) to prevent overfitting. The final output layer maps the
processed data to the desired number of features, which correspond to the predicted manufacturing and morphological
characteristics.

4.2.3 Diffusion model

DMs consist of two main stages: the forward diffusion and the backward diffusion. In the forward diffusion stage,
Gaussian noise is repeatedly added to a data sample drawn from a specific target distribution. This process is performed
multiple times, resulting in a series of samples that become increasingly noisy compared to the original data. In this
work, we use the original Denoising Diffusion Probabilistic Model (DDPM)[54] formulation. In DDPMs the forward
process is described by the Markov chain:

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI) (5)

where x0 is the initial sample from the target distribution q(x), and the variance schedule is defined as {βt ∈ (0, 1)}Tt=1.
Conversely, the backward diffusion stage aims to iteratively eliminate the noise introduced in the forward stage,
represented as q(xt−1 | xt). Direct sampling from q(xt−1 | xt) is not possible because that would require the complete
knowledge of the distribution. Therefore, the model uses a neural network Gθ(xt−1 | xt), parameterized by G and
θ, to approximate these conditional probabilities. The network, refined through gradient-based optimization, aims to
replicate the random Gaussian noise used in the forward diffusion process for transforming the original sample into a
noisy version xt at a particular timestep. The objective function is expressed as:

∥z −Gθ(xt, t)∥2 = Et,x0,z

[
∥z −Gθ(

√
ᾱtx0 +

√
1− ᾱtz, t)∥2

]
(6)

Here, αt = 1− βt, ᾱt =
∏t

s=1 αs, and z ∼ N (0, I).

The neural network’s primary role in a DM is to learn the inverse of the noise addition process. By systematically
removing the noise added during the forward diffusion process, the network reconstructs the original data from its
noisier versions. This process enables the generation of new, high-quality samples from completely random Gaussian
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noise. More concretely, once the DM has been trained, we can generate a new latent sample by starting with random
Gaussian noise z ∼ N (0, I) and iteratively applying the learned backward process pθ(xt−1 | xt). Specifically, we
compute xt−1 = 1√

αt

(
xt − βt√

1−ᾱt
Gθ(xt, t)

)
+ σtz, where z ∼ N (0, I), for t = T to 1, yielding a new sample x0.

In the context of enhancing the generative capabilities of DMs, incorporating a conditional vector provides a strategic
augmentation of the model’s architecture. By embedding conditional vector, c, within both the embedding and decoder
layers of the U-Net structure in the diffusion process, the model gains an additional layer of contextual guidance.
This integration is mathematically articulated as ∥z −Gθ(xt, t, c)∥2 = ∥z −Gθ(

√
ᾱtx0 +

√
1− ᾱtz, t, c)∥2, where

the conditional vector c is seamlessly intertwined with the noise prediction and denoising functions of the generative
model, Gθ. Such an approach leverages the conditionality to steer the generative process, thereby imbuing the model
with enhanced directional specificity and adaptiveness in its generation capabilities, aligning closely with the encoded
conditions in c.

Our LDM model operates under a linear beta schedule, which dictates the noise addition and removal process across
the diffusion stages. This schedule is precomputed and stored as buffers, allowing for consistent noise manipulation
during both training and sampling phases. For this work we use a starting beta value of 1e-4 and a final beta value of
0.02. The diffusion process involves progressively adding noise to the latent features and then denoising them through a
series of timesteps to generate the final microstructure.

To guide the diffusion process, the model employs two key embedding networks:

• Time Embedding: This network converts the current timestep into an embedding, providing temporal guidance
during the denoising phase.

• Context Embedding: The context embedding network incorporates manufacturing features that condition the
generation process, ensuring that the generated microstructures adhere to specific manufacturing parameters.

During the forward pass, the input 3D data is first encoded through the VAE to extract latent features. These features
are then processed by a feature predictor model to obtain context features, specifically the initial four manufacturing
features (e.g., two volume fractions and two tortuosities). These latent features are progressively diffused using the
predefined beta schedule, with the U-Net model performing denoising at each timestep. The denoising process is
informed by both time and context embeddings, enabling precise reconstruction of the microstructure. For new sample
generation, the diffusion process is reversed, starting from pure noise and progressively refining the latent space into a
structured representation conditioned on the context features.

User input

Manufacturing
condi�ons

Decoder
Feature 

Predictor

Microstructure (X’)

User input

ZT ZT-1 Z1 Z0

t = 1t = T-1t = T

Z0Z0

User input

Figure 11: Overview of the inference framework for the proposed LDM-based model: Random noise ZT is sampled in latent space,
and the diffusion model gradually denoises it over T steps. User inputs condition the denoising process. Z0 is then passed through
the VAE decoder and the feature predictor to obtain the microstructure and its manufacturing parameters, respectively.
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4.3 Training and inference

As shown in Figure 10, the training process consists of three steps. First, the VAE is trained on the original training
dataset. Once the VAE is trained, we encode the entire training dataset to obtain the latent representation, which
becomes the training data for both the feature predictor and the diffusion model. In the second step, we train the feature
predictor. Once trained, the input to the feature predictor is a latent representation of the microstructure, and the output
is the features of interest, such as manufacturing parameters, tortuosity, volume fraction, etc. Finally, the LDM is
trained to denoise and recover the original data from noisy inputs, with the corresponding features of interest used as
conditioning. The detail of the training process is provided in the appendix Section A.1.

The inference process begins with the pre-trained weights of the LDM, VAE decoder, and feature predictor. The VAE
encoder is not required during inference. The process involves user input and random noise sampled in the latent space.
The random noise is iteratively refined by the LDM, conditioned on the user inputs. After 1,000 iterations, the denoised
latent representation of the microstructure is obtained. This step is the most time-consuming during inference. However,
despite this many iterations, the process remains highly efficient because the denoising occurs in latent space rather
than pixel space, which has 1,000 times fewer dimensions. The inference pipeline is demonstrated in Figure 11. Once
the denoised latent representation of the microstructure is obtained, it is passed through both the feature predictor and
the VAE decoder. The feature predictor provides the manufacturing conditions, while the VAE decoder generates the
final conditioned microstructure. Using NVIDIA A100 80GB GPUs, it takes approximately 2 seconds to generate and
save a single microstructure, including export to storage.

Data Availability

Microgen3D is a dataset of 3D voxelized microstructures designed for training, evaluation, and benchmarking of
generative models—especially Conditional Latent Diffusion Models (LDMs). It includes both synthetic (Cahn–Hilliard)
and experimental microstructures with multiple phases (2 to 3). The voxel grids range from 64 × 64 × 64 up to
128× 128× 64.

The dataset consists of three microstructure types:

• Experimental microstructures (64× 64× 64): voxelized from real-world samples for modeling.

• 2-phase Cahn–Hilliard microstructures (128× 128× 64): thresholded from Cahn–Hilliard simulations.

• 3-phase Cahn–Hilliard microstructures (128× 128× 64): thresholded from Cahn–Hilliard simulations.

For each dataset type, pretrained generative model weights are provided:

• vae.pt – Variational Autoencoder

• fp.pt – Feature Predictor

• ddpm.pt – Denoising Diffusion Probabilistic Model

In addition to the full datasets, smaller sample subsets are provided for testing and demonstration purposes.

All datasets and pretrained weights have been permanently archived on Zenodo: https://doi.org/10.5281/zenodo.17010419.
The complete codebase has also been archived on Zenodo: https://doi.org/10.5281/zenodo.17029570.

For convenience, the dataset is additionally available on Hugging Face: https://huggingface.co/datasets/
BGLab/microgen3D, and the latest development version of the code is available on GitHub: https://github.
com/baskargroup/MicroGen3D
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A Appendix

A.1 Training process details and hyperparameter tuning

All three components of the architecture—the VAE, feature predictor, and LDM—were trained for 500 epochs with
a batch size of 32. The batch size of 32 is large enough to fully utilize GPU parallelism while being small enough
to avoid out-of-memory errors, particularly given the use of 3D data. The Adam optimizer [55] was employed for
gradient-based optimization due to its widespread adoption, stability, and efficiency. The learning rate was dynamically
adjusted using a cosine annealing scheduler, which gradually reduces the learning rate to effectively minimize the
loss [56, 57]. The training time and loss curves are shown in Figure A.1 for the CH three-phase dataset. Training
the VAE, feature predictor, and DDPM required approximately 100, 80, and 60 hours, respectively. The DDPM was
stopped early at 400 epochs, as further training yielded minimal improvements in both training and validation loss. In
total, the complete training process required approximately 250 hours, or nearly 11 days. Note that the training loss for
the feature predictor appears higher because dropout regularization was applied during training. Figure A.1 is produced
using Wandb [58].

(a) Epoch progression vs. training time. (b) Training and validation loss vs. epochs.

Figure A.1: Training log of the LDM. (a) epoch progression over wall-clock training time. (b) training and validation loss curves
for all three components of the LDM framework.

The loss function for VAE combined a Mean Squared Error (MSE) loss for reconstruction and a Kullback-Leibler
Divergence (KLD) loss [59], with a weight of 1× 10−6 for regularizing the latent space. The goal was to keep both the
KLD and reconstruction losses in the same order of magnitude. The feature predictor was trained using an MSE loss
function to assess the accuracy of predictions by measuring the difference between predicted and actual feature values.
The encoder of the pretrained VAE was kept frozen during feature predictor training phase. For both the VAE and the
feature predictor, the initial learning rate was set to 5× 10−5, with a minimum of 5× 10−7.

For the LDM, the diffusion process was divided into 1000 timesteps. The training objective was to minimize the MSE
between the predicted noise and the actual noise added during the diffusion process. Initial and minimum learning rates
are 1× 10−6 and 1× 10−7, respectively. The learning rate was selected based on the pioneering work by [26], which
demonstrated the effectiveness of using this order of magnitude in similar architectures. Both VAE and feature predictor
were kept frozen during LDM training.

The training process for all models was conducted in a GPU-enabled environment, using an NVIDIA A100 GPU with
80 GB of memory. The entire framework was implemented in PyTorch and managed by PyTorch Lightning, which
handled the training loop, logging, and checkpointing. Checkpoints were automatically saved based on the validation
loss, ensuring that only the best-performing models were retained. Throughout the training, real-time progress and
performance metrics were continuously logged using the WandB [58] logger, providing detailed experiment tracking
and facilitating reproducibility and scalability.
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A.2 Inference microstructure samples

(a) CH two-phase VAE-only generation (b) CH three-phase VAE-only generation

Figure A.2: Representative microstructures generated using only the VAE component of our framework, where random noise
was sampled in the latent space and decoded using the VAE decoder. Consistent with the known behavior of VAEs, these outputs
exhibit distorted, lower-quality features with inconsistent interfaces and reduced morphological sharpness. Additionally, without the
diffusion stage and conditioning, control over target microstructural descriptors is not possible.

(a) Sampled microstructures with a predominant phase B (volume
fraction above 0.5).

(b) Microstructures generated from the same conditional features: volume
fraction of phase A and phase mix 0.3 and 0.2, respectively. Tortuosity of
both phases is 0.3.

Figure A.3: Representative three-phase microstructures generated by the full conditional LDM framework, exhibiting more consistent
interfaces, sharper morphological features, and controlled generation compared to the VAE-only results.
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A.3 Experimental training dataset feature distribution

(a) Donor tortuosity vs volume fraction (b) Acceptor tortuosity vs volume fraction (c) Acceptor tortuosity vs donor tortuosity

(d) 3D scatter plot of all three features.

Figure A.4: Distribution of all three features of interest. (a), (b), and (c) show pairwise distributions, while (d) presents a
three-dimensional plot of all three features. This visualization highlights the range of the features, and how they are distributed
relative to one another.
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A.4 Test with seven conditional features

Figure A.5 shows the correlation between the target input features and the measured features for the generated
microstructures when conditioning on seven parameters. As the number of conditioning parameters increases, the model
maintains reasonably strong correlations. However, a moderate decline in R2 values is observed due to the increased
complexity and sparsity of the conditioning space. To know about these microstructural features, see this here [60]

Figure A.5: Scatter plots comparing input and measured features for the seven conditioning variables. The red dashed lines indicate
perfect agreement (y = x). The R2 values for each feature are shown within each subplot.
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Data Availability
microgen3D is a dataset of 3D voxelized microstructures designed for training, evaluation, and benchmarking of gen-
erative models—especially Conditional Latent Diffusion Models (LDMs). It includes both synthetic (Cahn–Hilliard)
and experimental microstructures with multiple phases (2 to 3). The voxel grids range from 64 × 64 × 64 up to
128× 128× 64.
The dataset consists of three microstructure types:

• Experimental microstructures (64× 64× 64): voxelized from real-world samples for modeling.

• 2-phase Cahn–Hilliard microstructures (128× 128× 64): thresholded from Cahn–Hilliard simulations.

• 3-phase Cahn–Hilliard microstructures (128× 128× 64): thresholded from Cahn–Hilliard simulations.

For each dataset type, pretrained generative model weights are provided:

• vae.pt – Variational Autoencoder

• fp.pt – Feature Predictor

• ddpm.pt – Denoising Diffusion Probabilistic Model

In addition to the full datasets, smaller sample subsets are provided for testing and demonstration purposes.
All datasets and pretrained weights have been permanently archived on Zenodo: https://doi.org/10.5281/zenodo.17010419.
The complete codebase has also been archived on Zenodo: https://doi.org/10.5281/zenodo.17029570.
For convenience, the dataset is additionally available on Hugging Face: https://huggingface.co/datasets/
BGLab/microgen3D, and the latest development version of the code is available on GitHub: https://github.
com/baskargroup/MicroGen3D
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