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Development of synthetic chloride transporters using high-
throughput screening and machine learning
Surid Mohammad Chowdhury,a Nada Daood,b,c Katherine R. Lewis,a Rayhanus Salam,a Hao Zhu,*b,c 
and Nathalie Busschaert*a

The development of synthetic compounds capable of transporting chloride anions across biological membranes has become 
an intensive research field in the last two decades. Progress is driven by the desire to develop treatments for chloride 
transport related diseases (e.g., cystic fibrosis), cancer or bacterial infections. In this manuscript, we use high-throughput 
screening and machine learning to identify novel scaffolds, and to find the molecular features needed to achieve potent 
chloride transport that can be generalized across diverse chemotypes. 1,894 compounds were tested, 59 of which had 
confirmed transmembrane chloride transport ability. A machine learning (ML) binary classification model indicated that 
MolLogP is the most important feature to predict transport ability, but it is not sufficient by itself. The best ML model was 
able to identify potential chloride transporters from the DrugBank database and the predictions were experimentally 
validated. These insights can provide other researchers with inspiration and guidelines to develop ever more potent chloride 
transporters.

Introduction
The transport of anions across membranes is an important 
biological function that plays a crucial role in cellular and 
organismal homeostasis.1 This function is normally performed 
by transmembrane transport proteins, but several diseases 
have been linked to malfunctioning or malregulation of these 
proteins (so-called ‘channelopathies’).2 An estimated 5-10% of 
all human genes code for transport-related proteins,3, 4 further 
highlighting the importance of transmembrane transport in 
biology. Consequently, supramolecular chemists have tried to 
develop synthetic molecules that can transport anions across 
biological membranes. Chloride has been the most important 
target anion for the development of synthetic transmembrane 
anion transporters, mainly due to the well-known fact that the 
genetic disease cystic fibrosis is linked to malfunctioning 
chloride transport caused by mutations in the CFTR protein.5, 6 
While a number of successful new drugs for cystic fibrosis have 
been approved in the last decade,7-9 these drugs each only 
function on a subset of CFTR mutations.10, 11 There is therefore 
still a need to develop compounds that can treat the remaining 
CF patients. Furthermore, there are other channelopathies 
linked to malfunctioning chloride transport, such as Bartter 

syndrome and Congenital Chloride Diarrhea.12 In addition, 
chloride transport by synthetic carriers disrupts homeostasis 
and can be cytotoxic – a property that can be taken advantage 
of in the form of anticancer drugs and antibiotics.13-17 Away 
from the medical field, chloride remains the most important 
electrolyte and the most abundant anion in the body.18 
Therefore, for any application of anion transporters that aims 
to understand or mimic biological functions (chemical biology, 
artificial cells,…), chloride will be of utmost importance. For this 
reason, it has remained the main anion of interest for 
supramolecular chemists.
Over the last few decades, a few trends have emerged in the 
development of chloride transporters. For example, lipophilicity 
(or lipophilic balance)19 and anion binding ability have been 
found to be important parameters to optimize.20-22 When the 
lipophilicity is too low transporters are unable to partition into 
the membrane, but if the lipophilicity is too high transporters 
are unable to move to the interface to pick up an anion or have 
deliverability problems.23 Similarly, when transporters bind 
their target ion too weakly they cannot extract it from the 
aqueous layer, but if they bind too strongly they cannot release 
it on the other side of the membrane.13, 24  However, this does 
not mean that any chloride receptor with optimal lipophilicity 
can function as a transmembrane chloride transporter, and the 
prediction of whether a given anion receptor will function as an 
anion transporter is still elusive. In this manuscript, we thus 
developed a high-throughput screening method to test the 
transmembrane chloride transport ability of synthetic small 
molecules. Around 2,000 compounds were tested and 59 of 
these were found to function as chloride transporters. This does 
not only provide novel scaffolds that can be optimized into 
potent chloride transporters, but we also employed machine 
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learning (ML) techniques to identify the molecular features that 
are needed to develop chloride transporters. This is the first 
example of the use of ML to analyze synthetic chloride 
transporters and confirmed that many of the previously 
observed trends can indeed be extrapolated across a diverse set 
of chemical scaffolds (e.g., the importance of lipophilicity). 
Furthermore, the ML models can be used for predicting the 
chloride transport ability of synthetic compounds without the 
need for time-consuming experiments, which can improve early 
hit identification via virtual screening and identify rarely 
explored scaffolds. This is in stark contrast to previously 
reported QSAR models of chloride transport,20, 21 which use 
narrow libraries of compounds and cannot predict the activity 
of compounds that are structurally unrelated. This manuscript 
thus provides one of the most extensive studies on 
transmembrane chloride transporters by synthetic molecules so 
far, and suggests new tools and guidelines for the design and 
analysis of potent chloride transporters which can ultimately be 
used in a variety of applications.

Results and discussion
Identifying novel chloride transporters from diversity compound 
libraries.

We modified the well-known lucigenin liposome-based assay25 
to allow the determination of Cl¯ transport in 96-well plates, 
similar to the recent report by Haynes and co-workers26 that 
was published during the writing of this manuscript (see †ESI for 
experimental details). We used this assay to screen the activity 
of the National Cancer Institute Diversity Set VI (1584 
compounds) and Natural Product Set V (390 compounds), which 
can be obtained freely from the National Cancer Institute. One 
of the plates (plate 4878) got damaged during our experiments 
and we could not finish the screening with these compounds. In 
total, we screened the activity of 1894 compounds at a 
concentration of 5 mol% with respect to lipid. This relatively 

high concentration was chosen to ensure that a sufficient 
amount of active compounds would be identified. The aim of 
most high-throughput screenings is not to find highly active 
compounds from scratch, but rather to find suitable lead 
compounds that can be optimized later. Previous studies of 
transmembrane chloride transporters have also shown that 
simple modifications can dramatically improve potency. For 
example, N,N-diphenylurea is a very poor chloride transporter, 
but the mere addition of a para-CF3 substituent turns this 
compound into a potent chloride transporter with an EC50 of 
0.42 mol%.27, 28 We therefore believe that a concentration of 5 
mol% can find suitable lead compounds that can be optimized 
into more potent Cl¯ transporters by standard chemical 
modifications. The results of the high-throughput screening 
assay are shown in Figure 1, and the raw data is given in Table 
S1 of the †ESI and Figures S12-S37 (for 166 compounds the 
background fluorescence was too high to get meaningful 
results, but for the remaining 1728 compounds an estimate of 
the chloride transport ability was obtained).
The data in Figure 1 are shown as normalized F0/F20 values, 
whereby F0 is the lucigenin fluorescence intensity at the 
beginning of the experiment and F20 is the lucigenin 
fluorescence intensity after 20 minutes of transport. The 
numbers are further normalized so that the values range from 
0 when no chloride is transported, to 1 when maximum chloride 
is transported (see †ESI for details of data work-up). The longer 
20-minute time frame was chosen to ensure that a sufficient 
amount of active lead compounds can be found. As expected, 
the majority of compounds do not facilitate chloride transport 
and induce a normalized F0/F20 of 00.1 (see histogram in Figure 
S38 of the †ESI). However, it is doubtful that compounds that 
resulted in a normalized F0/F20 value close to 0.1 can be 
considered good chloride transporters. We therefore 
performed a K-means clustering analysis using Origin Pro 2024, 
which put the cutoff between active and inactive compounds at 
normalized F0/F20 = 0.25 (see Figure S39 in the †ESI). Therefore, 

Figure 1. Around 2,000 compounds of the NCI Diversity Set VI and Natural Product Set V were screened for their ability to transport chloride anions into liposomes. (a) 
Experimental procedure. Briefly, 100 nm LUVs were prepared (lipid: 30% cholesterol and 70% eggPC; internal solution: 1 mM lucigenin, 223 mM NaNO3, 10 mM HEPES 
buffer at pH 7.4; external solution: 223 mM NaNO3, 100 mM NaCl, 10 mM HEPES buffer at pH 7.4) and transport was started by the addition of compound to achieve a 
concentration of 5 mol% with respect to lipid. The change in fluorescence was measured for 20 minutes. (b) Results of the high-throughput screening. The plot shows 
the fluorescence intensity after 20 minutes (F20) normalized against the initial fluorescence (F0) and the fluorescence obtained upon the addition of Triton X-100 as 
detergent (normalized F0/F20). A value >0 indicates that chloride was transported into the liposomes.
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the final classification used was as follows: compounds with 
normalized F0/F20 values ≥0.25 were considered active (‘hit’), 
compounds with normalized F0/F20 values between 0.1 and 0.25 
were considered inconclusive, and compounds with normalized 
F0/F20 values ≤ 0.1 were considered inactive (see Figure 1). In 
addition, 3 compounds displayed normalized F0/F20 values 
outside the expected range of 0 - 1 (1.88 for NSC242557, -2.99 
for NSC47147, and 17.7 for NSC247562). Because 2 of these 
compounds were prodigiosin analogues, which have long been 
established as small-molecule chloride transporters,29-34 these 
compounds were considered active. The initial screening 
eventually resulted in the identification of 66 potential new 
synthetic chloride transporters.

Verifying the chloride transport activity of the hit compounds 
reveals 59 chloride-transporting small molecules.
Even though the high-throughput assay was designed to 
minimize optical interference, we decided to verify the hits 
using a non-optical assay. We used the well-established 
chloride/nitrate transmembrane exchange assay, which uses an 
ion selective electrode to detect the efflux of Cl¯ out of 
liposomes.35 In addition, the activity observed during the high-
throughput screening could be the result of genuine chloride 
transport or membrane disruption. To rule out detergent-like 
membrane disruption, we also performed a calcein leakage 
assay36 on all hits. Because these assays need larger amounts of 
transporter, we obtained around 5 mg of the putative hits from 
the National Cancer Institute to perform the assays. However, 
two compounds (NSC24032 and NSC11437) could not be 
obtained and their chloride transport activity could not be 
verified. In addition, two other compounds were not soluble 
enough in DMSO to verify their activity (NSC680516 and 
NSC81856). The remaining 62 compounds, except the two 
prodigiosins which are known chloride transporters,29-34 were 
tested for their ability to induce chloride efflux using the ion 
selective electrode assay and for membrane disruption using 
the calcein leakage assay (see †ESI, Figures S40-S51). All 
compounds displayed statistically significant chloride efflux 
compared to the DMSO control (p-value <0.05, see †ESI Table 
S4), except NSC59258 and NSC93427 which were considered 
false positives. In addition, 1 compound (NSC107041) induced 
significant calcein leakage and is therefore better classified as a 
membrane disruptor than a chloride transporter. The structures 
of the remaining 59 compounds with verified transmembrane 
chloride transport ability are shown in Figure 2. Figure 2 also 
reports the percent chloride efflux induced by these 
compounds after 20 minutes (measured using a chloride 
selective electrode). 
Unsurprisingly, most of the hits contain some type of hydrogen 
bond donor that allows interaction with chloride anions. The 
compound library was obtained from the National Cancer 
Institute and therefore contained mostly drug-like molecules. 
This implies that there are few structures in the library that can 
bind to chloride anions through more exotic interactions such 
as halogen bonding. The structures in Figure 2 are grouped 
according to hydrogen bond donor type, and also indicate 

phenol OHs (red circles) and protonatable nitrogens (blue 
circles) which are found in many of the hits. A total of 12 simple 
mono-(thio)ureas were found to be hits, as well as one bis-urea. 
There have been many reports of ureas and thioureas that 
function as potent synthetic chloride transporters,14, 19, 20, 37-49 
and so this finding comes as no surprise. Other compounds that 
resemble previously reported chloride transporters are the 
prodigiosenes (NSC247562 and NSC47147),29-34 as well as a 
number of scaffolds that resonate with some of Talukdar’s work 
on chloride transport by salicylamides (NSC50648, NSC37168, 
NSC50680, NSC50690, NSC50688, NSC50651),50 triazines 
(NSC348970),51, 52 and heterohydrazones (NSC118723)53. 
However, there are still plenty of new scaffolds that can provide 
interesting leads for further optimization into potent 
transmembrane chloride transporters. For example, there are 
many heteroaromatic-based scaffolds, some of which have 
interesting protonation behavior (e.g., 2-aminopyridines 
NSC1014 and NSC118723, and 9-anilinoacridines NSC30205 and 
NSC13051). In addition to these structures, there are numerous 
phenol-containing structures and compounds with simple 
protonatable N atoms (mostly piperazine and piperidine). For 
some of the structures, the phenol OH or protonatable N is the 
only possible chloride binding motive (in general on a lipophilic 
backbone). For these molecules we assume that they can 
facilitate H⁺/Cl¯ co-transport, where chloride transport and 
binding are combined with protonation and deprotonation 
events. Interestingly, there were also 8 hits that do not possess 
any obvious hydrogen bond donor for interactions with chloride 
anions. To understand this behavior and elucidate why some 
compounds function as chloride transporters and others not, 
we decided to use machine learning techniques.

Machine Learning (ML) identifies the properties needed for 
small-molecule chloride transporters.

While the 59 active compounds shown in Figure 2 clearly have 
some functional groups in common, in order to predict whether 
a given compound can function as a transmembrane chloride 
transporter it is also important to look at the structures of the 
inactive compounds. An initial pharmacophore screening of the 
dataset found a number of structural motifs present in the hits, 
but in many cases it was also present in various inactive 
compounds (see †ESI). For example, the pharmacophore 
screening found 35 inactive ureas and thioureas in the dataset, 
indicating that the presence of a urea or thiourea alone is 
insufficient to predict chloride transport ability. As an 
alternative method to understand the results, we resorted to 
machine learning techniques for binary classification (active or 
inactive chloride transporters). First, the dataset was curated to 
obtain the best possible results: (1) structures were converted 
to SMILES notations in order to calculate molecular fingerprints, 
fragments and physicochemical descriptors, (2) salts were 
neutralized if possible or removed, (3) compounds classified as 
‘inconclusive’ were removed, (4) compounds indicated as 
insoluble by the National Cancer Institute were removed to 
reduce the risk of false negatives, (5) duplicate compounds 
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Figure 2. Structures of the 60 hits for which the chloride transport activity was verified with an independent ion selective electrode assay. The percentage shown under 
each compound shows the % chloride efflux (measured using an ion selective electrode) induced by 5 mol% of the hit over the course of 20 minutes. Phenol OHs are 
highlighted with a red sphere and protonatable nitrogens are highlighted with a blue sphere. pKa values were calculated using ChemAxon’s Chemicalize tool and N 
atoms with a calculated pKa > 6.4 were considered protonatable.
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were removed, (6) active compounds whose activity could not 
be verified using the ion selective electrode assay were 
removed, and (7) the membrane disruptor was removed. This 
curation process generated a dataset of 1498 compounds, 1439 
of which are inactive and 59 are active chloride transporters. 
For the modeling, the dataset was randomly split 90:10 into a 
training set (1348 compounds, of which 54 are active) and a test 
set (150 compounds, of which 5 are active). Because the test set 
had very few active compounds, it was appended with the 
structures of 25 synthetic chloride transporters that have been 
previously reported (see †ESI Figures S52-S53 for structures),27, 

38-41, 52, 54-70 resulting in an external test set of 175 compounds 
(30 active, 145 inactive). Principle component analysis using 
MACCS keys confirmed that the external test set is well-
represented within the chemical space defined by the training 
set (see †ESI, Figure S58). The full training and test sets can be 
found in Table S2. As the training set is biased (with a 
disproportionate number of inactive chemicals), models often 
predict external chemicals as inactive, as shown in previous 
studies.71-73 To reduce this bias, various resampling techniques 
have been developed. Multiple undersampling has previously 
been shown to be a good method for dealing with highly biased 
high-throughput screening data,74, 75 and an initial comparison 
of multiple undersampling with alternative resampling 
strategies (e.g., SMOTE76 and cost-sensitive learning77) on our 
dataset confirmed that the multiple undersampling technique 
was most suitable (see †ESI for a detailed discussion). Thus, 
multiple undersampling was implemented by randomly splitting 
the 1,294 inactive chemicals in the training set into 19 sets, 17 
comprising 68 inactive chemicals and two comprising 69 
inactive chemicals. The 54 active chemicals were combined with 
the inactive chemicals from each of the 19 sets, resulting in 17 
training sets each containing 122 chemicals and two training 
sets containing 123 chemicals. 
Eight individual models were built for each of the 19 training 
sets using either molecular descriptors (MACCS keys) or 
physicochemical descriptors (RDKit) and various machine 
learning algorithms (random forest (RF), support vector 
machine (SVM), and extreme gradient boosting (XGB)) and one 
deep neural network (DNN). In addition, a consensus model for 
each of the descriptors (MACCS and RDKit) was also generated 
by averaging the predictions from the four respective ML 
models (RF, SVM, XGB, and DNN), resulting in a total of 190 
models. In general, QSAR models built using the RDKit 
descriptors outperformed the models constructed with the 
MACCS descriptors. Figure 3 shows the correct classification 
rate (CCR) values for the 95 RDKit models. CCR ranged between 
0.602 and 0.828 across the models, with an average value of 
0.711. 61 models achieved a CCR > 0.7, which is considered an 
indicator of good model performance.78 CCR values for DNN 
were lower when compared to the other algorithms, with only 
three models achieving a CCR > 0.7. This lower performance can 
be explained by the potential overfit issue for neural networks, 
especially with small training sets. However, no algorithm was 
consistently superior to the others across the 19 training sets, 

which was also confirmed by the Wilcoxon signed-rank test (see 
†ESI). In comparison, the MACCS models showed lower 
performance, with an average CCR of 0.635 and only 12 out of 
95 models achieving CCR values above 0.7 (see †ESI, Figure S54). 
The ML models based on the RDKit descriptors were therefore 
deemed superior to the MACCS models.

Figure 3. ML QSAR model performance. CCR values reflecting the performance of 
the 95 QSAR models generated using the RDKit descriptors in the five-fold cross-
validation procedure. Each point represents a model with its respective algorithm. 
CCR values above 0.7 (red dashed line) indicate good model performance.

To further evaluate the usefulness of the RDKit ML models, we 
used them to predict the external test set. Previous studies have 
shown that consensus models provide an advantage over 
individual models for external predictions, where consensus 
models often perform similarly or better compared to individual 
models.73, 79, 80 Thus, the 19 RDKit consensus models were 
employed to predict the external test set. An additional overall 
consensus model was also generated by averaging predictions 
from the 76 individual QSAR models. Figure 4 shows the CCR 
values of the consensus models for predicting the activity of the 
external test set, where the average CCR was 0.842. All the 
consensus models demonstrated good model performance, 
where 18 out of 19 consensus models achieved CCR values > 
0.8. In addition, the overall consensus model showed similar or 
better performance when compared to the other consensus 
models. To benchmark the performance of our ML consensus 
models against a conventional structure–activity relationship 
(SAR) method, we implemented a nearest-neighbor model in 
which the activity of a compound was predicted based on the 
known activity of its most similar compound in the training set. 
Although the nearest-neighbor models exhibited comparable 
performance to the DNN models during five-fold cross-
validation (Figure S55), 15 out of 19 nearest-neighbor models 
had a correct classification rate (CCR) less than 0.7 when applied 
to external test compounds (Figure 4). Moreover, the nearest-
neighbor consensus model demonstrated significantly lower 
performance (CCR = 0.656) for the test set compared to the 
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resulting consensus model from the ML algorithms (CCR = 
0.854). These results suggest that the ML-based QSAR models 
developed in this study offer improved generalizability and 
predictive performance relative to the nearest-neighbor 
approach.

Figure 4. ML consensus models perform better than  traditional nearest neighbor 
SAR models for prediction of chloride transport activity. CCR values for the 20 
RDKit consensus models’ predictions of chemicals from the external test set, 
comparing the predictions using the ML consensus model (orange) and a 
traditional nearest neighbor model (blue).

As the ML models based on RDKit’s physicochemical descriptors 
performed well on predicting the external test set, we wanted 
to know which descriptors were most important in determining 
chloride transport ability. Feature importance across the 210 
molecular descriptors was evaluated for each of the 19 RF 
models generated from the 19 training sets, and the top 20 
most important features are shown in Figure 5a. MolLogP was 
found to have the highest average contribution to the 
predictions from the 19 RF models, with the highest mean 
decrease in impurity (MDI) of 4.92%. (Figure 5a). This was 
expected, as logP has often been found to be a determining 
factor for transmembrane anion transport.20, 21, 23 As a result, 
we examined the distribution of MolLogP across the 1,348 
chemicals from the original training set (Figure 5b). The 
MolLogP for the 1,294 inactive compounds followed a normal 
distribution, varying mainly between -2 and 6. On the other 
hand, 53 of the 54 active compounds had a MolLogP above 2, 
and the remaining active compound had a MolLogP of 1.92. It is 
clear that a compound can only be an active chloride 
transporter if it has a MolLogP value ≥ 2, but this criterium alone 
is insufficient (given the large number of lipophilic compounds 
without activity). Interestingly, when the same graph was made 
for the urea and thiourea compounds only, the same 
relationship appeared (see †ESI, Figure S56). This indicates that 
a simple criterium such as ‘urea with MolLogP ≥2’ is not enough 
to predict the transport ability of a given compound. The full 
model, containing all descriptors, is needed to understand 
transmembrane chloride transport ability. 
In addition to MolLogP, several other RDKit descriptors were 
found to significantly contribute to the prediction of chloride 
transport activity (Figure 5a). For example, the second most 

important descriptor PEOE_VSA7 represents the amount of van 
der Waals surface area (VSA) arising from atoms with partial 
equalization of orbital electronegativities (PEOE) in the range of 
-0.05 to 0, and is intended to capture electrostatic 
interactions.81 The third most important descriptor is Kappa3, a 
molecular connectivity descriptor derived from chemical graph 
theory, highlighting the influence of structural branching and 
molecular shape.82 The remaining important features include a 
variety of topological descriptors that confirm the relevance of 
molecular connectivity (e.g., BalabanJ, Kappa1 and Chi0n), as 
well as several electronic and electrotopological83 descriptors 
suggesting that charge-based interactions between the 
transporters and chloride anions are important (e.g., 
VSA_Estate6, MaxPartialCharge). Collectively, these findings 
indicate that chloride transport is governed by a combination of 
lipophilicity, molecular topology, and electrostatic interactions, 
offering mechanistic insights into the physicochemical 
determinants underlying model predictions.

Figure 5. Most important descriptors to predict chloride transport ability. (a) 
Average MDI, reflective of feature importance, of the RDKit descriptors in the 19 
RF models. (b) Distribution of MolLogP across the initial training set.
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ML model can predict the chloride transport activity of 
chemicals from the DrugBank database.

To further test the potency of the model, the overall consensus 
model was used for predicting the chloride transport activity of 
compounds in the DrugBank database (a total of 10,509 
chemicals) in a virtual screening.84 Principle component analysis 
using MACCS keys confirmed that the DrugBank compounds are 
within the chemical space defined by the training set, 
confirming the validity of this approach (see †ESI, Figure S58).  
We decided to take a closer look at the compounds with the 
highest predicted probability for chloride transport, and picked 
10 compounds that were commercially available at a low price 
and were not structurally related: bazedoxifene, centhaquine, 
brilliant green, dapivirine, pipequaline, naphthoquine, 
tamoxifen, amodiaquine, nevanimibe, and quinacrine (see †ESI 
for structures, and Table S3 for the full list of DrugBank 
predictions). In addition, the compound with the highest 
predicted probability was already found to be active in the 
original high-throughput screening (clorobiocin, NSC227186), 
and one other compound in the top 10 of highest predicted 
probability had previously been shown to be an active chloride 
transporter (tiocarlide)66. The transport activity of these two 
known compounds was therefore not tested again. The chloride 
transport activity of the other 10 compounds was assessed 
using the 20-minute lucigenin assay and the 20-minute ion 
selective electrode assay. Brilliant green and quinacrine showed 
optical interference with lucigenin and could not be tested using 
this assay. Amodiaquine, pipequaline and quinacrine were 
supplied as HCl salts, which can give false positives in ion 
selective electrode assays. To overcome this, we subtracted the 
electrode readings for these compounds with those obtained 
upon the addition of an equimolar amount of HCl. The results 
of both assays are shown in Figure 6. All compounds show 
above zero chloride efflux in the ion selective electrode assay, 
but only 6 of these compounds show >20% efflux in 20 minutes 
(Figure 6a). Out of these 6, brilliant green could not be 
confirmed with the lucigenin assay due to optical interferences, 
but the other 5 active compounds were tested (Figure 6b). 
Naphthoquine was the only compound that appeared active in 
the ion selective electrode assay, but not in the lucigenin assay. 
Naphthoquine was purchased as a phosphate salt, but the ion 
selective electrode data for this compound looked more like a 
HCl salt (initial fast transport that subsequently levels off). We 
therefore classified naphthoquine as inactive, and the 
remaining 5 DrugBank chemicals as active: bazedoxifene, 
centhaquine, brilliant green, tamoxifen, and nevanimibe. 
Although brilliant green could not be verified with the lucigenin 
assay and its activity in the ion selective electrode assay was 
low, it was still considered active because it did not display a 
fast initial rate of transport followed by a slow rate (as observed 
for naphthoquine) to suggest that the weak observable chloride 
efflux was an artefact. The overall prediction rate of the model 
is therefore 50%-60% (5/10 of the tested compounds, or 7/12 
when including clorobiocin and tiocarlide). Given that the hit 
rate of the initial high throughput screening was only 3%-4%, 

the ML model is > 10x better at predicting the transport activity 
of a novel chemical than random screening.85 To evaluate the 
applicability of using the generated models to virtually screen 
new chemicals, we also calculated the enrichment factor, 
resulting in a value of 4.91 (see †ESI).86 This further confirmed 
the potential of our models to effectively select new active 
chemicals from external chemical libraries at least 5 times 
better than a random screening, which is good for a relatively 
small dataset. Thus, our modeling strategy shows promise in 
saving significant resources by prioritizing active compounds for 
further experimental testing as potential chloride transporters. 
Instructions on how to regenerate our models and use them to 
predict the chloride transport ability of unknown compounds 
are provided in the †ESI.87

Figure 6. Chloride transport activity of 10 compounds from the DrugBank 
database that had high probability of functioning as chloride transporters, 
measured using either (a) the standard Cl¯/NO3¯ ion selective electrode assay, or 
(b) the modified lucigenin assay used during high-throughput screening.

Highly potent cation transporters can induce chloride 
transport at high concentration.
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Although the model was able to predict the transport activity of 
new compounds, we were still intrigued about the chloride 
transport ability of some of the hits without a clear hydrogen 
bond donor (see Figure 2). In particular, hit NSC292567 
(nigericin) is a known K+/H+ transporter and was not expected 
to have any chloride transport ability.88, 89 Interestingly, 
valinomycin (another well-known K+ transporter) and monensin 
(which is very closely related to nigericin) have also previously 
been shown to transport anions under certain conditions.90-94 
We therefore postulated that at high concentrations (5 mol% 
with respect to lipid) a potent cation transporter can also 
transport anions. Presumably, the fast cation transport induced 
by nigericin can cause the transport of chloride as either an ion 
pair or by increasing anion permeability due to the high cationic 
charge in the membrane (without necessarily forming a contact 
ion pair). Experimental studies have suggested that valinomycin 
can indeed form ion pair complexes, explaining the anion and 
pH dependence of K+ transport by valinomycin and its weak 
anion transport ability.92, 95, 96 Shirai and co-workers also argue 
that both cation and anion need to distribute into the bilayer to 
maintain electroneutrality in the membrane.97, 98 On the other 
hand, valinomycin is also able to bind directly to anions via its 
peptide NH groups,91 and pure anionophore ability is also 
possible. Monensin and nigericin have very different structures 
to valinomycin because they do not contain any hydrogen bond 
donors and are negatively charged at neutral pH.99, 100 They 
form electroneutral complexes with cations and binding to 
additional anions is therefore not expected. Nevertheless, Dias 
et al. have shown that monensin can enhance Fˉ permeability 
and MD simulations showed that the Fˉ anion remains in close 
proximity to the monensin-K+ complex in a ceramide bilayer.93 
Even if this ion pair formation is only a minor event, at high 
cationophore concentrations there might be enough anion 
present in the bilayer for anion transport to occur (especially 
given the high transmembrane anion gradient). These findings 
suggest that perfect cation-over-anion selectivity is nearly 
impossible to achieve. If this is the case, the opposite could also 
be true for anion transporters, where a high concentration of a 
potent anion transporter can facilitate the transmembrane 
transport of cations due to small amounts of ion pair binding. 
To investigate this, we measured both the K+ and Cl¯ efflux 
induced by nigericin and 1,3-bis(4-(trifluoromethyl)phenyl)urea 
1 at different concentrations using ion selective electrodes. Two 
types of LUVs were investigated: the first type contained a 
buffered KCl solution on the inside and a buffered NaNO3 
solution on the outside of the liposome (‘nitrate buffer’), and 
the second type contained a buffered KCl solution on the inside 
and a buffered Na2SO4 solution on the outside of the liposome 
(‘sulfate buffer’) (Figure 7a). For the first type, we expected that 
transport can occur as K⁺/Na⁺ antiport, K⁺/Cl¯ symport or 
Cl¯/NO3¯ antiport, while in the second condition only K⁺/Na⁺ 
antiport and K⁺/Cl¯ symport are realistic (Cl¯/SO4

2¯ is less likely 
due to the high charge and hydration energy of sulfate). The 
results for urea 1 and nigericin are shown in Figures 7b and 7c 
respectively. For nigericin, chloride efflux is only observed at 
high concentrations, whereas potassium efflux is observed even 
at very low concentrations, confirming that nigericin functions 

as a cation transporter. Furthermore, no difference in K⁺ or Cl¯ 
efflux is observed for nigericin depending on the external 
buffer, indicating that anion exchange (Cl¯/NO3¯ antiport) does 
not play a role for nigericin. Overall, the results show that the 
predominant mode of transport for nigericin is K⁺/Na⁺ antiport 
(or more precisely K⁺/H⁺ symport combined with Na⁺/H⁺ 
symport in the other direction), but K⁺/Cl¯ symport is also 
possible at higher concentrations. As expected, for the putative 
anion transporter 1 the results are the reverse of those of 
nigericin. For urea 1, chloride efflux is more pronounced than 
potassium efflux and is observed at lower concentrations. 
Furthermore, the nature of the external buffer does play a role 
in the observed ion efflux, confirming that urea 1 predominantly 
functions as an anion exchange transporter (Cl¯/NO3¯ antiport), 
but can also facilitate K⁺/Cl¯ symport at higher concentrations. 
Thus, it seems likely that many potent cation transporters can 
facilitate anion transport at high concentrations, and vice versa 
that many potent anion transporters can also facilitate cation 
transport at high concentrations. In the context of this 
manuscript, this finding suggests that some of the hits that were 
identified using the high-throughput screening assay are in fact 
predominantly cation transporters that can also transport 
chloride at a concentration of 5 mol% with respect to lipid. 
However, in the context of synthetic transmembrane ion 
transporter development, these findings suggest that transport 
mechanisms can be concentration dependent and that it would 
be good practice to investigate the potential transport 
mechanism of a novel anionophore or cationophore at a variety 
of concentrations.

Conclusions
In this manuscript we developed a high-throughput screening 
assay based on lucigenin-encapsulated liposomes that can be 
used to identify novel small-molecule chloride transporters. 
Approximately 2,000 compounds were tested, and 59 
compounds were identified as potential chloride transporters. 
Most active compounds contain NH or OH hydrogen bond 
donors that can be responsible for chloride binding. To explain 
the results of the high throughput screening, we also developed 
ML binary classification models. These models revealed that a 
MolLogP ≥ 2 is required to be an active chloride transporter, but 
this criterium alone is not sufficient. Although lipophilicity has 
long been recognized as a key determinant of anion transport 
activity, our study confirms this principle through data-driven 
analysis of over 1,300 compounds. More importantly, our ML 
models also identified active compounds with structures that 
are different from typical transporter designs. For example, 
several top-ranked DrugBank hits had chemical features not 
commonly associated with chloride transport but were 
nonetheless validated experimentally. This suggests that our 
ML models effectively captured subtle structure–activity 
relationships that extend the current design space. Thus, while 
our findings confirm foundational chemical features, results 
from our models also highlight how machine learning can 
uncover underexplored regions of chemical space. We believe 
that our findings can provide new scaffolds that can be 
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Figure 7. Highly potent cation transporters can induce chloride transport at high concentration. (A) schematic of the liposome-based assay to determine the anion 
and cation transport ability of nigericin and urea 1. 100 nm LUVs (7:3 POPC:cholesterol) are prepared containing 496 mM buffered KCl and are suspended in either a 
nitrate buffer (496 mM NaNO3, 10 mM HEPES, pH 7.4) or sulfate buffer (167 mM Na2SO4, 10 mM HEPES, pH 7.4). Under these conditions transport can be Na+/K+ 
antiport, K+/Cl¯ symport or Cl¯/NO3¯ antiport. Cl¯/SO4

2¯ antiport is unlikely due to the high charge and hydration energy of sulfate. (B) Result of the K+ and Cl¯ efflux 
induced by various concentrations of urea 1 under the conditions shown in (A), as measured using either a potassium- or chloride-selective electrode. (C) Result of the 
K+ and Cl¯ efflux induced by various concentrations of nigericin under the conditions shown in (A), as measured using either a potassium- or chloride-selective electrode.

optimized into potent chloride transporters, and that our ML 
models can be used to guide the design of increasingly potent 
transporters with biological activity. In the future, we aim to 
improve our ML models by training them on larger datasets with 
more active compounds.
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high-throughput results, the training set of 1,348 compounds, the test set (175 compounds), and 
the DrugBank dataset (containing the consensus predictions) can be found in the supplementary 
Excel files (Table_S1.xlsx, Table_S2.xlsx and Table_S3.xlsx). The 19 randomly split training sets 
used for training, along with all the code for running the models and making predictions, can be 
found on our GitHub page (https://github.com/zhu-research-group/auto_qsar_cl_transport) or 
can be accessed using the following DOI https://doi.org/10.5281/zenodo.16755386.
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