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for fine-tuning atomistic foundation models to
accelerate materials simulation and discovery†

Lingyu Kong,a Nima Shoghi,a Guoxiang Hu, c Pan Lib and Victor Fung *a

Geometric machine learning models such as graph neural networks have achieved remarkable success in

recent years in chemical and materials science research for applications such as high-throughput virtual

screening and atomistic simulations. The success of these models can be attributed to their ability to

effectively learn latent representations of atomic structures directly from the training data. Conversely,

this also results in high data requirements for these models, hindering their application to problems

which are data sparse which are common in this domain. To address this limitation, there is a growing

development in the area of pre-trained machine learning models which have learned general,

fundamental, geometric relationships in atomistic data, and which can then be fine-tuned to much

smaller application-specific datasets. In particular, models which are pre-trained on diverse, large-scale

atomistic datasets have shown impressive generalizability and flexibility to downstream applications, and

are increasingly referred to as atomistic foundation models. To leverage the untapped potential of these

foundation models, we introduce MatterTune, a modular and extensible framework that provides

advanced fine-tuning capabilities and seamless integration of atomistic foundation models into

downstream materials informatics and simulation workflows, thereby lowering the barriers to adoption

and facilitating diverse applications in materials science. In its current state, MatterTune supports

a number of state-of-the-art foundation models such as ORB, MatterSim, JMP, MACE, and EquformerV2,

and hosts a wide range of features including a modular and flexible design, distributed and customizable

fine-tuning, broad support for downstream informatics tasks, and more.
1 Introduction

Geometric machine learning models, such as graph neural
networks (GNNs), have had a revolutionary impact on machine
learning for the chemical andmaterials science domains. These
models represent a paradigm shi away from the extensive and
oen time-consuming feature engineering required in tradi-
tional informatics approaches1–3 and toward data-driven repre-
sentation learning, thereby enabling them to be broadly
applicable to a wide range of applications ranging from chem-
ical property prediction and screening, molecular dynamics
simulations, to the inverse design of new materials, and more.
This has led to, by all accounts, an explosive growth in recent
years of studies utilizing GNNs for these aforementioned tasks
trained on existing materials datasets.4–9
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the Royal Society of Chemistry
Almost all GNN models of this class operate on the general
principle of taking the atomic identity and structure of a mole-
cule or crystal as inputs, and mapping this geometric infor-
mation to their corresponding property labels. In the case of
GNNs, this information is encoded in the node and edge attri-
butes of a graph, which are then processed through message
passing operations to yield latent atom-level and system-level
embeddings or representations. From this embedding, the
property labels can then be obtained via non-message passing
layers, commonly referred to as a readout function or an output
head. Starting from seminal examples such as SchNet10 and
CGCNN,11 subsequent models have incorporated increasingly
sophisticated advancements including the incorporation of
many-body interactions,12–14 equivariant features,15–17 and
transformer-like architectures,18,19 though nearly all still follow
the same aforementioned general principles. Although these
GNNs have become increasingly accurate and scalable with
these improvements, they are inherently data driven and
invariably function poorly for instances where training data is
sparse. This limitation prevents their widespread application to
the majority of materials science-related problems where data
may range in the hundreds or even fewer samples.
Digital Discovery, 2025, 4, 2253–2262 | 2253
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A rapidly growing area of research towards greater data effi-
ciency of GNNs is in the pre-training of GNNs. This approach
generally involves rst training these models on large upstream
datasets (the “pre-training” stage) before continuing the training
on the smaller downstream dataset(s) of interest (the “ne-
tuning” stage). This process enables the models to learn robust,
transferable representations without requiring the nal property
labels. Two general strategies exist for pre-training: supervised
and unsupervised. In supervised pre-training, GNNs are initially
trained on certain explicit property labels which are sufficiently
generalizable to downstream needs. Properties such as energies,
forces, and sometimes stresses from quantum mechanical
calculations were found to be particularly effective for pre-
training,20–22 among others.23,24 In unsupervised pre-training,
unlabeled data are used instead, and the model is then trained
on objectives such as a contrastive loss or denoising loss.25–28

While pre-training can be applied to datasets of any size and
complexity, including articial ones, there is a growing effort to
pre-train GNNs on datasets which attempt to cover the full range
of the chemical and materials space. Once pre-trained, these
models should, in theory, be generalizable to downstream data-
sets of arbitrary complexity and properties. Thesemodels we term
as “atomistic foundation models (FMs)” (Table 1). A growing
numbers of studies have shown atomistic FMs can improve
accuracies of GNNs signicantly over models trained from
scratch (i.e. without pre-training), as well as reduce data
requirements by an order of magnitude or more.20–22

Here, it is important to note the parallel development of
universal interatomic potentials (UIPs), which are models
trained to be broadly applicable force elds for systems of
arbitrary complexity on compositions across the periodic
table.12,21,28–32 Whereas UIPs are intended to be used out-of-the-
box for one specic task (as force elds), pre-trained models
require an additional ne-tuning step before they can be used,
but are applicable to tasks beyond force elds. Nevertheless, the
distinction between UIPs and pre-trained models can become
blurred as in some cases, the training procedures and datasets
for UIPs can be identical to those used in the creation of pre-
trained atomistic models, namely when the pre-training objec-
tive is on energies and forces. Consequently, one can note that
while not all pre-trained models can serve as UIPs, in general
most UIPs should serve as capable pre-trained models.
Table 1 Overview of some recently released atomistic FMs

Model Release year Num. params

MACE-MP-0 2023 4.69M
GNoME 2023 16.2M
MACE-MPA-0 2024 9.06M
MatterSim-v1 2024 4.55M
ORB-v1 2024 25.2M
JMP-S 2024 30M
JMP-L 2024 235M
EqV2-S 2024 31.2M
EqV2-M 2024 86.6M
DPA3-v1-MPtrj 2025 3.37M
DPA3-v1-OpenLAM 2025 8.18M

2254 | Digital Discovery, 2025, 4, 2253–2262
Despite the demonstrated potential of atomistic FMs,
general adoption by the broader scientic community is
currently lacking, in large part due to the limitations of the
available soware infrastructure for its usage. While there is, to
date, ample infrastructure for UIPs, this does not extend to any
tasks beyond being used as force elds, such as materials
property prediction. There is also limited standardization
across different UIPs and atomistic FMs, resulting in a different
package being needed for each different model, hampering
benchmarking and workow development. Finally, there is
limited support for the customizability of the ne-tuning
procedure, which is oen hard-coded as a black-box method.
As such, these existing packages do not currently fulll the role
of servicing atomistic FMs for general-purpose usage.

To address these limitations, we developed a modular,
integrated, and user-friendly framework, called MatterTune, for
ne-tuning atomistic FMs to be applied to a broad range of
materials science applications. The development of MatterTune
follows several general design principles:

(1) Highly generalizable and exible abstractions that enable
systematic extension while enforcing the necessary
standardization.

(2) Modular framework decoupling models, data, algo-
rithms, and applications, enabling a high degree of adaptability
and customizability for different materials informatics tasks.

(3) Intuitive and user-friendly interfaces that simplify model
ne-tuning and their application to downstream tasks.

So far, MatterTune has integrated several open-source
atomistic FMs including JMP,20 ORB,28 EquiformerV2,18 Mat-
terSim-V1,21 and MACE.33 We ne-tuned these models using the
MatterTune platform and evaluated them on representative
materials informatics tasks, including molecular dynamics
simulations, property screening, and materials discovery,
demonstrating the performance and reliability of the Matter-
Tune platform and its capabilities for data-efficient learning.
2 Methods

The MatterTune framework primarily consists of four compo-
nents: a model subsystem, a data subsystem, a trainer
subsystem, and an application subsystem, each covering a core
component of a ne-tuning task. In addition, we have
Dataset size Training obj.

1.58M Energy, forces, stress
16.2M Energy, forces
12M Energy, forces, stress
17M Energy, forces, stress
32.1M Denoising + energy, forces, stress
120M Energy, forces
120M Energy, forces
1.58M Energy, forces, stress
102M Energy, forces, stress
1.58M Energy, forces
143M Energy, forces

© 2025 The Author(s). Published by the Royal Society of Chemistry
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abstracted the key components that require standardization
and extensibility, making it straightforward for MatterTune to
quickly support new models and new data formats. The Mat-
terTune package can be accessed at https://github.com/Fung-
Lab/MatterTune.
2.1 Flexible and generalizable abstractions

In order to support various kinds of current and future atom-
istic FMs for the myriad of applicable materials systems and
applications, some generalizable abstractions for atomistic FMs
are needed. Several considerations need to be addressed here:
rst, atomistic FMs can employ diverse architectural para-
digms, ranging from graph neural networks to transformers.
Second, each atomistic FM has its own supported input format,
internal representations, and computational requirements, all
of which must be supported and standardized. Finally, the
implementation should cover the breadth of possible materials
informatics tasks and handle heterogeneous property types
ranging from scalar quantities to vector elds. Considering
these factors, MatterTune's architecture is centered around
three key abstractions to enable systematic extension while
enforcing the necessary standardization:

� Data abstraction: the purpose of data abstraction is to
provide unied support for as many input formats as possible
for training and inference. We develop a minimal data
abstraction that denes a dataset D as a mapping f : ℕ/S,
where S represents the space of atomic structures in a stan-
dardized format. Given that different atomistic FMs require
varying input formats, we choose in ASE
package34 as the standardized format of S. Individual atomistic
FMs can then implement the necessary transformations from

to their respective input formats. Since the
format can store all structural and label infor-

mation needed for training and prediction, this abstraction is
broadly applicable.
Fig. 1 Overview of the MatterTune framework.

© 2025 The Author(s). Published by the Royal Society of Chemistry
� Property abstraction: we introduce a property schema
system that formally separates the specication of physical
properties from their model implementation, allowing users to
focus solely on the types of properties they require from the
model without concerning themselves with the details of how
these properties are realized in FMs. This separation also
enables the framework to handle both established properties
like energy and forces as well as custom properties dened by
users, and enforces type safety and physical constraints (e.g.,
energy conservation) in a property-specic manner.

� Backbone abstraction: the purpose of backbone abstrac-
tion is to provide a set of unied functional interfaces for using
different backbones, regardless of various FMs' completely
different model architectures. For example, some key functions
include the function, which handles
forward propagation during prediction, and the

function, which converts input structures from
the format into the format required by the model.
This abstraction ensures simplicity and consistency in model
usage while enabling each model to retain its native internal
representations and implementations.
2.2 A modular and standardized framework design

As illustrated in Fig. 1, the modular framework enables Mat-
terTune to decouple data, models, training algorithms, and
downstream applications, allowing users to freely select and
combine these components. This approach distinguishes Mat-
terTune from other frameworks that rely solely on direct API
calls. Following the aforementioned core abstractions, the
framework is organized into several distinct subsystems:

� The data subsystem follows the aforementioned data
abstraction and handles conversion between various materials
science formats and a universal internal representation used by
the MatterTune framework. Currently we have provided built-in
support for common formats like XYZ, JSON, and ASE
Digital Discovery, 2025, 4, 2253–2262 | 2255
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databases, which can be readily expanded to include additional
formats as needed.

� The model subsystem is designed around the backbone
and property abstractions, allowing users to simply specify the
type of atomistic FM and the desired properties to predict in
order to declare and construct a model. All implementation
details—such as loading checkpoints, constructing output
heads, handling input data, and performing forward passes, are
automatically managed by MatterTune, respecting the original
implementation of each atomistic FM. This approach enables
users to leverage atomistic FMs without requiring in-depth
knowledge of their underlying architecture and
implementation.

� The trainer subsystem handles the general training, vali-
dation, and checkpointing of FMs. A key design choice is made
to integrate the training subsystem with PyTorch Lightning,35

a widely used and feature-rich training platform. This enables
a range of critical capabilities while maintaining a clean sepa-
ration of concerns between the model implementation and the
training process. The integration of Lightning's abstractions
allows MatterTune to maintain a modular and extensible
architecture while still providing a simple, high-level interface
for end users. Currently, MatterTune provides support for
various optimizers and learning rate schedulers on the Light-
ning platform. It also includes implementations of data pre-
processing statistics, exponential moving average, and other
ne-tuning techniques, allowing users to select them freely. In
addition, Lightning's callback features allow for ample exi-
bility for implementing more advanced ne-tuning strategies.

� The property prediction subsystem provides the means for
users to access the trained FMs in an easy-to-use and intuitive
manner to enable to quick integration of downstreammaterials
tasks. This is accomplished by providing implementations of
exible wrapper classes for both general and targeted use-cases
without having to deal with model architecture complexities or
Lightning internals. As a starting point, we have implemented
an which heritages the ASE34

calculator interface, enabling direct use with established
molecular dynamics and structure optimization algorithms
available within the ASE package. For high-throughput material
property prediction tasks, we have designed the

as a wrapper around atomistic
FMs, enabling batch prediction in parallel. We are working on
implementing interfaces for additional materials informatics
simulation and computation soware, such as LAMMPS.
2.3 A unied ne-tuning technique tool-kit

In the process of reproducing the ne-tuning experimental
results for atomistic FMs, we discovered that reproducing their
reported performance in the literature heavily depends on the
specic ne-tuning approaches and techniques employed, and
that different models require distinct ne-tuning settings. This
observation motivated us to develop a unied ne-tuning tool-
kit on the MatterTune platform. Currently, our ne-tuning
toolkit meets the requirement of ensuring that the integrated
models can largely reproduce their expected ne-tuning
2256 | Digital Discovery, 2025, 4, 2253–2262
performance as shown in Section 3. To this end, we have
implemented the following:

� A variety of optimizers and learning rate schedulers. So far,
MatterTune has supported the Adam,36 AdamW,37 and SGD
optimizers, as well as various learning rate schedulers including
linear, step, exponential, cosine, and reduce-on-plateau. In
addition to these, MatterTune also enables customization of
optimizers and learning rate schedulers based on user needs.
We support the application of different learning rates to
different parts of the model, a technique that has been used and
shown to be benecial in the ne-tuning of models of the JMP
series. Furthermore, we support combining multiple learning
rate schedulers to achieve more sophisticated dynamic adjust-
ments, such as cosine warm-up.

� Training generalization techniques such as Exponential
Moving Average (EMA). Although the ablation studies in ref. 20
suggest that EMA does not signicantly improve ne-tuning
performance on datasets such as MD17: aspirin, MD22: sta-
chyose, QM9: D3, MatBench: MP E form, QMOF: band gap, and
SPICE: solvated amino acids, we believe these datasets are still
not small enough in scale. In our experiments described in
Section 3, where models are ne-tuned using only 30 data
points, we observed that EMA actually helps improve both the
stability and performance of ne-tuning.

� A comprehensive normalization system that handles both
standard statistical normalization and physics-informed
normalization schemes. Fine-tuning of FMs may involve
multiple targets—for example, training a force eld model
typically involves three targets: energy, forces, and stress. Proper
normalization helps balance the loss scales of these targets,
ensuring that the training process converges more smoothly
without being dominated by any single target. MatterTune
currently supports not only standard normalization methods
such as mean-std and root-mean-square, but also composition-
based normalization using element-wise regression. Addition-
ally, the normalization system is designed to be composable,
allowing multiple normalization schemes to be applied in
sequence.

3 Results

In the following experiments, we will demonstrate the perfor-
mance of ne-tuned atomistic FMs on a variety of representative
tasks and benchmarks using the MatterTune platform. These
tasks include molecular dynamics simulations, materials
property prediction, and materials discovery. The goal of these
experiments is to showcase the correctness of MatterTune's
implementation as well as its exibility across diverse down-
stream applications.

We rst note that MatterTune maintains strict adherence to
the original implementations of each integrated atomistic FM.
However, many models do not provide openly available details
on ne-tuning parameters and techniques for specic tasks.
Given that hyperparameter tuning is both complex and
computationally expensive, we did not perform exhaustive
hyperparameter optimization for the benchmarks shown below.
As a result, we cannot guarantee that each atomistic FM
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 High-throughput screening on GNoME band gap data

JMP-S ORB-V2 Equiformer-31M-mp
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achieves its best possible performance on these tasks. None-
theless, for tasks with publicly accessible reference results, we
have made a dedicated effort to reproduce them.
MAE (eV) 0.052 0.039 0.044
Accuracy (%) 98.16 98.80 98.53
Recall (%) 86.25 90.33 89.92
F1 0.826 0.884 0.861
3.1 Property prediction on MatBench and high-throughput
screening on novel out-of-distribution materials

Atomistic FMs should be broadly applicable to various chemical
and materials systems, and can be effectively ne-tuned as
capable property predictors. This makes atomistic FMs highly
promising for high-throughput property screening. In Matter-
Tune, we provide support for constructing direct property
prediction output heads for atomistic FMs, even if they are not
present in their original implementations. To showcase this
capability, we selected several FMs for ne-tuning on multiple
tasks from Matbench (v0.6),38 a well-established materials
informatics benchmark.

The performance of JMP-S, ORB-V2, and Equiformer-31M-
mp ne-tuned on Matbench is shown in Table 2. In our
current tests, we perform ne-tuning on fold 0 of each dataset.
In the table, we also list the ne-tuning performance on Mat-
bench from the original JMP-S paper, as well as the best
performance on the Matbench leaderboards. It should be noted
that, since model ne-tuning can be a delicate process, varia-
tions in ne-tuning methods and hyperparameter congura-
tions can lead to signicant differences in the results. In our
experiments, all models across all tasks were ne-tuned using
the same conguration, so we cannot guarantee that the results
reported on MatterTune represent the optimal performance of
the models. Nonetheless, by comparing the ne-tuning results
of JMP-S on MatterTune with those reported in the original
paper, we found that we reproduced the reported accuracy in
most tasks, with the only exception being formation energy,
where our ne-tuning result was inferior to the original. More-
over, out of the three ne-tuned models JMP-S, ORB-V2, and
Equiformer-31M-mp, the best model in each task signicantly
outperforms the current leading models trained from scratch
on Matbench leaderboard.

Although Matbench provides a train-test split for evaluating
ne-tuned models, they are drawn from the same original
dataset distribution, which prevents them from accurately
reecting the models' performance on unseen new materials.
To address this, we further performed high-throughput prop-
erty predictions on approximately 404 763 new structures
provided by the GNoME dataset (release 2024-11-21)39 which are
Table 2 Evaluation of property prediction performance of various mode

Task (units)
Best on leaderboards
(mean)

JMP
(fol

Dielectric (unitless) 0.271 0.13
JDFT2D (meV per atom) 33.19 20.7
Log GVRH (log10 (GPA)) 0.067 0.06
Log KVRH (log10 (GPA)) 0.049 0.04
MP E_form (meV per atom) 17.0 13.6
MP gap (eV) 0.156 0.11
Perovskites (eV per unitcell) 0.027 0.02

© 2025 The Author(s). Published by the Royal Society of Chemistry
distinct from the original Materials Project dataset. For
demonstrative purposes, we also screened out structures with
band gaps between 1 eV and 3 eV and compared the classi-
cation performance with the ground truth. The results are
shown in Table 3. The results indicate that the ORB-V2 model,
which achieved the highest test accuracy on the band gap task
in Matbench, also delivered the best performance in band gap
property screening on the GNoME dataset.
3.2 Few-shot ne-tuning and molecular dynamics
simulations for liquid water

The original MatterSim paper presents a compelling demon-
stration of the capability of atomistic FMs to achieve reliable
accuracy on specic tasks through ne-tuning with minimal
data. In their experiments on a liquid water system, the authors
compared three scenarios: zero-shot performance, ne-tuning
using the full training set (900 samples), and ne-tuning with
only a small subset (30 samples). The results showed that even
just 30 samples for ne-tuning, the model achieved roughly the
same level of accuracy as using 900 samples, and in both cases
the models could accurately reproduce the radial distribution
functions (RDFs) when compared with the experimental data.

To demonstrate the few-shot capability of the atomistic FMs
in general, we followed the same experimental setup described
in the original MatterSim paper. Out of the entire 1000 available
ambient water data,40–42 we uniformly sampled 100 structures
based on the energy distribution as a validation set and used the
rest as the 900-sample dataset. We then randomly selected 30
structures from the 900-sample dataset and subsequently
repeated them until a new dataset comprising 900 samples was
obtained. We refer to this dataset as the 30-sample dataset. We
ne-tuned various FMs on both the 900-sample and the 30-
sample dataset and evaluated models' mean absolute errors on
the validation set. The results are shown in Table 4.
ls on Matbench

-S-baseline
d0)

JMP-S
(fold0)

ORB-V2
(fold0)

EqV2-31M-mp
(fold0)

3 0.146 0.142 0.111
2 19.42 21.44 23.45

0.059 0.053 0.056
4 0.033 0.046 0.046

25.2 9.4 24.5
9 0.119 0.093 0.098
9 0.029 0.033 0.026

Digital Discovery, 2025, 4, 2253–2262 | 2257
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Table 4 Fine-tuning performance of various FMs on ambient water dataset

MatterSim V1-1M JMP-S ORB-V3 Omat-conserv. EqV2-31M mp MACE-MP-0a medium

900-Sample 30-Sample 900-Sample 30-Sample 900-Sample 30-Sample 900-Sample 30-Sample 900-Sample 30-Sample

MAEE (meV per atom) 1.21 1.20 3.06 5.65 2.50 1.15 2.76 4.98 1.19 3.01
MAEF (meV Å−1) 38.37 40.65 19.98 30.17 33.73 34.04 22.41 35.21 48.65 51.24

Fig. 2 Oxygen–oxygen radial distribution functions of ambient water
under 298 K obtained from foundation model based MD simulations.
Black dots represent experimental references from ref. 44 and 45. All
models shown are versions fine-tuned on a 30-sample dataset. The
legend also reports the root-mean-square error between each
model's MD-derived RDF curve and the experimental data.
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We further conducted 200 ps molecular dynamics (MD)
simulations of a water structure with 192 atoms per unit cell at
298 K using the FMs ne-tuned on the dataset of 30 samples
shown above. The MD thermostat engine employs the NPT
ensemble implemented in ASE (without external stress to keep
the cell xed). The results of the radial distribution function
analysis are shown in Fig. 2. Interestingly, we observed that
although all ve models performed well in terms of MAE, as
shown in Table 4, the results of MD simulation varied signi-
cantly. MatterSim-V1-1M ts the experimental data best, and
Table 5 Zero-shot performance of various models on Matbench-disco

EqV2 S DeNS baseline EqV2 S DeNS MatterSimV1

F1 [ 0.815 0.792 0.862
DAF [ 5.042 4.718 5.852
Prec [ 0.771 0.756 0.895
Acc [ 0.941 0.925 0.959
MAE Y 0.036 0.035 0.024
R2 [ 0.788 0.780 0.863

a Metric denitions: all metrics listed in the table follow the same denitio
([) and downward (Y) arrows denote that higher or lower values are prefe
unstable materials classication; DAF: discovery acceleration factor mea
compared to random guessing; Prec: precision of classifying thermodyn
MAE – mean absolute error of predicted vs. DFT convex hull distance; R2

2258 | Digital Discovery, 2025, 4, 2253–2262
the results from MACE-MP-0a-medium, EquiformerV2-31M-
mp, and ORB-V3-Omat-Conserv remain broadly acceptable,
though show some discrepancies. In contrast, the JMP-S model,
which has the lowest force MAE on the validation set, produces
the RDF curve with the largest deviation. This observation
echoes the statement in ref. 43, which cautions that evaluating
models solely based on force MAE can lead to misleading
conclusions. One possible explanation is that MatterSim-V1-
1M, MACE-MP-0a-medium, and ORB-V3-Omat-Conserv are
energy-conserving force-eld models, whereas JMP-S employs
direct force prediction, which makes its MD simulations less
stable. However, EquiformerV2-31M-mp also uses direct force
prediction, yet still yields reasonably accurate RDF results.

During these MD simulations of the ambient-water system,
we assessed whether the FMs integrated and trained within
MatterTune incur any systematic runtime overhead in either
training or prediction relative to their original implementa-
tions. The results show that no systematic overhead is brought
by MatterTune. Full numerical details are provided in Section
S2 of the ESI.†
3.3 Zero-shot prediction and structural geometry
optimization

Novel material discovery and structure prediction are among
the central challenges in the computational materials sciences.
Matbench Discovery46 provides a benchmark for evaluating
models in accurately determining stable materials structures.
We validated MatterTune's implementation of model loading
and zero-shot prediction, as well as its correct support for
geometry optimization, by reproducing the performance of
several models on Matbench Discovery. We employed the ASE-
implemented FIRE optimizer and the ExpCellFilter unit cell
verya

5M baseline MatterSimV1 5M ORB-V2 baseline ORB-V2

0.842 0.880 0.866
5.255 6.041 5.395
0.876 0.924 0.899
0.949 0.965 0.957
0.024 0.028 0.027
0.848 0.824 0.817

ns as their counterparts on the Materials Discovery leaderboard; upward
rred, respectively. F1: harmonic mean of precision and recall for stable/
suring how much better the models classify thermodynamics stability
amics stability; Acc – accuracy of classifying thermodynamics stability;
– coefficient of determination.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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lter for all models, using 0.02 eV Å−1 and a maximum of 500
steps as the cut-off conditions for structural relaxation. The
nal results, along with a comparison to the leaderboard
Fig. 3 TSNE visualization of four pre-trained FMs' node representatio
representations are colored by element types, with similar colors assign

© 2025 The Author(s). Published by the Royal Society of Chemistry
outcomes, are presented in Table 5. The results indicate that the
reproduced outcomes are within an acceptable error range
relative to the leaderboard results. The very minor discrepancies
ns on a subset of MPTraj dataset containing 5000 structures. Node
ed to elements in the same group.
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Fig. 4 TSNE visualization of node representations on MP_E_form from four FMs fine-tuned on the same dataset. The C symbols represent
structures from the training set, while the × symbols indicate structures from the test set.

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

1/
22

/2
02

5 
7:

49
:5

3 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
observed may stem from the choice of optimizer, the unit cell
lter, and numerical precision, among other factors.
3.4 Representation space visualization

It is generally believed that one of the main reasons FMs excel in
downstream tasks is their ability to learn high-quality, general-
purpose geometric representations during pre-training. We
leveraged MatterTune's internal feature extraction capabilities
to export the node representations for four different models. To
demonstrate this, we selected two datasets: MPTraj and
MP_E_form, and visualize the representations generated by pre-
trained FMs and those ne-tuned for specic tasks. For the
MatterSim, JMP, and ORB models, which intrinsically contain
node feature vectors, we used these as the structural represen-
tations of atomic local environments. In Equiformer, where
node features are divided into multiple irreducible representa-
tion channels, we extracted the invariant (i.e., l = 0, m = 0)
features as a representative structural descriptor. Extracting the
latent representations of atomistic FMs can provide a window
into interpreting their performance, as well as be used for
purposes such as active learning.47

In Fig. 3, the representations of four different atomistic FMs
are visualized using the t-SNE algorithm. The results show that
the MatterSim and JMP models clearly capture the clustering of
elements within the same group. This is to be expected from
a chemical perspective, and suggests some level of transferable
chemical knowledge is trained into these models. In contrast,
the clustering for Equiformer and ORB models is less
pronounced, especially for ORB. These results highlight the
remarkable diversity in the internal representations of current
atomistic FMs, which may arise due to differences in training
objectives, training data, and model architectures.

We further visualized the representation spaces of the ne-
tuned models (Fig. 4). We selected the MP_E_form dataset
motivated by the fact that the ne-tuning results of the three
2260 | Digital Discovery, 2025, 4, 2253–2262
models on this dataset showed notable differences (as detailed
in Table 2). The visualization results reveal apparent similarities
between the ne-tuned JMP-S and Equiformer models which
cluster around element type, whereas ORB has no clear clus-
tering similar to the non ne-tuned case. This pattern is
consistent with JMP-S and Equiformer having similar MP_E_-
form accuracies, while ORB is signicantly lower. However, the
underlying link between the differences in the representation
and the ne-tuning performance is still unclear and deserves
further investigation, which can be easily facilitated with
MatterTune.
4 Discussion and conclusions

The MatterTune offers a exible, generalizable framework that
seamlessly integrated multiple atomistic FMs and supports
tasks such as molecular dynamics simulations, materials
property predictions, and materials discovery. MatterTune
offers users a wide range of choices in data formats, model
architectures, and training congurations. As a consequence of
the modular design of MatterTune, users can freely mix and
match these components according to their performance needs
and specic requirements. Our experimental results to replicate
the models' original reported performance on ambient water
systems and JMP's Matbench experiments demonstrate that
this unied approach to integrating atomistic FMs is both
feasible and does not compromise model performance. We note
that MatterTune is in active development and additional
features will be planned in the future. The integration of addi-
tional newly developed atomistic FMs, as well as interfaces to
more materials simulation soware such as LAMMPs into
MatterTune is ongoing. Furthermore, advanced ne-tuning
procedures commonly seen in other contexts such as large
language models will also be explored and implemented within
the MatterTune toolkit.
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00154d


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

1/
22

/2
02

5 
7:

49
:5

3 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
To summarize, MatterTune is an effort to standardize and
unify atomistic FMs while providing user-friendly interfaces for
ne-tuning and applications. MatterTune also serves as a play-
ground for experimenting and applying advanced ne-tuning
algorithms to atomistic FMs. By lowering the barrier to the
use of atomistic FMs, we aim to make them broadly applicable
across a wide range of materials science challenges, especially
in materials simulations and informatics. Furthermore, we
hope that theMatterTune platform can provide a foundation for
exploring how to ne-tune atomistic FMs more effectively to
meet the increasingly demanding requirements of materials
science research.
Data availability

The MatterTune platform, together with all the code and data
used for the experiments in this paper are available on Github at
https://github.com/Fung-Lab/MatterTune, and can be found at
this DOI: https://doi.org/10.5281/zenodo.15859271.
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