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eterogeneous microstructure
generation using conditional latent diffusion
models

Nirmal Baishnab, Ethan Herron, Aditya Balu, Soumik Sarkar, Adarsh Krishnamurthy*
and Baskar Ganapathysubramanian *

The ability to generate 3D multiphase microstructures on-demand with targeted attributes can greatly

accelerate the design of advanced materials. Here, we present a conditional latent diffusion model (LDM)

framework that rapidly synthesizes high-fidelity 3D multiphase microstructures tailored to user

specifications. Using this approach, we generate diverse two-phase and three-phase microstructures at

high resolution (volumes of 128 × 128 × 64 voxels, representing >106 voxels each) within seconds,

overcoming the scalability and time limitations of traditional simulation-based methods. Key design

features, such as desired volume fractions and tortuosities, are incorporated as controllable inputs to

guide the generative process, ensuring that the output structures meet prescribed statistical and

topological targets. Moreover, the framework predicts corresponding manufacturing (processing)

parameters for each generated microstructure, helping to bridge the gap between digital microstructure

design and experimental fabrication. While demonstrated on organic photovoltaic (OPV) active-layer

morphologies, the flexible architecture of our approach makes it readily adaptable to other material

systems and microstructure datasets. By combining computational efficiency, adaptability, and

experimental relevance, this framework addresses major limitations of existing methods and offers

a powerful tool for accelerated materials discovery.
1 Introduction

Understanding and controlling a material's microstructure is
critical for optimizing its properties and performance. In
materials science, the mapping between structure and property
is a foundational concept, with microstructural features oen
serving as primary drivers of a material's physical characteris-
tics and behavior.1–4 However, directly observing or recon-
structing 3D microstructures through experiments is expensive
and technically challenging, making it difficult to explore pro-
cessing–structure–property relationships at scale.5–8 Conse-
quently, there is a strong motivation to develop computational
methods for generating realistic microstructures. The ability to
produce statistically representative microstructure samples on-
demand would greatly aid in virtual testing, microstructure-
sensitive property prediction, and computational materials
design.

Various approaches have been explored for microstructure
generation.9,10 Classical statistical methods, such as Markov
random elds,11 Gaussian random elds,12 and descriptor-
based reconstructions,13,14 can produce microstructures that
match certain target statistics. While these methods have
il: adarsh@iastate.edu; baskar@iastate.

the Royal Society of Chemistry
proven useful, they suffer from important limitations. In
general, statistical models are computationally intensive and do
not scale well to generating large 3D volumes or numerous
samples. They oen rely on strict assumptions (e.g. stationarity
or isotropy of features) and tailored mathematical descriptors,
which limits their exibility and generalizability to different
materials or complex structures. Adapting such models to
incorporate new microstructural constraints or application-
specic objectives is non-trivial and typically requires substan-
tial rederivation or optimization changes. These challenges
highlight the need for a more exible, data-driven generative
framework for microstructures.

Recently, deep generative models have shown great promise
in capturing complex microstructural features from data.15,16

Approaches like variational autoencoders (VAEs),17 generative
adversarial networks (GANs),18 and diffusion models (DMs)19

have been applied to microstructure generation tasks. VAEs can
learn low-dimensional representations of microstructures but
oen produce blurry outputs that lack sharp detail.20 GAN-
based models have succeeded in generating 3D microstruc-
tures with improved visual delity,21–23 but they do not allow
user control over generated structures and are notorious for
training instabilities.24 Moreover, GANs and similar networks
can be computationally demanding for 3D data, sometimes
requiring extensive resources for training and generation.
Digital Discovery, 2025, 4, 3175–3190 | 3175

http://crossmark.crossref.org/dialog/?doi=10.1039/d5dd00159e&domain=pdf&date_stamp=2025-11-02
http://orcid.org/0000-0002-8931-4852
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00159e
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD004011


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
3/

20
26

 5
:1

2:
10

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Diffusion models offer even higher output quality, oen
surpassing GANs, but their iterative sampling process makes
inference slow and resource-intensive.25 At this time, no prior
generative approach has simultaneously provided high delity,
user controllability, and computational efficiency for 3D
microstructure generation.

Latent diffusion models (LDMs) have emerged as a compel-
ling solution to address these gaps.26,27 LDMs combine the
strengths of VAEs and DMs by operating in a compressed latent
space to dramatically reduce computational costs while
preserving the ability to generate high-quality, diverse micro-
structures. This latent-space approach yields orders-of-
magnitude speed-ups over conventional pixel-space diffusion
models. Importantly, LDM architectures naturally support
conditioning mechanisms that enable users to steer generation
towards desired attributes. They also exhibit more stable
training dynamics and avoid mode collapse, yielding a broader
variety of outputs compared to GANs.28–31 These advantages
make LDMs well-suited for fast and controllable 3D micro-
structure synthesis.

To date, applying diffusion-based generative models to
microstructure design has predominantly focused on uncondi-
tional generation.32–34 In our prior work, Herron et al.35 applied
a diffusion model to 2D organic solar cell microstructures
without enabling user-specied target features. While recent
advances36,37 have begun exploring conditional generative
approaches to microstructure reconstruction and design, these
have typically not integrated predictions of corresponding
manufacturing parameters. Our current work introduces
a conditional latent diffusion modeling (LDM) framework that
not only allows user-dened control over critical microstructural
descriptors but also uniquely predicts manufacturing parameters
likely to produce such microstructures experimentally. This two-
fold capability addresses key challenges in computational mate-
rials design:38,39 not only can we generate microstructures with
tailored properties, but we can also provide insight into how to
manufacture them – thereby tackling the o-cited “manufactur-
ability gap” in microstructure design.

We demonstrate the framework using organic photovoltaic
(OPV) active-layer microstructures as a representative example.
OPV active layers typically consist of a donor material and an
acceptor material, forming a complex two-phase (or three-phase
with a mixed phase) morphology.40 Two microstructural
descriptors are particularly crucial for OPV performance: the
donor (acceptor) phase volume fraction and the tortuosity of the
percolating pathways.41,42 The volume fraction (the ratio of
donor to acceptor material in the blend) directly inuences the
balance between charge generation and transport, while tortu-
osity reects the complexity of pathways that charge carriers
must navigate to reach the electrodes. By conditioning on these
properties in the LDM, we can generate microstructures that
meet specic targets (e.g. a desired donor volume fraction and
phase connectivity) known to optimize OPV efficiency. We
quantify volume fraction and tortuosity for each generated
sample using established computational techniques.43

The key contributions of this work include: (1) scalable high-
resolution 3D microstructure generation: leveraging an LDM, we
3176 | Digital Discovery, 2025, 4, 3175–3190
rapidly produce diverse multiphase 3D microstructures
(including two-phase and three-phase examples) at a resolution of
128 × 128 × 64 voxels (over one million voxels each), which is
orders of magnitude larger than those demonstrated in prior
studies. Our approach generates these 3D microstructures in
seconds per sample. (2) Conditional generation with user-dened
features: our framework introduces controllability to microstruc-
ture synthesis by allowing users to specify target volume fractions
and tortuosities; the LDM then generates microstructures that
faithfully realize these input parameters, ensuring the output
matches desired structural characteristics. (3) Linking micro-
structure to manufacturing: we integrate a predictive module that
outputs relevant processing parameters (e.g. annealing or fabri-
cation conditions) corresponding to each generated microstruc-
ture, facilitating a direct connection between the digital
microstructure design and its experimental realization. These
advances collectively overcome the scalability, controllability, and
manufacturability limitations of existing methods. By enabling
fast generation of application-specic microstructures along with
guidance for their fabrication, our conditional LDM framework
illustrates the promise of AI-driven approaches in computational
materials science and microstructure design.
2 Results and discussion

To demonstrate our framework's capabilities, we evaluated its
performance using both synthetic microstructures generated
via physics-based simulations (Cahn–Hilliard equation) and
experimentally obtained (via tomography) organic photovoltaic
(OPV) morphologies. We will refer to these datasets as the CH
dataset and the experimental dataset, respectively. The results
illustrate the advantages of our conditional latent diffusion
modeling (LDM) approach in generating diverse, high-quality
microstructures efficiently and with precision.

Our proposed generative modeling framework, schemati-
cally illustrated in Fig. 10, consists of three sequentially trained
modules: a Variational Autoencoder (VAE), a Feature Predictor
(FP), and the Latent Diffusion Model (LDM). Initially, the VAE
compresses complex, high-dimensional 3D microstructures
into compact latent representations, drastically reducing
computational complexity. The FP network subsequently
predicts relevant microstructural features (e.g., volume frac-
tions and tortuosities) and manufacturing parameters directly
from these latent representations. Finally, the conditional LDM
leverages these predictions to generate realistic 3D micro-
structures, guided explicitly by user-specied conditions.

In the following sub-sections, we detail our evaluation of the
framework's generative capabilities, including the quality and
diversity of generated microstructures, the effectiveness of
conditional sampling for targeted microstructure design, and
the model's unique capacity to predict experimental
manufacturing parameters.
2.1 Sampling quality

Fig. 1 shows representative examples of microstructures
generated by our Latent Diffusion Models (LDMs), separately
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Samples from LDMs trained on (a) two phase and (b) three phase microstructures.
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trained for the CH dataset's two-phase and three-phase systems.
In the two-phase microstructures, the blue domains represent
a donor phase (denoted phase A), and the red domains repre-
sent an acceptor phase (denoted phase B), corresponding to
typical organic photovoltaic (OPV) active-layer morphologies.
For the three-phase microstructures, an additional gray phase
delineates a mixed region, that typically exists as an interfacial
region between donor and acceptor phases.

Each generated microstructure spans a volume of 128 × 128
× 64 voxels, corresponding to over one million voxels (1 048
576), allowing detailed resolution of intricate morphological
features. Importantly, our LDM framework achieves this
generation within approximately 0.5 seconds per microstruc-
ture using an NVIDIA A100 GPU, signicantly outperforming
traditional physics-based simulation methods, which typically
require hours or days of computation for similar-sized
volumes.44–46 The transition from two-phase to three-phase
systems maintains high quality and delity, demonstrating
the exibility and scalability of our framework. Without any
modication to the core architecture, retraining on a three-
phase dataset successfully generated microstructures exhibit-
ing smaller domains and more complex, nely detailed
features. This ease of adaptability underscores the potential for
further extension of our approach to accommodate additional
phases.
Fig. 2 Conditional microstructure generation: sample microstructures fr
mixed. First column shows the total microstructure. Second, third and fou
mixed components, respectively.

© 2025 The Author(s). Published by the Royal Society of Chemistry
2.2 Conditional sampling

In this work, conditional sampling refers to the approach of
providing the generative model with additional information—
termed a conditioning vector—to guide the synthesis of
microstructures toward specic, user-dened characteristics.
We implemented this conditional generation by embedding the
conditioning vector directly into the latent diffusion model
(LDM), allowing precise control over the structural features of
the generated microstructures. Specically, the LDM architec-
ture incorporates the conditioning vector into the embedding
layers of the U-Net backbone, facilitating effective guidance
during the diffusion process.

The LDM is conditioned on two crucial microstructural
descriptors relevant to organic photovoltaics: the volume frac-
tions and tortuosities of the phases (A, B, and the mixed phase).
However, our exible conditioning framework is easily exten-
sible to other relevant morphological descriptors, depending on
the application requirements (see additional examples provided
in the SI Results). Fig. 2 illustrates representative examples of
conditionally generated microstructures, clearly demonstrating
the effectiveness of the model in synthesizing morphologies
tailored to user-specied volume fractions and tortuosities.

To evaluate the model's ability to generate conditional
outputs, we created 3200 microstructures with different tar-
geted volume fractions and tortuosity values. We systematically
om user inputs – (a) predominant phase A, and (b) predominant phase
rth columns show the thresholded versions of the phase A, phase B and

Digital Discovery, 2025, 4, 3175–3190 | 3177
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Fig. 3 Statistical analysis of conditional microstructure generation: correlations between all features of interest, user inputs, and the corre-
sponding featuresmeasured from generatedmicrostructures. (a) Phase A volume fraction. (b) Phase B volume fraction. (c) Mixed volume fraction.
(d) Tortuosity A. (e) Tortuosity B.
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compared these microstructure attributes with the user-
specied conditioning parameters, as depicted in Fig. 3. Our
analysis reveals a high degree of accuracy in conditional
generation, achieving Pearson correlation coefficients (R2) of
0.93 or greater. This robust correlation underscores the LDM's
effectiveness in adhering to precise user-dened constraints,
thereby enabling targeted material design and optimization
that surpasses prior methods in versatility and computational
efficiency.22,23

As with most data-driven generative frameworks, the
proposed LDM model learns and reproduces the joint distri-
bution of microstructural features in the training data. In
physics-based datasets such as our CH dataset, certain features
(e.g., volume fraction and tortuosity) naturally exhibit correla-
tions due to underlying physical constraints. Consequently, the
generative model tends to reect these correlations and may
struggle to generate feature combinations that are poorly rep-
resented or absent in the training dataset. However, the
framework remains exible and, in principle, capable of
learning a broader range of feature combinations if provided
with sufficiently diverse and decorrelated training data. As the
diversity and coverage of the training dataset increase, the
model's ability to generate microstructures with uncommon or
more complex feature relationships is expected to improve
accordingly. We conducted experiments using more condi-
tioning parameters to assess the framework's capacity for
higher-dimensional conditioning. Appendix Fig. 16 presents
the results with seven conditioning parameters. Increasing the
number of conditioning parameters introduces two challenges.
First, the model must learn more complex and potentially
correlated feature relationships. Second, as the dimensionality
grows, the volume of the conditioning space expands rapidly,
resulting in a sparser sampling of the parameter space, which in
turn demands a larger andmore diverse training dataset. Fig. 16
shows a decline in R2 between the input features and the
measured features of the generated microstructures, yet the
model still maintains strong correlations. If the conditioning
features are not fully independent but exhibit correlations, care
must be taken to ensure that valid and physically meaningful
combinations are used during inference. In such scenarios,
dimensionality reduction techniques (e.g., principal component
analysis or other embedding methods) may be employed to
3178 | Digital Discovery, 2025, 4, 3175–3190
reduce the effective dimensionality of the conditioning space
prior to model training.

Alternative conditional generative approaches for micro-
structure design have recently been reported. For example, Gao
et al.36 introduced a deep learning framework for multi-scale
prediction of mechanical properties from microstructural
features in polycrystalline materials, while Lee and Yun37

developed a denoising diffusion-based method for generating
three-dimensional anisotropic microstructures from two-
dimensional micrographs. While these works incorporate
conditional elements, they do not provide the combined capa-
bility of user-dened control over specic microstructural
descriptors and simultaneous prediction of manufacturing
parameters. Our conditional latent diffusion framework thus
addresses a different design space—high-resolution descriptor-
controlled generation.
2.3 Diversity and prediction of manufacturing parameters

We further assessed the LDM's capability to generate diverse
microstructures from identical conditional inputs. Specically,
we sampled 3200 microstructures using consistent input
parameters (volume fractions: 0.3 for phase A, 0.2 for the mixed
phase; tortuosities for both phases: 0.3). The resulting micro-
structures, detailed in the SI, exhibit signicant morphological
diversity despite identical conditioning parameters. Fig. 4a
illustrates the distributions of the extracted microstructural
features, clearly aligning with the specied input values (indi-
cated by vertical dotted lines). The strong alignment conrms
that the LDM reliably generates diverse yet precisely targeted
microstructures.

Moreover, Fig. 4b presents contour plots predicting the
manufacturing parameters—the blend ratio, the interaction
parameter (c), and the annealing time (timesteps)—required for
realizing these microstructures. Notably, the LDM framework
identies multiple feasible fabrication pathways: a combination
of higher c values with shorter annealing durations, or lower c
values with extended annealing periods. This data-driven
insight aligns well with the known physical behavior of phase-
separating systems described by the Cahn–Hilliard model,
where increased interaction parameters accelerate phase sepa-
ration, thereby requiring less annealing time, whereas lower
interaction parameters necessitate longer annealing to achieve
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Variety of microstructures generated by the LDM given identical user inputs. The model can also suggests the manufacturing conditions
required to generate such microstructures. (a) Distribution of features measured from generated microstructures given specific conditional
feature inputs. The vertical dotted black lines indicate the user inputs. (b) Contour plot of manufacturing parameters c and timesteps for desired
microstructure generation.
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comparable morphologies. This pathway prediction capability
illustrates the integration of computational design with exper-
imental manufacturability, thus signicantly advancing current
microstructure design methodologies.22,23 Such an approach
could be expanded to include other manufacturing parameters,
making the model applicable across various material systems
and manufacturing processes.22,23

Although the training dataset includes time-dependent
snapshots generated from Cahn–Hilliard simulations, the
generative model itself operates solely on static 3D micro-
structures paired with their corresponding morphological
descriptors. The time-dependent simulations are used primarily
to provide a diverse and physically meaningful training set
across a range of morphologies. The generative model remains
agnostic to the physical dynamics or governing equations
responsible for generating the dataset. This formulation
enables exible, descriptor-driven microstructure generation.
Future work could explore the incorporation of additional
physics-based constraints, such as mass conservation or
dynamic evolution, for applications requiring dynamic
modeling.
Fig. 5 Statistical analysis of conditional microstructure generation: cor
sponding features measured from generated microstructures. (a) Donor

© 2025 The Author(s). Published by the Royal Society of Chemistry
2.4 Experimental microstructures

We further demonstrated our framework's applicability using
the experimental dataset comprising voxelized organic photo-
voltaic (OPV) morphologies from spin-cast P3HT:PCBM thin
lms, reconstructed through tomographic energy-ltered
TEM47,48 (additional methodological details are provided in
the Methods section).

Using the experimental dataset, we generated 1000 micro-
structures conditioned on user-specied inputs. Fig. 5 shows
the correlation between the specied inputs and the corre-
sponding measured features, with Pearson R2 values of 0.89 for
volume fraction, 0.86 for acceptor tortuosity, and 0.77 for donor
tortuosity. These values are somewhat lower than those
observed for the CH dataset; however, they remain reasonably
strong given the characteristics of the experimental data. First,
the experimental microstructures are lower in resolution but
contain ner-scale features, which limits the ability of the latent
diffusion model to capture the details. Second, the experi-
mental dataset is less diverse: the subvolumes are extracted
from only two larger tomographic samples, with overlapping
subregions, resulting in a narrower sampling of the feature
relations between all features of interest, user inputs, and the corre-
volume fraction. (b) Tortuosity acceptor. (c) Tortuosity donor.

Digital Discovery, 2025, 4, 3175–3190 | 3179
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Fig. 6 Variety of microstructures generated by the LDM given identical user inputs. The model can also suggest the manufacturing conditions
required to generate such microstructures. (a) Samples microstructures generated from same conditional feature inputs. (b) Distribution of
features measured from generated microstructures given specific conditional feature inputs. The vertical dotted black lines indicate the user
inputs.

Table 1 Model configurations and sizes for both datasets

Model component CH dataset Experimental dataset

Input size 128 × 128 × 64 64 × 64 × 64
Latent dimension 4 × 8 × 8 × 4 1 × 8 × 8 × 8
Conditional parameters 4 3
Manufacturing parameters 3 0
VAE size (MB) 178.97 178.96
VAE parameters 46 916 781 46 912 836
DDPM size (MB) 575.55 575.23
DDPM parameters 150 871 044 150 786 561
Feature predictor size (MB) 2.51 0.63
Feature predictor parameters 657 927 164 611
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space. These factors inherently constrain the achievable corre-
lation between target features and generated structures.
Nevertheless, the model captures the volume fraction with
higher accuracy, as it is a simpler global descriptor. In contrast,
tortuosity, a more localized and structurally complex feature,
potentially requires better resolution and poses greater
modeling challenges.

Additionally, Fig. 6a presents six representative microstruc-
tures generated from identical conditioning inputs (volume
fraction: 0.5; donor and acceptor tortuosities: 0.2 each), illus-
trating notable morphological diversity. The kernel density
estimation (KDE) plots shown in Fig. 6b conrm that the
generated feature distributions are closely centered around the
specied target values, with standard deviations of 0.02 or less,
highlighting the precision and robustness of the conditional
LDM in practical, experimental contexts.

2.5 Inference performance analysis

Table 1 summarizes both datasets' model sizes and parameter
counts. The CH dataset contains microstructures with 4 times
more voxels than the experimental dataset. However, the latent
dimension is 2 times larger for the experimental dataset. We
used a lower compression ratio to capture ner details in the
experimental structures. In the CH dataset, the latent
3180 | Digital Discovery, 2025, 4, 3175–3190
representation has four channels, while the experimental
dataset uses only one channel. During tuning, increasing the
number of channels for the experimental dataset did not
improve reconstruction loss. These choices were based on
empirical hyperparameter tuning without a specic rule.
Despite differences in image size and latent space, both models
have comparable VAE and DDPM parameter counts, as the
encoder-decoder architecture remains consistent mainly across
datasets. The feature predictor has a smaller parameter count
for the experimental dataset because it predicts fewer condi-
tional and manufacturing parameters.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Inference time per sample breakdown as a function of batch size for both the CH and experimental OPV datasets. Shaded regions indicate
min–max variation across runs. (a) Total inference time. (b) Denoise time. (c) Decode time.
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Fig. 7 presents a breakdown of inference performance for
both datasets across varying batch sizes. For each dataset, we
report the total inference time, along with a decomposition
into denoising and decoding times. The model demonstrates
parallel scalability up to a batch size of 32, beyond which the
time per sample plateaus at approximately 0.5 s for the CH
dataset and 0.8 s for the experimental dataset. Although the
experimental dataset has a smaller total latent size, its latent
representation has fewer channels and larger spatial dimen-
sions per channel, which leads to less efficient parallelization.
In contrast, the CH dataset, with more channels, better
utilizes GPU parallelism at the kernel level. Across all
congurations, denoising remains the dominant computa-
tional cost, while decoding contributes minimally. For
example, at a batch size of 32, denoising takes over 200 times
longer than decoding for both datasets. This behavior is
consistent with diffusion models, where the denoising
process involves iterative sampling—in our case, 1000 itera-
tions per sample.
3 Conclusions

Conditional microstructure generation can be useful across
different elds. For example, energy storage, biomedical
devices, and additive manufacturing. We have presented
a conditional latent diffusion framework capable of generating
high-delity 3D multiphase microstructures conditioned on
user-specied features. Our framework has been tested on both
experimental and physics-based simulation datasets. It
demonstrates strong control over key morphological descrip-
tors, showing high correlations between the target and gener-
ated features. Currently, the three components of the
framework (Variational Autoencoder, Feature Predictor, and
Denoising Diffusion Probabilistic Model) are being trained
sequentially. Future work includes streamlining and para-
llelizing the training process to reduce overall training time. We
aim to incorporate parameter validation and automatic
parameter selection for the conditional inputs in the inference
pipeline. Future research will also explore applying this frame-
work to other datasets across various domains.
© 2025 The Author(s). Published by the Royal Society of Chemistry
4 Methodology
4.1 Training dataset

The computational dataset used in this project was synthesized
from three-dimensional simulations of the Cahn–Hilliard
equation, solved using the Finite Element Method (FEM). It
comprises a wide range of phase separation scenarios, captured
through simulations under varying conditions dened by two
parameters: the initial volume fraction (f) and the Flory–Hug-
gins interaction parameter (c). The Cahn–Hilliad equation
represents a microstructure by modeling the spatial variation of
two or three components. In our dataset, f is varied systemat-
ically to explore a wide spectrum of initial mixture composi-
tions, capturing the dynamics of phase separation. The
interaction parameter, c, is another key variable in the dataset.
It quanties the degree of affinity or aversion between the
mixture's components. A higher c value signies a strong
tendency towards phase separation due to energetically unfa-
vorable interactions, while a lower value suggests better misci-
bility. By altering c, we probe different interaction regimes,
from weak to strong phase-separating tendencies. For each
combination of f and c, the dataset captures over 400 time-
stamped snapshots of a 3D Cahn–Hilliard simulation at 128 ×

128 × 64 resolution, providing a detailed temporal sequence of
the phase separation process. There are 67 such time series,
resulting in a total of over 26 800 3D microstructures. The
dataset was divided into training and validation sets, with 80%
of the data allocated to training and 20% to validation.

From these microstructures, we performed thresholding to
obtain two-phase and three-phase representations. In the two-
phase case, for example, voxels with values below 0.5 were
assigned to one phase (0), while those above 0.5 were assigned
to the other phase (1). The three-phase microstructures were
generated by applying multi-level thresholding to the simulated
continuous microstructure elds. Two threshold values were
selected to partition the eld into three distinct regions (donor,
acceptor, and interface), each corresponding to one of the
phases. There were no xed threshold levels; the levels were
adjusted based on the original microstructure to ensure that the
interface did not become too thick compared to the donor and
Digital Discovery, 2025, 4, 3175–3190 | 3181
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Fig. 9 Visualization of spin-cast P3HT:PCBM thin film, fabricated
using chlorobenzene reconstructed using tomographic energy-
filtered TEM. The main image shows the reconstructured 3D
morphology, with blue and red domains representing the electron-
donating (donor) and electron-accepting (acceptor) materials,
respectively. The inset provides a zoomed-in view of a cubic sub-
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acceptor phases. Based on the thresholded microstructures,
morphological descriptors such as volume fractions and tortu-
osities were calculated. The volume fraction was computed as
the ratio of the number of voxels belonging to a given phase to
the total number of voxels in the microstructure. In the context
of OPV, tortuosity is quantied as the fraction of phase-
connected voxels exhibiting straight rising paths (i.e., with
a tortuosity of 1) to their respective electrodes.43,49 Specically,
donor tortuosity refers to the fraction of black voxels (donor
phase) that are connected to the anode (top electrode or top
edge of the microstructure) via straight rising paths, while
acceptor tortuosity refers to the fraction of white voxels
(acceptor phase) connected to the cathode (bottom electrode or
bottom edge). Tortuosity is a critical microstructural descriptor
in OPV because it captures the efficiency of charge transport
pathways within the active layer. We used the graph-based tool
GraSPI50 to compute these descriptors. GraSPI provides a suite
of microstructural descriptors that are particularly relevant to
the analysis and performance evaluation of organic solar cells.

Fig. 8 shows snapshots from a single time series within the
training dataset. The snapshots represent the temporal evolu-
tion of phase separation during the 3D simulation of the Cahn–
Hilliard equation, illustrating the dynamic changes in micro-
structures over time. The Cahn–Hilliard model accounts for
both thermodynamic forces and kinetic processes driving phase
separation, providing insights into how processing conditions,
such as annealing, inuence the nal morphology of the active
layer. This understanding can aid to the optimization of mate-
rial processing to improve organic solar cell (OSC)
performance.51,52

In addition to the computational dataset, we also utilized
voxelized experimental OPV morphologies from spin-cast
P3HT:PCBM thin lms fabricated using two different solvents:
chlorobenzene (CB) and dichlorobenzene (DCB). These
morphologies were fabricated and reconstructed using tomo-
graphic energy-ltered TEM (see Heiber et al.,47 Herzing et al.48

for details). The imaging volume had approximate dimensions
of 1 mm × 1 mm × 100 nm, with the EF-TEM-based
Fig. 8 A sequence of 10 snapshots from one time series out of 67 in th
simulation of the Cahn–Hilliard equation.

3182 | Digital Discovery, 2025, 4, 3175–3190
reconstruction achieving a voxel resolution of approximately
2.12 nm. The CB morphology is depicted in Fig. 9, where blue
domains represent the electron-donating (donor) materials and
red domains indicate the electron-accepting (acceptor) mate-
rials. The voxelized resolutions of the CB and DCB morphol-
ogies are 466 × 465 × 50 and 478 × 463 × 60, respectively. To
generate a uniform dataset, we extracted cubic subvolumes
spanning the full z-axis of each morphology and resized them to
64 × 64 × 64 using nearest-neighbor interpolation. In the x and
y directions, we used a step size of 4 voxels, resulting in over 10
500 cubic subvolumes of size 64 × 64 × 64 from each of the two
main morphologies. This process yielded a total of over 21 000
64 × 64 × 64 3D microstructures. A similar subvolume extrac-
tion and segmentation strategy has been used in related 3D
microstructure studies,53 where high-resolution FIB-SEM
images were segmented into voxelized phase maps for down-
stream model training. Similar to the synthetic dataset, this
dataset was also divided into training and validation sets in the
usual 80–20% split.
e entire dataset, illustrating the evolution of phase separation in a 3D

volume extracted from the full morphology.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Overview of the proposed LDM-based framework's three-
step training process: VAE training and latent representation dataset
creation, training of the FP, training of DM in the latent space.
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4.2 Generative model architecture

The architecture of the training framework is provided in
Fig. 10. The core of our generative framework is the LDM, which
offers several advantages over traditional DMs. LDMs are
superior in computational efficiency, memory usage, generation
speed, and scalability.26,30 They excel in processing 3D data,
operating in a lower-dimensional latent space that signicantly
reduces the computational load. This approach not only accel-
erates generation but also decreases memory requirements—
crucial for handling complex 3D datasets. The reduced
computational and memory demands allow for quicker itera-
tions, making LDMs ideal for applications that require rapid
prototyping or extensive simulations.

Additionally, the scalability of LDMs enables them to
manage larger datasets and more complex microstructures
without a proportional increase in resource consumption,
unlike traditional DMs. This combination of factors renders
LDMs a more efficient and practical choice for generating
detailed 3D microstructures in a resource-conscious manner.
Our LDM framework comprises three components: a VAE,
a Feature Predictor (FP), and a DM, which are trained sequen-
tially. The encoder and decoder of the VAE are trained simul-
taneously to obtain the latent space from which the FP is
trained. Once the VAE and FP are trained, we train the DM using
the latent space and the predicted features.

4.2.1 Variational autoencoder. Contrary to classic autoen-
coders that transform an input x directly into a latent repre-
sentation z, VAEs convert x into a probability distribution.17 In
VAEs, the encoder doesn't predict a single point but instead
determines the mean and variance of this distribution. The
latent variable z is then derived from this distribution. This is
done by initially sampling from a standard normal Gaussian
distribution, then scaling this sample with the predicted vari-
ance, and nally, adding the predicted mean to this scaled
value.
© 2025 The Author(s). Published by the Royal Society of Chemistry
To generate a sample z from the latent space, the VAE uses
a random sample 3 drawn from a standard normal distribution:

z ¼ mfðxÞ þ sfðxÞ � 3; 3 � N ð0; IÞ (1)

where � denotes element-wise multiplication. The encoder
maps the input x to two parameters in the latent space – the
mean m and the log-variance (log-var):

qfðzjxÞ ¼ N
�
z;mfðxÞ; expðlog� varfðxÞÞ

�
(2)

The decoder maps the latent representation z back to the
input space:

pqðxjzÞ ¼ N ðx;mqðzÞ; expðlog� varqðzÞÞÞ (3)

The loss function in VAEs consists of two terms, the recon-
struction loss and the KL divergence:

Lðq;f; xÞ ¼ �EqfðzjxÞ½logpqðxjzÞ� þKL
�
qfðzjxÞkpðzÞ

�
(4)

This function balances the accuracy of reconstruction with
the regularization of the latent space.

The VAE is the entry point for our architecture. The VAE
employed in this work consists of an encoder-decoder structure
with residual blocks for feature extraction and reconstruction.
The encoder comprises ve 3D convolutional layers, each fol-
lowed by Instance Normalization and a residual block to
capture spatial dependencies in the input data. The latent space
is parameterized by a mean (‘mu’) and log-variance (‘logvar’),
both of which are obtained through additional 3D convolu-
tional layers. The decoder mirrors the encoder's structure, using
transposed convolutions to upsample the latent space back to
the original input dimensions with residual blocks and
Instance Normalization for stable training. A nal Sigmoid
activation is applied to the output to generate the reconstructed
data. Once the VAE is trained, we use its encoder to compress
microstructures with over a million voxels into a compact
encoded representation of size 1024 (4 × 8 × 8 × 4), while for
experimental VAE inputs of 64× 64× 64 (over 262 K voxels), the
output is further reduced to 512 (1 × 8 × 8 × 8). This reduced-
dimensional latent space, distinguished by its efficiently
learned data distribution, facilitates more efficient and stable
diffusion processes.

4.2.2 Feature predictor. The feature predictor is a fully
connected neural network designed to predict specic micro-
structural and manufacturing features based on encoded
representations of 3D morphological data. The model archi-
tecture includes an input layer, two hidden layers, and an
output layer. The input layer receives a attened latent repre-
sentation of size 1024, generated by a pretrained VAE. This
representation is then processed through two hidden layers,
each reducing the data dimensionality while applying instance
normalization and dropout (dropout = 0.1) to prevent over-
tting. The nal output layer maps the processed data to the
desired number of features, which correspond to the predicted
manufacturing and morphological characteristics.
Digital Discovery, 2025, 4, 3175–3190 | 3183
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4.2.3 Diffusion model. DMs consist of two main stages: the
forward diffusion and the backward diffusion. In the forward
diffusion stage, Gaussian noise is repeatedly added to a data
sample drawn from a specic target distribution. This process is
performed multiple times, resulting in a series of samples that
become increasingly noisy compared to the original data. In this
work, we use the original Denoising Diffusion Probabilistic
Model (DDPM)54 formulation. In DDPMs the forward process is
described by the Markov chain:

qðxtjxt�1Þ ¼ N
�
xt;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bt

p
xt�1; btI

�
(5)

where x0 is the initial sample from the target distribution q(x),
and the variance schedule is dened as {bt-
˛(0,1)}Tt=1. Conversely, the backward diffusion stage aims to
iteratively eliminate the noise introduced in the forward stage,
represented as q(xt−1jxt). Direct sampling from q(xt−1jxt) is not
possible because that would require the complete knowledge of
the distribution. Therefore, the model uses a neural network
Gq(xt−1jxt), parameterized by G and q, to approximate these
conditional probabilities. The network, rened through
gradient-based optimization, aims to replicate the random
Gaussian noise used in the forward diffusion process for
transforming the original sample into a noisy version xt at
a particular timestep. The objective function is expressed as:

kz� Gqðxt; tÞk2 ¼ Et;x0 ;z

�
kz� Gq

� ffiffiffiffiffi
at

p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� at

p
z; t

�2

k
�

(6)

Here, at = 1 − bt, at ¼
Qt

s¼1as, and z � N ð0; IÞ.
The neural network's primary role in a DM is to learn the

inverse of the noise addition process. By systematically
removing the noise added during the forward diffusion process,
the network reconstructs the original data from its noisier
versions. This process enables the generation of new, high-
quality samples from completely random Gaussian noise.
More concretely, once the DMhas been trained, we can generate
a new latent sample by starting with random Gaussian noise
z � N ð0; IÞ and iteratively applying the learned backward
process pq(xt−1jxt). Specically, we compute

xt�1 ¼ 1ffiffiffiffiffi
at

p
	
xt � btffiffiffiffiffiffiffiffiffiffiffiffiffi

1� at
p Gqðxt; tÞ



þ stz, where z � N ð0; IÞ,

for t = T to 1, yielding a new sample x0.
In the context of enhancing the generative capabilities of

DMs, incorporating a conditional vector provides a strategic
augmentation of the model's architecture. By embedding
conditional vector, c, within both the embedding and decoder
layers of the U-Net structure in the diffusion process, the model
gains an additional layer of contextual guidance. This integra-
tion is mathematically articulated as

kz � Gqðxt; t; cÞk2 ¼ kz � Gqð
ffiffiffiffiffi
at

p
x0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� at

p
z; t; cÞk2, where

the conditional vector c is seamlessly intertwined with the noise
prediction and denoising functions of the generative model, Gq.
Such an approach leverages the conditionality to steer the
generative process, thereby imbuing the model with enhanced
directional specicity and adaptiveness in its generation capa-
bilities, aligning closely with the encoded conditions in c.
3184 | Digital Discovery, 2025, 4, 3175–3190
Our LDM model operates under a linear beta schedule,
which dictates the noise addition and removal process across
the diffusion stages. This schedule is precomputed and stored
as buffers, allowing for consistent noise manipulation during
both training and sampling phases. For this work we use
a starting beta value of 1 × 10−4 and a nal beta value of 0.02.
The diffusion process involves progressively adding noise to the
latent features and then denoising them through a series of
timesteps to generate the nal microstructure.

To guide the diffusion process, the model employs two key
embedding networks:

� Time embedding: this network converts the current time-
step into an embedding, providing temporal guidance during
the denoising phase.

� Context embedding: the context embedding network
incorporates manufacturing features that condition the gener-
ation process, ensuring that the generated microstructures
adhere to specic manufacturing parameters.

During the forward pass, the input 3D data is rst encoded
through the VAE to extract latent features. These features are
then processed by a feature predictor model to obtain context
features, specically the initial four manufacturing features
(e.g., two volume fractions and two tortuosities). These latent
features are progressively diffused using the predened beta
schedule, with the U-Net model performing denoising at each
timestep. The denoising process is informed by both time and
context embeddings, enabling precise reconstruction of the
microstructure. For new sample generation, the diffusion
process is reversed, starting from pure noise and progressively
rening the latent space into a structured representation
conditioned on the context features.
4.3 Training and inference

As shown in Fig. 10, the training process consists of three steps.
First, the VAE is trained on the original training dataset. Once
the VAE is trained, we encode the entire training dataset to
obtain the latent representation, which becomes the training
data for both the feature predictor and the diffusion model. In
the second step, we train the feature predictor. Once trained,
the input to the feature predictor is a latent representation of
the microstructure, and the output is the features of interest,
such as manufacturing parameters, tortuosity, volume fraction,
etc. Finally, the LDM is trained to denoise and recover the
original data from noisy inputs, with the corresponding
features of interest used as conditioning. The detail of the
training process is provided in the appendix Section A.1.

The inference process begins with the pre-trained weights of
the LDM, VAE decoder, and feature predictor. The VAE encoder
is not required during inference. The process involves user
input and random noise sampled in the latent space. The
random noise is iteratively rened by the LDM, conditioned on
the user inputs. Aer 1000 iterations, the denoised latent
representation of the microstructure is obtained. This step is
the most time-consuming during inference. However, despite
this many iterations, the process remains highly efficient
because the denoising occurs in latent space rather than pixel
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 Overview of the inference framework for the proposed LDM-based model: random noise ZT is sampled in latent space, and the diffusion
model gradually denoises it over T steps. User inputs condition the denoising process. Z0 is then passed through the VAE decoder and the feature
predictor to obtain the microstructure and its manufacturing parameters, respectively.
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space, which has 1000 times fewer dimensions. The inference
pipeline is demonstrated in Fig. 11. Once the denoised latent
representation of the microstructure is obtained, it is passed
through both the feature predictor and the VAE decoder. The
feature predictor provides the manufacturing conditions, while
the VAE decoder generates the nal conditioned microstruc-
ture. Using NVIDIA A100 80GB GPUs, it takes approximately 2
seconds to generate and save a single microstructure, including
export to storage.
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Data availability

Microgen3D is a dataset of 3D voxelized microstructures
designed for training, evaluation, and benchmarking of gener-
ative models—especially Conditional Latent Diffusion Models
(LDMs). It includes both synthetic (Cahn–Hilliard) and experi-
mental microstructures with multiple phases (2 to 3). The voxel
grids range from 64 × 64 × 64 up to 128 × 128 × 64.

The dataset consists of three microstructure types:
© 2025 The Author(s). Published by the Royal Society of Chemistry
� Experimental microstructures (64 × 64 × 64): voxelized
from real-world samples for modeling.

� 2-phase Cahn–Hilliard microstructures (128 × 128 × 64):
thresholded from Cahn–Hilliard simulations.

� 3-phase Cahn–Hilliard microstructures (128 × 128 × 64):
thresholded from Cahn–Hilliard simulations.

For each dataset type, pretrained generative model weights
are provided:

� – variational autoencoder
� – feature predictor
� – denoising diffusion probabilistic model
In addition to the full datasets, smaller sample subsets are

provided for testing and demonstration purposes.
All datasets and pretrained weights have been permanently

archived on Zenodo: https://doi.org/10.5281/zenodo.17010419.
The complete codebase has also been archived on Zenodo:
https://doi.org/10.5281/zenodo.17029570.

For convenience, the dataset is additionally available on
Hugging Face: https://huggingface.co/datasets/BGLab/
microgen3D, and the latest development version of the code
is available on GitHub: https://github.com/baskargroup/
MicroGen3D.

Supplementary information: the training loss curves, addi-
tional inference examples, the feature distribution of the
training data, and results from extended conditioning experi-
ments. See DOI: https://doi.org/10.1039/d5dd00159e.

A Appendices
A.1 Training process details and hyperparameter tuning

All three components of the architecture—the VAE, feature
predictor, and LDM—were trained for 500 epochs with a batch
size of 32. The batch size of 32 is large enough to fully utilize
GPU parallelism while being small enough to avoid out-of-
memory errors, particularly given the use of 3D data. The
Adam optimizer55 was employed for gradient-based optimiza-
tion due to its widespread adoption, stability, and efficiency.
The learning rate was dynamically adjusted using a cosine
annealing scheduler, which gradually reduces the learning rate
to effectively minimize the loss.56,57 The training time and loss
Digital Discovery, 2025, 4, 3175–3190 | 3185
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Fig. 12 Training log of the LDM. (a) Epoch progression over wall-clock training time. (b) Training and validation loss curves for all three
components of the LDM framework.
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curves are shown in Fig. 12 for the CH three-phase dataset.
Training the VAE, feature predictor, and DDPM required
approximately 100, 80, and 60 hours, respectively. The DDPM
was stopped early at 400 epochs, as further training yielded
minimal improvements in both training and validation loss. In
total, the complete training process required approximately 250
hours, or nearly 11 days. Note that the training loss for the
feature predictor appears higher because dropout regulariza-
tion was applied during training. Fig. 12 is produced using
Wandb.58

The loss function for VAE combined a Mean Squared Error
(MSE) loss for reconstruction and a Kullback–Leibler Diver-
gence (KLD) loss,59 with a weight of 1× 10−6 for regularizing the
latent space. The goal was to keep both the KLD and recon-
struction losses in the same order of magnitude. The feature
predictor was trained using an MSE loss function to assess the
accuracy of predictions by measuring the difference between
predicted and actual feature values. The encoder of the pre-
trained VAE was kept frozen during feature predictor training
phase. For both the VAE and the feature predictor, the initial
learning rate was set to 5 × 10−5, with a minimum of 5 × 10−7.
Fig. 13 Representative microstructures generated using only the VAE co
latent space and decoded using the VAE decoder. Consistent with the k
features with inconsistent interfaces and reduced morphological sharpn
over target microstructural descriptors is not possible. (a) CH two-phase

3186 | Digital Discovery, 2025, 4, 3175–3190
For the LDM, the diffusion process was divided into 1000
timesteps. The training objective was to minimize the MSE
between the predicted noise and the actual noise added during
the diffusion process. Initial and minimum learning rates are 1
× 10−6 and 1 × 10−7, respectively. The learning rate was
selected based on the pioneering work by,26 which demon-
strated the effectiveness of using this order of magnitude in
similar architectures. Both VAE and feature predictor were kept
frozen during LDM training.

The training process for all models was conducted in a GPU-
enabled environment, using an NVIDIA A100 GPU with 80 GB of
memory. The entire framework was implemented in PyTorch
and managed by PyTorch Lightning, which handled the
training loop, logging, and checkpointing. Checkpoints were
automatically saved based on the validation loss, ensuring that
only the best-performing models were retained. Throughout the
training, real-time progress and performance metrics were
continuously logged using the WandB58 logger, providing
detailed experiment tracking and facilitating reproducibility
and scalability.
mponent of our framework, where random noise was sampled in the
nown behavior of VAEs, these outputs exhibit distorted, lower-quality
ess. Additionally, without the diffusion stage and conditioning, control
VAE-only generation. (b) CH three-phase VAE-only generation.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 14 Representative three-phase microstructures generated by the full conditional LDM framework, exhibiting more consistent interfaces,
sharper morphological features, and controlled generation compared to the VAE-only results. (a) Sampled microstructures with a predominant
phase B (volume fraction above 0.5). (b) Microstructures generated from the same conditional features: volume fraction of phase A and phase
mix 0.3 and 0.2, respectively. Tortuosity of both phases is 0.3.

Fig. 15 Distribution of all three features of interest. (a), (b), and (c) show pairwise distributions, while (d) presents a three-dimensional plot of all
three features. This visualization highlights the range of the features, and how they are distributed relative to one another.(a) Donor tortuosity
vs volume fraction. (b) Acceptor tortuosity vs volume fraction. (c) Acceptor tortuosity vs donor tortuosity. (d) 3D scatter plot of all three
features.

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2025, 4, 3175–3190 | 3187
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Fig. 16 Scatter plots comparing input and measured features for the seven conditioning variables. The red dashed lines indicate perfect
agreement (y = x). The R2 values for each feature are shown within each subplot.

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
3/

20
26

 5
:1

2:
10

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
A.2 Inference microstructure samples

Fig. 13 shows some examples of two-phase and three-phase
microstructures generated using only the VAE decoder. The
results show distorted features and inconsistent interfaces,
indicating the limitations of VAE-only generation without
diffusion or conditioning.

Fig. 14 shows some additional examples of three-phase
microstructures generated by the conditional LDM, demon-
strating sharper features and controlled generation, including
cases with predominant phase B and specied volume frac-
tions/tortuosities.
A.3 Experimental training dataset feature distribution

Fig. 15 shows the distribution of donor tortuosity, acceptor
tortuosity, and volume fraction in the experimental dataset,
with pairwise plots and a 3D scatter plot. These three features
are the LDM conditioning features.
A.4 Test with seven conditional features

Fig. 16 shows the correlation between the target input features
and the measured features for the generated microstructures
when conditioning on seven parameters. As the number of
conditioning parameters increases, the model maintains
reasonably strong correlations. However, a moderate decline in
R2 values is observed due to the increased complexity and
sparsity of the conditioning space. To know about these
microstructural features, see this here60
3188 | Digital Discovery, 2025, 4, 3175–3190
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