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of ZINC15 natural compounds
reveals potential thyroid receptor b agonists for
NAFLD management: an in silico study

Ahmet Buğra Ortaakarsu, *a Michel Hosny,b Mansour Sobehc

and Mohamed A. O. Abdelfattahd

Non-alcoholic fatty liver disease (NAFLD) is a prevalent metabolic disorder with limited therapeutic options.

Thyroid receptor b (THR-b) agonists have been showing promise for controlling NAFLD via improving

hepatic lipid metabolism. This study utilized different in silico tools to screen 47 199 natural compounds

from the ZINC15 database to identify potential THR-b agonists. Molecular docking, molecular dynamics

simulations, and advanced analyses such as PCA, TICA-FES, and MSM revealed that 4-O-caffeoylquinic

acid (compounds 2) and dihydroxydehydrodiconiferyl alcohol (compound 18) are the most promising

hits. Both demonstrated high binding affinity and stable agonist interactions with key THR-b residues

such as Arg316 and Arg320 that stabilize the ligand binding pocket and support the agonist potential,

comparable to the reference agonists resmetirom and {3,5-dichloro-4-[4-hydroxy-3-(propan-2-yl)

phenoxy]phenyl}acetic acid. Long-term MD simulations confirmed their stability, and MM/GBSA

calculations supported robust thermodynamic profiles. Moreover, the two hits displayed superior

selectivity for THR-b over THR-a and favorable pharmacokinetic profiles with minimal toxicity alerts.

These findings support compounds 2 and 18 as strong candidates for NAFLD therapy, warranting further

experimental validation.
1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent
chronic hepatic disorder in the western world and a leading
cause of liver diseases worldwide. As per recent estimates, 32%
of individuals, globally, are diagnosed with NAFLD with higher
prevalence in men (40%) than in women (26%).1 Currently, the
detrimental effects of NAFLD are becoming a greater concern
for public health owing to the rising rates of diabetes and
obesity across the globe.2

Primarily, NAFLD results from a calorie-rich diet, high intake
of fructose and animal protein, lack of physical activity, and
a sedentary life style in general. Obesity and type 2 diabetes
mellitus are major risk factors for the development of steatosis,
which is the rst stage in the NAFLD spectrum. Steatosis is
characterized by accumulation of fat in 5% or more of hepato-
cytes, when there is no obvious etiology such as drug or alcohol
intake. It can then progress to a more serious condition known
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as nonalcoholic steatohepatitis (NASH) that is associated with
lobular inammation, hepatocyte damage, along with variable
degrees of brosis and cirrhosis in liver. Although NASH is
generally a nonprogressive disease, it might develop into liver
failure and even hepatocellular carcinoma in some patients.3,4

Several research studies have demonstrated that disorders of
signicant signaling pathways play a crucial role in the patho-
genesis of fatty liver disease such as sirtuin 1 (SIRT1), adenosine
50-monophosphate-activated protein kinase (AMPK), toll-like
receptor 4 (TLR4), peroxisome proliferator-activated receptor
(PPAR), nuclear factor kappa-B (NF-kB), and nuclear factor
erythroid 2-related factor 2 (Nrf2).5–8

The benecial effects of thyroid hormones, which are key
regulators of metabolism in humans, are mediated by thyroid
receptors with two isoforms: THR-a and THR-b. The former is
prevailing in the brain, heart, and bones, whereas the latter is
predominant in the liver, brain, kidneys, and pituitary gland.8,9

While the THR-a isoform plays a crucial role in neuronal
development, TRb is proposed to have a role in the re-
myelination processes. Moreover, THR-b is responsible for the
thyroid hormones' benecial effects on the lipid metabolism in
the liver.10,11 The structural differences between THR-a and
THR-b are shown in Fig. 1.

Thus, considerable efforts in the last two decades were
devoted to developing selective agonists towards THR-b in order
to be effective in managing metabolic and/or neuronal
Digital Discovery, 2025, 4, 3635–3651 | 3635
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Fig. 1 Structural differences between THR-a and THR-b. The red
illuminated area is the centre of action of the active zone centre.
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disorders without exerting serious adverse effects on the bone
and heart. For many years, the two molecules sobetirome and
eprotirome were extensively investigated. They showed great
promise for treating lipid metabolism diseases but failed in the
clinical trials because of their unwanted adverse effects.12

Resmetirom (MGL-3196) was the rst FDA approved oral THR-
b agonist in March 2024 to treat noncirrhotic NASH with
moderate or advanced hepatic brosis. The drug targets the
primary underlying causes of the metabolic disorder associated
with NASH, and it should be administered concomitant with
diet management and exercise.13

On the other hand, various studies revealed the benecial
effects of some plant-based phytochemicals and bioactive
components in reducing the severe burden in patients with
NAFLD. Among these, curcumin, cryptochlorogenic acid,
epigallocatechin-3-gallate, caffeic acid, trigonelline, caffeine, 4-
p-coumaroylquinic acid, salidroside, allicin, resveratrol, and
silybin are extensively investigated and reported.14 The potential
underlying mechanisms related to the mode of action of these
compounds included inhibition of oxidative stress and
inammation in liver, downregulation of fatty acid synthase
expression, increasing the abundance of Lactobacillus in gut,
hindering apoptosis and autophagy, reducing TNF-a produc-
tion, and upregulating some pathways such as Nrf2, PPAR-a,
AMPK, and fatty acid b-oxidation pathways.15–17 To date, there
are no comprehensive studies investigating the agonist poten-
tial of plant-based phytochemicals towards the THR-b receptor.

In the drug discovery process nowadays, where in situations
where efficacy is prioritised on efficacy, diversity, and speed,
various computer-aided approaches have enabled the virtual
screening of large libraries of compounds, reduced experi-
mental costs, and provided faster and more accurate calcula-
tions for parameters such as the estimated binding affinity of
a drug to its target and various physico-chemical properties of
newly designed drug candidates. These advances have all
contributed to a rapid and more efficient drug design process.18

In this work, we aimed to evaluate the binding affinity and
agonist potential of natural compounds in the ZINC15 database
towards the THR-b receptor. For this purpose, four rounds of
molecular docking were adopted, followed by short- and long-
term molecular dynamics studies. The top performing
3636 | Digital Discovery, 2025, 4, 3635–3651
compounds were subjected to thorough analysis of protein
dynamics, including principle component analysis (PCA), Time-
Lagged Independent Component Analysis-Free Energy Surface
(TICA-FES), and Markov State Model (MSM) analyses, and their
drug likeness, ADME, and toxicity proles were evaluated.
Furthermore, the selectivity of the top performing compounds
towards the beta isoform of the receptor was investigated
through molecular docking and molecular dynamics studies
done on the alpha isoform.
2. Computational methods

In order to examine the effect of phytochemicals in the ZINC15
database on THR-b and to identify potential agonist
compounds, a series of in silico methods were employed,
including molecular docking,19 molecular dynamics (MD),20

assessment of drug likeness, pharmacokinetics (ADME) and
toxicity proles.21 In addition, PCA,22 TICA-FES with reduction
free energy surface,23 and MSM24 were used to analyse the long-
term effects of the top performing compounds on the protein
structure. Unless otherwise stated, the Schrödinger Soware
Company's Maestro25 soware package and its modules were
used throughout the study.
2.1. Molecular docking

2.1.1. Preparation of ligands. The ligands employed in the
study comprised 47 199 compounds, within the natural
compound class in the ZINC15 (ref. 26) database. The codes of
the ligands utilized in the study are provided in the SI 1.
Furthermore, resmetirom27 and the cognate ligand bound to
THR-b (PDB ID: 1NAX), namely {3,5-dichloro-4-[4-hydroxy-3-
(propan-2-yl)phenoxy]phenyl}acetic acid, were employed in the
in silico studies as reference agonists. The ionisation states of all
compounds whose 3D structures were downloaded were esti-
mated for pH 7.4 using the Epik28 embedded soware in the
LigPrep29 module. The ten most stable conformations were
generated by considering tautomerisation states and subjected
to the OPLS4 (ref. 30) force eld.

2.1.2. Preparation of the protein structure. The X-ray
crystal structure of THR-b receptor in complex with {3,5-
dichloro-4-[4-hydroxy-3-(propan-2-yl)phenoxy]phenyl}acetic
acid (cognate ligand) was downloaded from the protein data
bank (PDB ID: 1NAX, 2.70 Å resolution).31 The protein was
appropriately coated with water molecules using HydraProt,32

which was trained with deep learning models to accurately
detect the positions of water molecules in 4000 crystal protein
structures in the PDB. This enables the complete and accurate
modelling of the solvent effect. The structure was then trans-
ferred to the Protein Preparation Wizard33 and subjected to
preprocessing, which included the addition of hydrogens, the
formation of disulde bonds and the estimation of the ionisa-
tion state of the protein structure at pH 7.4. Subsequently, the
hydrogen bonds were optimised for pH 7.4 and minimised with
the OPLS4 force eld.

2.1.3. Molecular docking protocols. The binding affinity of
all the natural ligands towards the cognate ligand site in the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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THR-b receptor was evaluated using the Glide34 module. Dock-
ing the ligands involved four rounds, including high-
throughput virtual screening (HTVS), standard sensitivity (SP),
extra sensitivity (XP), and induced t docking (IFD). A total of 20
poses were retained for each ligand throughout the whole
docking process. Elimination of irrelevant compounds
following each docking round, utilizing the settings with the
lowest root mean square deviation (RMSD) values, is outlined as
follows: aer the rst docking round conducted with HTVS,
a total of 7974 ligands were successfully placed within the
agonist binding site of the target receptor and ranked based on
their binding affinity to the receptor. The best 50% of these
ligands (3984 compounds) were subjected to the second dock-
ing round with SP to obtain 3951 top ranking ligands. Conse-
quently, the best 20% of these ligands (791 of them) underwent
docking with XP. Among these, 78 ligands (z10% of the ligands
retained from the previous round) were able to reveal appre-
ciable binding affinity and showed similar binding interactions
to those obtained by the reference agonists. Thus, these 78
ligands were nally employed in IFD (exible docking) and
ranked according to their docking scores.35 To proceed with
molecular dynamics simulations, we selected the top 22 ligands
that represent approximately 20% of the ligands retained aer
the induced t docking. A redocking study was performed for
protocol validation and presented as Fig. S1. The ratios per
round were determined statistically in order to prevent the
compounds that may be effective under physical conditions
from being missed during the study. Assuming HTVS scores
follow a normal distribution, dropping the lowest-scoring 50%
removes ligands about one standard deviation below the mean,
while moving 50% into SP keeps false negatives low, thanks to
the strong HTVS–SP agreement. Cutting to the top 20% in XP
and then the top 10% in IFD, at a Benjamini–Hochberg FDR z
0.1, channels resources toward quartile–decile leaders and
pares false positives. Finally, forwarding the best 20% to MD
and conrming exible agonist-like binding motifs averts
conformational escape and safeguards physiologically active
hits. The force eld used in the molecular docking calculation
was OPLS4, and it was chosen because the interactions of the
force eld with the active site residues were calculated similarly
to the interactions of the protein crystal structure. In particular,
it was found that the carboxylic acid end rotating away from the
arginine residues, which is one of the key interactions of the
OPLS2005 force eld, is more similar to the crystal data in
OPLS4. The data showing this are given in Fig. S3 and Table S3.
2.2. Molecular dynamics studies

The obtained top 22 ligands, following IFD, were subject to
short-term (10 ns) molecular dynamics (MD) simulations to
examine the dynamic behavior of the protein–ligand complexes
in the cellular environment within a limited time frame. This
helps ascertain the continuity of the interactions, the stability of
the complexes and the effects of the ligands on the protein
structure.36 Noteworthily, the ligands' data obtained from the
short-termMD study were compared with those of the reference
agonists (resmetirom and the cognate ligand), which were
© 2025 The Author(s). Published by the Royal Society of Chemistry
employed in the same study. Six ligands that demonstrated the
most similar behavior to the reference agonists in the short-
term MD, as well as the two reference agonists, were then
subject to a long-term MD study (500 ns).

2.2.1. System setup. The selected protein–ligand
complexes were immersed in an orthorhombic solvent box of
dimensions 10 Å × 10 Å × 10 Å. The solvent box consisted of
water molecules of TIP3P37 type. System neutralization was done
by the addition of 0.15 M NaCl, which is the equivalent of the
intracellular physiological medium, utilizing the Monte Carlo
method. The system setup was completed by applying the
OPLS4 (ref. 30) force eld. The OPLS4 force eld was used
because of its success in the calculation of protein–ligand
interactions, especially non-covalent interactions. In addition,
the hybrid machine-learning & physics-based tting strategy of
the OPLS force eld was found to be advantageous compared to
other force elds because it produces realistic data under
physical conditions.

2.2.2. Molecular dynamics system protocols. As MD simu-
lations necessitate comprehensive control over the system, the
simulation was conducted with a constant number of particles
at constant temperature and pressure. This was achieved
through the introduction of high energy barriers around the
solvent box. The simulation was conducted at a constant
temperature of 310 K, utilising a Nose–Hoover thermostat.38,39 A
constant pressure of 1 bar was maintained using a Martyna–
Tobias–Klein barostat.40 The Desmondmodule was employed to
perform the simulations, which comprised two distinct stages.
The initial stage entailed a 2 ps relaxation phase, while the
subsequent stage encompassed 10 ns and 500 ns simulation
generation phase for short-term and long-term simulations,
respectively. Each simulation was performed as three inde-
pendent simulations initiated with 310 K random Maxwell–
Boltzmann velocity seeds modied from the conguration le.
The portion of each iteration up to the point labelled as equi-
librium was discarded. In this particular context, given that the
Desmond module's algorithms were employed during the
equilibration process, the consequences of atoms released
without evaluating force eld effects were meticulously exam-
ined in the ps regime. Subsequently, community averages were
evaluated on non-overlapping blocks at the nanosecond level.
The non-overlapping blocks were represented by RMSD values
sliced at 25 ns for the three different simulations. Each iteration
of the simulation was executed by analysing the mean values of
atomic positions that attained equilibrium positions.
2.3. Analyses of protein dynamics

The top performing two compounds identied based on the
long-term MD simulation results were subjected to detailed
protein structure dynamics analyses along with the two refer-
ence agonists for comparison.

The detailed analyses included PCA, in which the multidimen-
sional and complex datasets comprising the MD data were
employed. By reducing the system into two dimensions and con-
structing energy surfaces, this approach elucidates the conforma-
tional shis within the protein structure and the fundamental
Digital Discovery, 2025, 4, 3635–3651 | 3637
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congurations restricted by the energy barriers.41 In addition, TICA-
FES analysis was conducted with lag values of 10 (5 ns) and 100 (50
ns) to detect the short-term and minor conformational alterations
induced by ligands in protein structures. Conversely, a lag value of
500 (250 ns) was employed to identify events such as protein
folding, which are likely to occur within the protein structure in the
long-term dynamics.42,43 Finally, MSM analysis was employed to
determine the time-dependent transition probabilities of the
changes in protein conformation and to detect the changes in the
energy landscape. Frame intervals containing related conforma-
tions, with the same energy proles, were clustered using the K-
means algorithm. The energies of other ensembles were calcu-
lated based on the energies of the frame series that had the lowest
energy.44–46 The Python scripts used to perform these analyses are
available on Zenodo (https://doi.org/10.5281/zenodo.17194142) and
GitHub (https://github.com/cannabinoid13/MDScripts). Version
updates were made to all scripts under a single version number,
and the rst version was used in this article. The libraries used in
the scripts included NumPy47 v2.0, MDAnalysis48 v2.7.0,
PyEMMA49 v2.5.7, Matplotlib50 v3.9.0, and deeptime51 v0.4.4.
2.4. Molecular mechanics with generalized born surface
area (MM/GBSA)

The stability of the protein–ligand complexes formed by the two
identied hits and the two reference agonists was evaluated by
MM/GBSA at 200 frame intervals, within the MD simulations,
using the Prime52 module. The calculation was performed with
the VSGB53 solvent model and the OPLS4 force eld.
2.5. Evaluating the selectivity towards the THR-b receptor

The same previously adopted molecular docking and molecular
dynamics protocols were employed to estimate the binding
Table 1 Docking scores (kcal mol−1) afforded by the top ranking compo
the THR-b receptor

Compound number ZINC15 ID Com

2 100 038 257

18 14 710 225

23 Resmetirom

24 Cognate ligand

3638 | Digital Discovery, 2025, 4, 3635–3651
affinity of the two identied hits towards the second isoform of
the thyroid receptors, THR-a (PDB ID: 1NAV).
2.6. Drug likeness, pharmacokinetics (ADME), and toxicity
prole analyses

The SwissADME platform was accessed to evaluate the drug
likeness criteria, pharmacokinetics, and toxicity proles of the
two identied hits and the reference agonists. This platform
provides a wide predictive spectrum of various physico-
chemical properties such as the logarithm of partition coeffi-
cient (log P) and water solubility (log S), total polar surface area
(TPSA), number of H-bond acceptors and donors, number of
rotatable bonds as well as the fraction of sp3 carbon atoms
(Csp3). SwissADME also offers useful predictions about the
absorption and bioavailability of drug candidates following oral
administration, potential of metabolism by various cytochrome
P450 enzymes, in addition to the medicinal chemistry param-
eters, and Brenk and pan-assay interference compounds
(PAINS) alerts, which help predict the presence of unstable and/
or toxic fragments within the chemical structure.
3. Results and discussion
3.1. Molecular docking

The objective of the molecular docking study was to rank the
screened 47 199 natural compounds according to their binding
affinities towards the THR-b receptor. This was achieved by
gradually increasing the sensitivity of the molecular docking
protocol over four rounds, where the number of compounds
was reduced to 78. Among these, 22 top performing compounds
were identied based on their docking scores and the similarity
of their binding modes to those of the reference agonists,
unds and the reference agonists following induced fit docking towards

pound structure Docking score (kcal mol−1)

−19.78

−16.7

−12.95

−13.041

© 2025 The Author(s). Published by the Royal Society of Chemistry
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considering the afforded amino acid interactions. Table 1 lists
the docking scores (kcal mol−1) of the identied top ranking
compounds; however, the data (docking scores and amino acid
interactions) of all the 78 compounds are given in Tables S1 and
S2 (the nomenclature and molecular shapes of the compound
ZINC15 codes) in SI 2. Moreover, the 2D interaction maps of the
docking poses retained by some of the top compounds are
presented in Fig. 1. Docking results revealed that the primary
interactions afforded by the reference agonists were due to the
presence of some electron dense groups such as carboxylic acid
and nitrile groups, which enabled the interactions with the
amino acid residues of the target protein. The dominant H-
bond and salt bridge interactions occurred via Arg316 and
Arg320 in addition to various hydrophobic contacts within the
Fig. 2 2D binding poses of the compound and reference agonists that
THR-b receptor.

© 2025 The Author(s). Published by the Royal Society of Chemistry
agonist binding site of the receptor. These two arginine residues
harbour structural features responsible for the selectivity of the
receptor.54 These features provide conformational constraint in
ensuring the stability of the agonist conformation in the
receptor by substituting the amino acid side chain in the
alcohol units present in resmetirom and the cognate ligand.
THR-b is sensitive to the presence of a carbon chain, which
enhances the polar interaction with arginine residues in the
pocket and acts as a skeleton in which substituents lock in an
active upright conformation relative to units such as the
terminal phenyl ring.55

The docking score of the resmetirom compound is compat-
ible with the cognate ligand's molecular structure in terms of
the presence of common groups, and the presence of the
localised with the highest affinity following induced fit docking to the

Digital Discovery, 2025, 4, 3635–3651 | 3639
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halogen structure of resmetirom in the cognate ligand in the
scores obtained clearly explains the close docking scores. The
cause and effect explanation of this situation is clearly seen
from the protein–ligand binding modes illustrated in Fig. 2.

The nal docking round, which employed induced t dock-
ing, revealed that the majority of the compounds that interacted
with the arginine residues in the agonist binding site of the
THR-b receptor were negatively charged compounds at physio-
logical pH conditions. Compounds 1, 7, 11, 14, and 18 are of
particular interest as they afforded similar bindingmodes to the
reference agonists, which is presumably due to the presence of
the negatively charged carboxylate moiety and other hydroxyl
groups in the regions extending to residues Arg316 and Arg320.
Nevertheless, compound 2, which was previously reported to
have a strong potential for treatment of fatty liver disease,
exhibited the highest degree of similarity to the reference
agonists. This compound afforded interactions with Gly332,
Fig. 3 RMSD data of the top ranking compounds following the short-te

3640 | Digital Discovery, 2025, 4, 3635–3651
Thr329, Arg316, Arg320, Arg382 and Ala279 residues via water
bridges and numerous direct hydrogen bonds, as illustrated in
Fig. 1. Moreover, it was able to access the Arg316 and Arg320
residues by virtue of its carboxylate moiety and the nearby
hydroxyl group while forming a hydrogen bond with Gly344 via
the two hydroxyl groups at its other end.

Noteworthily, the chiral compounds 1 and 18 showed “R”
conguration of the chiral centers having the hydroxyl groups
that extended to the arginine residues, which represents a di-
stinguishing feature in the emergence of strong interactions.
3.2. Molecular dynamics

3.2.1. Short-termmolecular dynamics simulations. The top
ranking 22 compounds that were identied according to the
docking study were subjected to a short-term (10 ns) molecular
dynamics study. The RMSD and RMSF plots of the protein–
ligand complexes (Fig. 3 and 4) were analyzed to identify the
rm (10 ns) MD simulations.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 RMSF data of the top ranking compounds following the short-term (10 ns) MD simulations. The red dashed lines correspond to the
residues involved in the interactions with the reference agonists.
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compounds showing strong binding affinity to the THR-
b receptor. These plots serve as key indicators of the continuity,
strength, and stability of the studied complexes over the simu-
lation time.

In general, the studied compounds showed low RMSD
values, indicating appropriate binding affinity. While the over-
all RMSD average of the compounds uctuated in the range of
2–3 Å, some distinguished compounds showed relatively low
RMSD values, compared to others, over the whole simulation
time. These include compounds 1 (mean: 2.28 Å), 2 (mean: 2.28
Å), 5 (mean: 2.23 Å), 7 (mean: 2.23 Å), and 10 (mean: 2.28 Å). On
the other hand, compound 22 showed the highest deviations in
its RMSD values, suggesting relatively lower binding affinity to
the receptor.

Examining the uctuations in RMSF plots obtained
following the binding of ligands to a certain protein provides
valuable insights into the strength of their binding affinity
towards that protein. Ligands showing low uctuations with the
amino acid residues in the active site are characterized by tight
binding and strong affinity to the protein.56 In this study, RMSF
plots of the 10 ns MD simulations were thoroughly analyzed to
identify the ligands that showed low uctuations with the
residues in the agonist site and high uctuations in other
regions of the protein structure. These ligands are expected to
have strong agonist potential. As illustrated in Fig. 4, the red
dashed lines correspond to the amino acid residues reported to
interact with the reference agonists. The indexes of these resi-
dues are 67, 68, 71, 74, 105, 122, 123, 136, 138, 145, 227, 234,
and 247. These indexes are located as residues 275, 276, 279,
282, 313, 330, 331, 344, 346, 353, 435, 442, and 455 in the
protein structure, respectively.31 Accordingly, ligands with
© 2025 The Author(s). Published by the Royal Society of Chemistry
strong agonist potential should showminimal uctuations with
the amino acids in the region extending between indexes 65 and
150 and also in the region between indexes 200 and 250, while
increased uctuations should be observed elsewhere.
Compounds 1, 2, 7, 11, 14, and 18 showed this uctuation
pattern, in addition to their relatively low RMSD values, which
indicate their strong THR-b agonist potential. Among these
compounds, compound 2 is a caffeic acid derivative. Consid-
ering the favourable effects of caffeic acid reported in the
literature in the treatment of non-alcoholic fatty liver disease,
this result is quite consistent.57 Another prominent compound,
compound 18, is a propanetriol (glycerol) derivative. The fact
that there are reports in the literature that propanetriol deriv-
atives also have a positive effect on non-alcoholic fatty liver
disease shows that the information obtained from short-term
molecular dynamics simulations is consistent.58,59

3.2.2. Long-term molecular dynamics simulations.
Compounds 1, 2, 7, 11, 14, and 18 that turned out to possess the
most promising agonist potential towards THR-b in the short-
term MD study were subjected to long-term (500 ns) MD
simulations to verify their binding affinity to the target receptor.
The cognate ligand and resmetirom (the reference agonists)
were also employed in this study for comparison. The six
compounds exhibited limited mobility, minimal displacement,
and negligible conformational changes throughout the long-
term simulations, which were consistent with their behavior
in the short-term (10 ns) simulations. This could be attributed
to the narrow binding site and the formation of salt bridges and
hydrogen bonds with arginine residues in the agonist binding
site.
Digital Discovery, 2025, 4, 3635–3651 | 3641
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Following the long-term MD simulations, compounds 2, 11,
14, and 18 exhibited mean RMSD values in the range of 2.91–
3.12 Å, which was comparable to 2.79 Å and 3.02 Å for the
cognate ligand and resmetirom, respectively. Compounds 2 and
18 exhibited the closest resemblance to the RMSD graphs of the
Fig. 5 RMSD data (a), interactions over 30% of the simulation time (b),
agonists following the long-term (500 ns) MD simulations.

3642 | Digital Discovery, 2025, 4, 3635–3651
reference agonists in terms of both average and trend. However,
compounds 1 and 7 exhibited a deviation greater than 3.5 Å in
the RMSD data and persisted in this condition for a period
extended approximately to 200 ns. This could indicate that the
protein–ligand complexes of these two compounds were
and RMSF data (c) of the top ranking compounds and the reference

© 2025 The Author(s). Published by the Royal Society of Chemistry
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unstable over the long term, as evident from their RMSD values,
which reached up to approximately 4 Å towards the end of the
simulations (Fig. 5a). This could also point out the relatively
weak binding affinity of the two compounds and suggest that
they were unlikely able to elicit an agonist signal upon binding
to the receptor.

Analysis of the RMSF data obtained from the long-term MD
simulations (Fig. 5c) revealed that compounds 2 and 18
exhibited distinctive uctuations in the region far from the
agonist binding site, around residue index 40 and highly
reduced uctuations in the regions of the agonist site, sug-
gesting their high agonist potential to the receptor. Although
the uctuations observed by compound 1 were higher than
those of other compounds in this range, this uctuation pattern
is sufficiently high to render the natural functioning of the
protein structure uncertain. In view of the distinct RMSD and
RMSF data sets of compound 1, it might elicit specic effects,
the nature of which is currently unclear. The uctuations of
compound 11 were signicantly higher than the other
compounds around the residue index 200. This information,
when interpreted alone, indicates the appreciable agonist
potential of the compound.

Compound 7 did not afford notable interactions with the
crucial amino acid residues in the agonist site of the THR-
b receptor in the region between indexes 200 and 250, as evi-
denced by the signicant uctuations it exhibited in this region.
Although compound 14 had regular, satisfying, and plateauing
RMSD data, it showed high uctuation in the region of the
agonist site residues, similar to the pattern observed with
compound 7.

Regarding the binding modes of the ligands employed
during the long-term (500 ns) MD simulations, Fig. 5b illus-
trates the interactions between the six drug candidates and the
amino acid residues in the agonist site of the target receptor,
compared to the interactions afforded by the reference agonists
over the simulation time.

In the agonist site, the reference agonists are engaged in
crucial hydrogen bonding with Arg316 and His435 residues in
addition to hydrophobic contacts with Ile276 and Leu330.
Noteworthily, the nitrile group in resmetirom and the isopropyl
group in the cognate ligand displayed a signicant contribution
to the drug–protein interactions.

Compound 2 formed both direct and indirect hydrogen
bonds (through water bridges) with Arg316 that persisted for
76% and 36% of the simulation time, respectively, and also
formed hydrogen bonding interaction with Gly344, similar to
resmetirom. Compound 18 afforded hydrogen bonding inter-
action with Arg320 for 70% of the simulation time. However, no
interactions with Arg316 were detected for more than 30% of
the simulation time. Nevertheless, the compound showed
hydrogen bonding interaction with Asn331, which was also
afforded by the cognate ligand.

Compound 14 did not demonstrate any of the common
interactions afforded by the reference agonists during the
simulations. Compound 7 formed water bridges with Arg316,
yet it did not exhibit direct interactions. In the same sense, the
interactions afforded by compounds 1 and 11 were not as
© 2025 The Author(s). Published by the Royal Society of Chemistry
effective, and their complexes with the protein did not show as
high stability as that observed by other compounds such as 2
and 18 during the long-term MD simulations.

Conclusively, compounds 2 and 18 exhibited low RMSD values
that were stable at the plateau levels, showed reduced uctuations
in the crucial regions of the receptor's agonist site with low RMSF
values, and demonstrated similar binding modes observed by the
reference agonists. Moreover, the ligand–protein complexes of the
two compounds remained stable throughout the whole simulation
time that indicated strong and robust adhesion to the residues in
the agonist binding site. Moreover, compounds 2 and 18 were
found to have a potential to enhance the signal carrier effect of the
receptor by increasing the uctuations in the regions away from
the agonist binding site in a similar behavior to the reference
agonists. Compound 2 has been reported as anti-diabetic,
although its anti-inammatory properties are predominantly
mentioned in the literature.60,61 Compound 18 is an anticancer
compound with cytotoxic effects and is known to be effective in
bone health and bone metabolism in very similar forms.62,63
3.3. Analyses of protein dynamics

Compounds 2 and 18 that showed the best performance in the
long-term (500 ns) MD simulations had their impact on the
dynamics of the THR-b receptor studied. The reference agonists
were also included for comparison. Different analyses such as
PCA, TICA-FES, and MSM were employed for this purpose.
Consequently, the potential of these compounds to elicit effects
analogous to those observed by the reference agonists could be
evaluated with greater precision.

3.3.1. PCA. The PCA was applied using the data sets
comprising the dynamic properties of the protein–ligand
complexes of compounds 2 and 18 and the reference agonists to
identify the most stable conformations and motions. The
results, shown in Fig. 6, enabled the determination of the
complexes' conformations and the states of energy barriers
separating the conformational transitions.

The free energy surface plots obtained following the PCA of
the ligand–protein complexes showed dark blue regions, rep-
resenting low energy, surrounded by yellow areas that reect
relatively higher energy barriers. The energy landscapes of the
analyzed complexes were remarkably similar. Specically,
compound 2 and resmetirom showed very comparable energy
landscapes, and similarly compound 18 and the cognate ligand
had very close energy surfaces. This is an evidence that the
movement of the protein structure throughout the simulations
was very similar for all systems. Noteworthily, the deep energy
valleys appeared in the plots represent a pathway for confor-
mational transitions, which is highly favorable for the genera-
tion of agonist signals.

3.3.2. TICA-FES analysis. TICA-FES provides useful infor-
mation about the actual protein dynamics, the free energy
landscape that governs these dynamics, and the signal trans-
duction mechanism of the protein across disparate time scales.
Moreover, TICA-FES is an excellent tool to construct protein
dynamics Markov models.23 In this study, TICA was conducted
using lag values of 10, 100, and 500.
Digital Discovery, 2025, 4, 3635–3651 | 3643
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Fig. 6 PCA plots obtained upon analyzing the dynamic properties of the THR-b–ligand complexes of compounds 2 and 18 and the reference
agonists. Yellow areas represent high energy, while dark blue areas represent low energy.
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At a lag value of 10, resmetirom and the cognate ligand
exhibited remarkably similar deep low energy valleys, whereas
compounds 2 and 18 demonstrated a high degree of similarity
to the energy landscape of the reference compounds. In all the
systems, the protein was able to transition between different
conformations by concentrating the deep energy valleys in
specic regions. This points out that the studied compounds
help stabilize certain conformations of the protein, making
these states more likely to occur. However, when the lag value
was set to 100, the energy prole similarity between resmetirom
and the cognate ligand was undetectable, while the energy
landscapes of the cognate ligand and the two hit compounds
were still demonstrating a high degree of similarity. This
observation underscores the potential for a pronounced agonist
effect at this particular lag value. At a lag value of 500, the deep
energy valleys exhibited highly analogous energy landscapes for
all compounds, conrming similar agonist effects of the hit
compounds to those of resmetirom and the cognate ligand over
an extended timeframe (Fig. 7). This analysis at varying lag
3644 | Digital Discovery, 2025, 4, 3635–3651
values provides substantial evidence that the parallel agonist
properties of both the hit compounds and the reference
agonists towards THR-b are effective, particularly during the
time interval when the lag value is 100, i.e., around 50 ns.

3.3.3. MSM analysis. The conformational transition states of
the lead compounds were analyzed by molecular dynamics simu-
lations to construct the lag time–implied timescale (MSM) plots.
Analyzing the transition states with different clustering numbers,
compound 2 exhibited a high degree of uctuation in the range of
90–100 ns. The lowest observed uctuation was identied as
clustering number 3; however, even within this specic clustering
category, the inconsistency between 90 and 100 ns could not be
eliminated. The behavior demonstrated by compound 2within the
90–100 ns rangemight suggest the occurrence of rare events or the
rapid development of substantial conformational changes over
brief temporal intervals. Consequently, movements between 90
and 100 ns were excluded for all complexes. As shown in the MSM
plot, the reference agonists possessed a high degree of confor-
mational stability and reected constant agonist potency over an
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 TICA-FES analysis results of MD simulations at 10, 100 and 500 lag values.
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extended time scale (approximately 70–100 ns), as indicated by the
implied timescale data. Compound 2 exhibited a similar pattern to
the reference compounds, indicating stable conformational states
and high agonist potential by showing planar graphs. In contrast,
compound 18 displayed a partial potential. It stabilized the
receptor within a more rapid timescale. Further optimization may
be necessary to achieve full agonism. Information on this can be
seen in Fig. S4.
3.4. Molecular mechanics with generalized born surface
area (MM/GBSA)

The free energy calculation utilising MM-GBSA (Fig. 8) was
employed to evaluate the stability of the ligand–THR-
b complexes formed by compounds 2 and 18 and the reference
agonists based on the free energy values and the complexation
slope throughout the long-term (500 ns) MD simulations.

The free energy data demonstrated that all the complexes
exhibited low energy states, thereby conrming their stability at
© 2025 The Author(s). Published by the Royal Society of Chemistry
all stages of the long-term MD simulations. The complex of
compound 2 exhibited a slightly higher energy state than the
others, reaching a maximum value of −65 kcal mol−1. Subse-
quently, the free energy demonstrated a downward trend,
declining below the threshold of −80 kcal mol−1. Noteworthily,
the other three complexes manifested comparable and proxi-
mate free energy values.
3.5. Evaluating the selectivity of the identied hits towards
the THR-b receptor

The two hit compounds 2 and 18 as well as compounds 11 and
14 that demonstrated appreciable THR-b agonist properties in
the MD simulations were selected to evaluate their selectivity
towards the targeted beta isoform of the receptor over the alpha
one. This was done by performing molecular docking and MD
simulations on the THR-a receptor isoform, adopting the same
protocols used previously throughout the study.
Digital Discovery, 2025, 4, 3635–3651 | 3645
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Fig. 8 MM/GBSA plots showing the change in free energies of the ligand–protein complexes of the reference agonists and compounds 2 and 18
during the long-term (500 ns) MD simulations.
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Docking results showed that only compounds 2, 11, and 14
were able to dock to THR-a. However, they exhibited minimal
interactions with the amino acid residues in the agonist site of
the receptor (Fig. S5). Interestingly, compound 2 utilized water
molecules as a bridge for the majority of its hydrogen bonding
interactions with the protein. While water molecules contribute
to the interaction energies, they must bemeticulously examined
in the context of static interactions due to their inherent
mobility in dynamic processes. Compound 18 was not able to
dock to THR-a, indicating high selectivity potential towards the
b isoform of the receptor. The high degree of selectivity
observed is attributable to the presence of the Ser277 residue in
the a isoform at the ligand binding sites, despite the absence of
the Asn331 residue in the b isoform. This amino acid residue
difference has resulted in alterations to the hydrogen bond
interaction pattern, thereby creating conditions conducive to
selectivity. Furthermore, a-helices, free ends and helical struc-
ture differences, as demonstrated in Fig. 1, signicantly
distinguish the protein dynamics between the two structures.
These helical structure differences are primarily observed in
regions near the backbone residues within the binding site in
the a isoform, where folding and length variations are evident.

RMSD and RMSF data of compound 11 showed minimal
deviation values, suggesting robust stability of the ligand–
protein complex and hence an appreciable affinity towards
THR-a. Noteworthily, the RMSF plot of compound 11 displayed
a notable indication of a partial agonist effect. This was man-
ifested as an additional uctuation in the highly uctuating
region around residue index 50. The RMSD and RMSF data of
compounds 2 and 14 exhibited elevated deviation values,
3646 | Digital Discovery, 2025, 4, 3635–3651
suggesting very low affinity and a minimal impact on the
protein structure (Fig. S5).

The PCA data of compound 11 demonstrated the greatest
similarity to the cognate ligand's effects on the protein
dynamics. The free energy surface of this compound contained
two distinct low-energy regions, analogous to those observed in
the cognate ligand's surface. Compound 2, on the other hand,
exhibited inconsistencies in its probability density representa-
tion of the agonist effect, with low-energy regions distributed
across a wide range. Compound 14 appeared to restrict protein
dynamics, exhibiting a single low-energy region (Fig. S5).

When all the data are considered collectively, it becomes
evident that compounds 2, 14, and 18 evinced minimal interest
in the alpha isoform. Compound 11, however, partly demon-
strated compatible and consistent protein dynamics data with
those of the cognate ligand, which is known to be an agonist.
The RMSD and RMSF data of this compound could suggest
a signicant partial agonistic potential. Compound 14 exerted
a constrained effect on the protein dynamics and thus could
have the potential to demonstrate a direct antagonist effect
towards the THR-a isoform. Compound 2 did not exhibit any
evidence of agonistic effect and displayed markedly distinct
protein dynamics. Compound 18, which did not dock to THR-a,
could have a signicant preference to the beta isoform with
high selectivity and considerable agonistic potential.
3.6. Drug likeness, pharmacokinetics (ADME), and toxicity
prole analyses

We nally utilized the SwissADME online platform to evaluate
the drug likeness potential, determine the ADME properties,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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and investigate the toxicity proles of the top performing
compounds 2 and 18 along with the reference agonists (Table
2).

Lipinski's rule of ve states that compounds with molecular
weights less than 500, partition coefficients (log P) below 5,
fewer than 5 hydrogen bond donors, and fewer than 10
hydrogen bond acceptors are more likely to show good oral
bioavailability.64,65 Veber's rule considers two additional criteria,
which are a total polar surface area (TPSA) of less than 140 Å2

and less than 10 rotatable bonds.66 The fraction of the sp3-
hybridized carbon atoms relative to the total count of carbon
(Csp3) is another component that inuences drug likeness. It
reects on the complexity of molecules and indicates their
carbon saturation. Studies showed that compounds with zero
Csp3 tend to have low absorption and bioavailability.67 In the
same manner, water solubility (log S) signicantly inuences
drug absorption across biological membranes. Drug candidates
with log S values of −4 or higher are expected to have good oral
bioavailability68

Compound 2 showed one violation to each of the Lipinski
and Veber criteria, low absorption, and exhibited PAINS and
Brenk alerts by virtue of its catechol and a,b-unsaturated
carbonyl moieties, respectively. Indeed, drug candidates with
catechol moieties demonstrate PAINS alert as they oen
nonspecically bind enzymes and receptors, either via metal
chelation or covalent bonding, other than the target one leading
to false positive assay results. Moreover, catechols are possibly
oxidized to quinones, generating reactive oxygen species that
lead to oxidative stress and cause damage to DNA, lipids, and
proteins. For instance, nordihydroguaiaretic acid that was used
to manage asthma conditions was recalled due to liver and
kidney toxicity linked to its catechol moiety. However, the
catechol derivatives dopamine and epinephrine are safely used
therapeutically, in a wide range, since they are very well
managed by the anti-oxidant defense mechanisms of the body
as long as the dosage limits and the route of administration (IV,
injection) are properly considered.69

The a,b-unsaturated carbonyls are electrophilic groups that
react with nucleophiles, such as the SH of cysteine residues in
proteins, via the Michael addition reaction. This could impair
protein functions and trigger geno- and cytotoxicity at high
levels. The reported neurotoxicity and oxidative damage of
acrolein and crotonaldehyde are mainly linked to their a,b-
unsaturated carbonyl groups. That said, the presence of this
group is still benecial for the action of some drugs, such as
dimethyl fumarate that is used in psoriasis and multiple scle-
rosis. The drug utilizes its a,b-unsaturated carbonyl to react
with the cysteine residues of cellular proteins, forming adducts
that inuence signaling pathways involved in inammation and
oxidative stress such as the Nrf2 pathway.70 Moreover, curcumin
is a natural a,b-unsaturated chalcone that is used safely as
a potent antioxidant and anti-inammatory agent71

In contrast, compound 18 and the cognate ligand did not
show any violation to either Lipinski or Veber drug likeness
criteria, showed good absorption with no predicted interactions
with the cytochromes or toxicity alerts. However, resmetirom
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showed a similar prole with low absorption and one Veber
violation (Table 2).

Our comprehensive in silico study has pointed out that
compounds 2 and 18 are promising hits to be considered as
potential candidates for NAFLD management. Interestingly, 4-
O-caffeoylquinic acid (compound 2) has been reported to
display a wide array of pharmacological activities and strong
therapeutic potential against several ailments. It was able to
improve memory and cognition functions and prevent neuronal
loss in mouse models of Alzheimer's disease, most likely due to
its support of mitochondrial health alongside its powerful
antioxidant activity.64 This compound also demonstrated potent
anti-diabetic activity in vitro by inhibiting the enzyme a-gluco-
sidase, thereby altering carbohydrate absorption and by inhib-
iting protein tyrosine phosphatase 1B, a negative regulator in
insulin signalling.72,73 In the HepG2 lipid-accumulation model,
4-O-caffeoylquinic acid lowered the triglyceride levels effec-
tively, surpassing simvastatin in vitro, which suggested a prom-
ising potential in treating dyslipidemia and fatty liver74

The lignan derivative, dihydroxydehydrodiconiferyl alcohol
(compound 18), on the other hand, demonstrated a therapeutic
value in bone disorders such as osteoporosis as it showed
agonistic effect on estrogen receptors, promoting osteoblast
differentiation. It also exhibited strong anti-inammatory
activity through inactivating the NF-Kb signaling pathway and
altered adipogenesis and lipid accumulation in some in vitro
studies, indicating its promising potential against obesity and
dyslipidemia related diseases.75,76

4. Conclusion

Using a rigorous, multi-tiered in silico workow—encompassing
high-retention molecular docking of 47 199 ZINC15 natural
products, 500 ns all-atom molecular dynamics simulations,
MM/GBSA free-energy estimates, and advanced protein-
dynamics analyses (PCA, TICA-FES, and MSM)—we identied
4-O-caffeoylquinic acid (compound 2) and di-
hydroxydehydrodiconiferyl alcohol (compound 18) as compel-
ling thyroid hormone receptor-b (THR-b) agonist candidates for
the management of non-alcoholic fatty liver disease (NAFLD).
Both ligands established persistent electrostatic and hydrogen-
bonding interactions with the key residues Arg316 and Arg320,
with their carboxylate and hydroxyl moieties complementing
the positively charged guanidinium groups and thereby rein-
forcing an active-like receptor conformation. Consistent with
these contacts, MD trajectories reveal microstate transition
rates and collective motions that closely mirror those induced
by the reference agonist resmetirom, indicating a comparable
capacity to trigger THR-b signal transduction. In silico ADMET
proling further predicts favorable oral bioavailability, meta-
bolic stability, and safety margins for both compounds.
Collectively, these ndings position compounds 2 and 18 as
tractable chemical leads for THR-b-targeted NAFLD therapy and
underscore the power of integrative computational pipelines to
accelerate the discovery of mechanism-informed therapeutics.
Subsequent biochemical and in vivo studies are now warranted
to validate their efficacy and safety proles.
3648 | Digital Discovery, 2025, 4, 3635–3651
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the most up-to-date version via the Zenodo record:
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doi.org/10.5281/zenodo.17194142 (MDScripts Molecular
Dynamics Simulation Analysis Package (MDSAP), v1.0; license:
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� Most recent version: the latest citable version is accessible
via the “Versions” panel of the same Zenodo record; the live
development repository is available at https://github.com/
cannabinoid13/MDScripts.

Availability during peer review and at publication: referees
had access to the above code and data during peer review. The
Zenodo record listed here is public and provides a persistent
identier for the archived version used; readers can retrieve any
newer versions via the Zenodo “Versions” view.

Natural compounds from the ZINC15 database are publicly
accessible at http://zinc15.docking.org. Any additional data
related to this article are available from the corresponding
author upon reasonable request.

All relevant data used in this study are provided in the
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J.-H. Prinz and F. Noé, PyEMMA 2: A Soware Package for
Estimation, Validation, and Analysis of Markov Models, J.
Chem. Theory Comput., 2015, 11, 5525–5542.

50 J. D. Hunter, Matplotlib: A 2D Graphics Environment,
Comput. Sci. Eng., 2007, 9, 90–95.

51 M. Hoffmann, M. Scherer, T. Hempel, A. Mardt, B. de Silva,
B. E. Husic, S. Klus, H. Wu, N. Kutz, S. L. Brunton and F. Noé,
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