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synthetic chloride transporters
using high-throughput screening and machine
learning

Surid Mohammad Chowdhury, a Nada J. Daood, bc Katherine R. Lewis,a

Rayhanus Salam, a Hao Zhu *bc and Nathalie Busschaert *a

The development of synthetic compounds capable of transporting chloride anions across biological

membranes has become an intensive research field in the last two decades. Progress is driven by the

desire to develop treatments for chloride transport related diseases (e.g., cystic fibrosis), cancer or

bacterial infections. In this manuscript, we use high-throughput screening and machine learning to

identify novel scaffolds, and to find the molecular features needed to achieve potent chloride transport

that can be generalized across diverse chemotypes. 1894 compounds were tested, 59 of which had

confirmed transmembrane chloride transport ability. A machine learning (ML) binary classification model

indicated that MolLog P is the most important feature to predict transport ability, but it is not sufficient

by itself. The best ML model was able to identify potential chloride transporters from the DrugBank

database and the predictions were experimentally validated. These insights can provide other researchers

with inspiration and guidelines to develop ever more potent chloride transporters.
Introduction

The transport of anions across membranes is an important
biological function that plays a crucial role in cellular and
organismal homeostasis.1 This function is normally performed
by transmembrane transport proteins, but several diseases have
been linked to malfunctioning or malregulation of these
proteins (so-called ‘channelopathies’).2 An estimated 5–10% of
all human genes code for transport-related proteins,3,4 further
highlighting the importance of transmembrane transport in
biology. Consequently, supramolecular chemists have tried to
develop synthetic molecules that can transport anions across
biological membranes. Chloride has been the most important
target anion for the development of synthetic transmembrane
anion transporters, mainly due to the well-known fact that the
genetic disease cystic brosis is linked to malfunctioning
chloride transport caused by mutations in the CFTR protein.5,6

While a number of successful new drugs for cystic brosis have
been approved in the last decade,7–9 these drugs each only
function on a subset of CFTR mutations.10,11 There is therefore
still a need to develop compounds that can treat the remaining
CF patients. Furthermore, there are other channelopathies
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linked to malfunctioning chloride transport, such as Bartter
syndrome and congenital chloride diarrhea.12 In addition,
chloride transport by synthetic carriers disrupts homeostasis
and can be cytotoxic – a property that can be taken advantage of
in the form of anticancer drugs and antibiotics.13–17 Away from
the medical eld, chloride remains the most important elec-
trolyte and the most abundant anion in the body.18 Therefore,
for any application of anion transporters that aims to under-
stand or mimic biological functions (chemical biology, articial
cells,.), chloride will be of utmost importance. For this reason,
it has remained the main anion of interest for supramolecular
chemists.

Over the last few decades, a few trends have emerged in the
development of chloride transporters. For example, lipophilicity
(or lipophilic balance)19 and anion binding ability have been
found to be important parameters to optimize.20–22 When the
lipophilicity is too low transporters are unable to partition into
the membrane, but if the lipophilicity is too high transporters
are unable to move to the interface to pick up an anion or have
deliverability problems.23 Similarly, when transporters bind
their target ion too weakly they cannot extract it from the
aqueous layer, but if they bind too strongly they cannot release
it on the other side of the membrane.13,24 However, this does not
mean that any chloride receptor with optimal lipophilicity can
function as a transmembrane chloride transporter, and the
prediction of whether a given anion receptor will function as an
anion transporter is still elusive. In this manuscript, we thus
developed a high-throughput screening method to test the
transmembrane chloride transport ability of synthetic small
Digital Discovery, 2025, 4, 2615–2626 | 2615
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molecules. Around 2000 compounds were tested and 59 of these
were found to function as chloride transporters. This does not
only provide novel scaffolds that can be optimized into potent
chloride transporters, but we also employed machine learning
(ML) techniques to identify the molecular features that are
needed to develop chloride transporters. This is the rst
example of the use of ML to analyze synthetic chloride trans-
porters and conrmed that many of the previously observed
trends can indeed be extrapolated across a diverse set of
chemical scaffolds (e.g., the importance of lipophilicity).
Furthermore, the ML models can be used for predicting the
chloride transport ability of synthetic compounds without the
need for time-consuming experiments, which can improve early
hit identication via virtual screening and identify rarely
explored scaffolds. This is in stark contrast to previously re-
ported QSAR models of chloride transport,20,21 which use
narrow libraries of compounds and cannot predict the activity
of compounds that are structurally unrelated. This manuscript
thus provides one of the most extensive studies on trans-
membrane chloride transporters by synthetic molecules so far,
and suggests new tools and guidelines for the design and
analysis of potent chloride transporters which can ultimately be
used in a variety of applications.
Results and discussion
Identifying novel chloride transporters from diversity
compound libraries

We modied the well-known lucigenin liposome-based assay25

to allow the determination of Cl− transport in 96-well plates,
similar to the recent report by Haynes and co-workers26 that was
published during the writing of this manuscript (see SI for
experimental details). We used this assay to screen the activity
of the National Cancer Institute Diversity Set VI (1584
Fig. 1 Around 2000 compounds of the NCI Diversity Set VI and Natural P
into liposomes. (a) Experimental procedure. Briefly, 100 nm LUVs were p
lucigenin, 223 mM NaNO3, 10 mM HEPES buffer at pH 7.4; external soluti
transport was started by the addition of compound to achieve a concent
measured for 20 minutes. (b) Results of the high-throughput screenin
normalized against the initial fluorescence (F0) and the fluorescence ob
F20). A value > 0 indicates that chloride was transported into the liposom

2616 | Digital Discovery, 2025, 4, 2615–2626
compounds) and Natural Product Set V (390 compounds),
which can be obtained freely from the National Cancer Insti-
tute. One of the plates (plate 4878) got damaged during our
experiments and we could not nish the screening with these
compounds. In total, we screened the activity of 1894
compounds at a concentration of 5 mol% with respect to lipid.
This relatively high concentration was chosen to ensure that
a sufficient amount of active compounds would be identied.
The aim of most high-throughput screenings is not to nd
highly active compounds from scratch, but rather to nd suit-
able lead compounds that can be optimized later. Previous
studies of transmembrane chloride transporters have also
shown that simple modications can dramatically improve
potency. For example, N,N-diphenylurea is a very poor chloride
transporter, but the mere addition of a para-CF3 substituent
turns this compound into a potent chloride transporter with an
EC50 of 0.42mol%.27,28We therefore believe that a concentration
of 5 mol% can nd suitable lead compounds that can be opti-
mized into more potent Cl− transporters by standard chemical
modications. The results of the high-throughput screening
assay are shown in Fig. 1, and the raw data is given in Table S1
of the SI and Fig. S12–S37 (for 166 compounds the background
uorescence was too high to get meaningful results, but for the
remaining 1728 compounds an estimate of the chloride trans-
port ability was obtained).

The data in Fig. 1 are shown as normalized F0/F20 values,
whereby F0 is the lucigenin uorescence intensity at the
beginning of the experiment and F20 is the lucigenin uores-
cence intensity aer 20 minutes of transport. The numbers are
further normalized so that the values range from 0 when no
chloride is transported, to 1 when maximum chloride is trans-
ported (see SI for details of data work-up). The longer 20 minute
time frame was chosen to ensure that a sufficient amount of
active lead compounds can be found. As expected, the majority
roduct Set V were screened for their ability to transport chloride anions
repared (lipid: 30% cholesterol and 70% eggPC; internal solution: 1 mM
on: 223 mMNaNO3, 100 mM NaCl, 10 mM HEPES buffer at pH 7.4) and
ration of 5 mol% with respect to lipid. The change in fluorescence was
g. The plot shows the fluorescence intensity after 20 minutes (F20)
tained upon the addition of Triton X-100 as detergent (normalized F0/
es.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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of compounds do not facilitate chloride transport and induce
a normalized F0/F20 of 0 ± 0.1 (see histogram in Fig. S38 of the
SI). However, it is doubtful that compounds that resulted in
a normalized F0/F20 value close to 0.1 can be considered good
chloride transporters. We therefore performed a K-means
clustering analysis using Origin Pro 2024, which put the cutoff
between active and inactive compounds at normalized F0/F20 =
0.25 (see Fig. S39 in the SI). Therefore, the nal classication
used was as follows: compounds with normalized F0/F20 values
$ 0.25 were considered active (‘hit’), compounds with normal-
ized F0/F20 values between 0.1 and 0.25 were considered
inconclusive, and compounds with normalized F0/F20 values #
0.1 were considered inactive (see Fig. 1). In addition, 3
compounds displayed normalized F0/F20 values outside the ex-
pected range of 0–1 (1.88 for NSC242557, −2.99 for NSC47147,
and 17.7 for NSC247562). Because 2 of these compounds were
prodigiosin analogues, which have long been established as
small-molecule chloride transporters,29–34 these compounds
were considered active. The initial screening eventually resulted
in the identication of 66 potential new synthetic chloride
transporters.
Verifying the chloride transport activity of the hit compounds
reveals 59 chloride-transporting small molecules

Even though the high-throughput assay was designed to mini-
mize optical interference, we decided to verify the hits using
a non-optical assay. We used the well-established chloride/nitrate
transmembrane exchange assay, which uses an ion selective
electrode to detect the efflux of Cl− out of liposomes.35 In addi-
tion, the activity observed during the high-throughput screening
could be the result of genuine chloride transport or membrane
disruption. To rule out detergent-like membrane disruption, we
also performed a calcein leakage assay36 on all hits. Because these
assays need larger amounts of transporter, we obtained around
5 mg of the putative hits from the National Cancer Institute to
perform the assays. However, two compounds (NSC24032 and
NSC11437) could not be obtained and their chloride transport
activity could not be veried. In addition, two other compounds
were not soluble enough in DMSO to verify their activity
(NSC680516 and NSC81856). The remaining 62 compounds,
except the two prodigiosins which are known chloride
transporters,29–34 were tested for their ability to induce chloride
efflux using the ion selective electrode assay and for membrane
disruption using the calcein leakage assay (see SI, Fig. S40–S51).
All compounds displayed statistically signicant chloride efflux
compared to the DMSO control (p-value < 0.05, see SI Table S4),
except NSC59258 and NSC93427 which were considered false
positives. In addition, 1 compound (NSC107041) induced signif-
icant calcein leakage and is therefore better classied as
amembrane disruptor than a chloride transporter. The structures
of the remaining 59 compounds with veried transmembrane
chloride transport ability are shown in Fig. 2. Fig. 2 also reports
the percent chloride efflux induced by these compounds aer 20
minutes (measured using a chloride selective electrode).

Unsurprisingly, most of the hits contain some type of
hydrogen bond donor that allows interaction with chloride
© 2025 The Author(s). Published by the Royal Society of Chemistry
anions. The compound library was obtained from the National
Cancer Institute and therefore contained mostly drug-like
molecules. This implies that there are few structures in the
library that can bind to chloride anions through more exotic
interactions such as halogen bonding. The structures in Fig. 2
are grouped according to hydrogen bond donor type, and also
indicate phenol OHs (red circles) and protonatable nitrogens
(blue circles) which are found in many of the hits. A total of 12
simple mono-(thio)ureas were found to be hits, as well as one
bis-urea. There have been many reports of ureas and thioureas
that function as potent synthetic chloride
transporters,14,19,20,37–49 and so this nding comes as no surprise.
Other compounds that resemble previously reported chloride
transporters are the prodigiosenes (NSC247562 and
NSC47147),29–34 as well as a number of scaffolds that resonate
with some of Talukdar's work on chloride transport by salicy-
lamides (NSC50648, NSC37168, NSC50680, NSC50690,
NSC50688, NSC50651),50 triazines (NSC348970),51,52 and
heterohydrazones (NSC118723).53 However, there are still plenty
of new scaffolds that can provide interesting leads for further
optimization into potent transmembrane chloride transporters.
For example, there are many heteroaromatic-based scaffolds,
some of which have interesting protonation behavior (e.g., 2-
aminopyridines NSC1014 and NSC118723, and 9-anilinoacri-
dines NSC30205 and NSC13051). In addition to these struc-
tures, there are numerous phenol-containing structures and
compounds with simple protonatable N atoms (mostly pipera-
zine and piperidine). For some of the structures, the phenol OH
or protonatable N is the only possible chloride binding motive
(in general on a lipophilic backbone). For these molecules we
assume that they can facilitate H+/Cl− co-transport, where
chloride transport and binding are combined with protonation
and deprotonation events. Interestingly, there were also 8 hits
that do not possess any obvious hydrogen bond donor for
interactions with chloride anions. To understand this behavior
and elucidate why some compounds function as chloride
transporters and others not, we decided to use machine
learning techniques.
Machine learning (ML) identies the properties needed for
small-molecule chloride transporters

While the 59 active compounds shown in Fig. 2 clearly have
some functional groups in common, in order to predict whether
a given compound can function as a transmembrane chloride
transporter it is also important to look at the structures of the
inactive compounds. An initial pharmacophore screening of the
dataset found a number of structural motifs present in the hits,
but in many cases it was also present in various inactive
compounds (see SI). For example, the pharmacophore
screening found 35 inactive ureas and thioureas in the dataset,
indicating that the presence of a urea or thiourea alone is
insufficient to predict chloride transport ability. As an alterna-
tive method to understand the results, we resorted to machine
learning techniques for binary classication (active or inactive
chloride transporters). First, the dataset was curated to obtain
the best possible results: (1) structures were converted to
Digital Discovery, 2025, 4, 2615–2626 | 2617

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00140d


Fig. 2 Structures of the 60 hits for which the chloride transport activity was verified with an independent ion selective electrode assay. The
percentage shown under each compound shows the % chloride efflux (measured using an ion selective electrode) induced by 5 mol% of the hit
over the course of 20 minutes. Phenol OHs are highlighted with a red sphere and protonatable nitrogens are highlighted with a blue sphere. pKa
values were calculated using ChemAxon's Chemicalize tool and N atoms with a calculated pKa > 6.4 were considered protonatable.
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SMILES notations in order to calculate molecular ngerprints,
fragments and physicochemical descriptors, (2) salts were
neutralized if possible or removed, (3) compounds classied as
2618 | Digital Discovery, 2025, 4, 2615–2626
‘inconclusive’ were removed, (4) compounds indicated as
insoluble by the National Cancer Institute were removed to
reduce the risk of false negatives, (5) duplicate compounds were
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 ML QSAR model performance. CCR values reflecting the
performance of the 95 QSAR models generated using the RDKit
descriptors in the five-fold cross-validation procedure. Each point
represents a model with its respective algorithm. CCR values above 0.7
(red dashed line) indicate good model performance.

Fig. 4 ML consensus models perform better than traditional nearest
neighbor SAR models for prediction of chloride transport activity. CCR
values for the 20 RDKit consensus models' predictions of chemicals
from the external test set, comparing the predictions using the ML
consensus model (orange) and a traditional nearest neighbor model
(blue).
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removed, (6) active compounds whose activity could not be
veried using the ion selective electrode assay were removed,
and (7) the membrane disruptor was removed. This curation
process generated a dataset of 1498 compounds, 1439 of which
are inactive and 59 are active chloride transporters.

For the modeling, the dataset was randomly split 90 : 10 into
a training set (1348 compounds, of which 54 are active) and
a test set (150 compounds, of which 5 are active). Because the
test set had very few active compounds, it was appended with
the structures of 25 synthetic chloride transporters that have
been previously reported (see SI Fig. S52 and S53 for
structures),27,38–41,52,54–70 resulting in an external test set of 175
compounds (30 active, 145 inactive). Principle component
analysis using MACCS keys conrmed that the external test set
is well-represented within the chemical space dened by the
training set (see SI, Fig. S58). The full training and test sets can
be found in Table S2. As the training set is biased (with
a disproportionate number of inactive chemicals), models oen
predict external chemicals as inactive, as shown in previous
studies.71–73 To reduce this bias, various resampling techniques
have been developed. Multiple undersampling has previously
been shown to be a good method for dealing with highly biased
high-throughput screening data,74,75 and an initial comparison
of multiple undersampling with alternative resampling strate-
gies (e.g., SMOTE76 and cost-sensitive learning77) on our dataset
conrmed that the multiple undersampling technique was
most suitable (see SI for a detailed discussion). Thus, multiple
undersampling was implemented by randomly splitting the
1294 inactive chemicals in the training set into 19 sets, 17
comprising 68 inactive chemicals and two comprising 69 inac-
tive chemicals. The 54 active chemicals were combined with the
inactive chemicals from each of the 19 sets, resulting in 17
training sets each containing 122 chemicals and two training
sets containing 123 chemicals.

Eight individual models were built for each of the 19 training
sets using either molecular descriptors (MACCS keys) or physi-
cochemical descriptors (RDKit) and various machine learning
algorithms (random forest (RF), support vector machine (SVM),
and extreme gradient boosting (XGB)) and one deep neural
network (DNN). In addition, a consensus model for each of the
descriptors (MACCS and RDKit) was also generated by averaging
the predictions from the four respective ML models (RF, SVM,
XGB, and DNN), resulting in a total of 190 models. In general,
QSARmodels built using the RDKit descriptors outperformed the
models constructed with theMACCS descriptors. Fig. 3 shows the
correct classication rate (CCR) values for the 95 RDKit models.
CCR ranged between 0.602 and 0.828 across the models, with an
average value of 0.711. 61 models achieved a CCR > 0.7, which is
considered an indicator of good model performance.78 CCR
values for DNN were lower when compared to the other algo-
rithms, with only three models achieving a CCR > 0.7. This lower
performance can be explained by the potential overt issue for
neural networks, especially with small training sets. However, no
algorithm was consistently superior to the others across the 19
training sets, which was also conrmed by the Wilcoxon signed-
rank test (see SI). In comparison, the MACCS models showed
lower performance, with an average CCR of 0.635 and only 12 out
© 2025 The Author(s). Published by the Royal Society of Chemistry
of 95 models achieving CCR values above 0.7 (see SI, Fig. S54).
The ML models based on the RDKit descriptors were therefore
deemed superior to the MACCS models.

To further evaluate the usefulness of the RDKit ML models, we
used them to predict the external test set. Previous studies have
shown that consensus models provide an advantage over indi-
vidual models for external predictions, where consensus models
oen perform similarly or better compared to individual
models.73,79,80 Thus, the 19 RDKit consensus models were
employed to predict the external test set. An additional overall
consensus model was also generated by averaging predictions
from the 76 individual QSAR models. Fig. 4 shows the CCR values
of the consensus models for predicting the activity of the external
Digital Discovery, 2025, 4, 2615–2626 | 2619
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Fig. 5 Most important descriptors to predict chloride transport ability.
(a) Average MDI, reflective of feature importance, of the RDKit
descriptors in the 19 RFmodels. (b) Distribution of MolLog P across the
initial training set.
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test set, where the average CCR was 0.842. All the consensus
models demonstrated good model performance, where 18 out of
19 consensus models achieved CCR values > 0.8. In addition, the
overall consensus model showed similar or better performance
when compared to the other consensusmodels. To benchmark the
performance of our ML consensus models against a conventional
structure–activity relationship (SAR) method, we implemented
a nearest-neighbor model in which the activity of a compound was
predicted based on the known activity of its most similar
compound in the training set. Although the nearest-neighbor
models exhibited comparable performance to the DNN models
during ve-fold cross-validation (Fig. S55), 15 out of 19 nearest-
neighbor models had a correct classication rate (CCR) less than
0.7 when applied to external test compounds (Fig. 4). Moreover,
the nearest-neighbor consensus model demonstrated signicantly
lower performance (CCR = 0.656) for the test set compared to the
resulting consensusmodel from theML algorithms (CCR= 0.854).
These results suggest that the ML-based QSAR models developed
in this study offer improved generalizability and predictive
performance relative to the nearest-neighbor approach.

As the ML models based on RDKit's physicochemical descrip-
tors performed well on predicting the external test set, we wanted
to know which descriptors were most important in determining
chloride transport ability. Feature importance across the 210
molecular descriptors was evaluated for each of the 19 RF models
generated from the 19 training sets, and the top 20 most impor-
tant features are shown in Fig. 5a. MolLog P was found to have the
highest average contribution to the predictions from the 19 RF
models, with the highest mean decrease in impurity (MDI) of
4.92% (Fig. 5a). This was expected, as log P has oen been found
to be a determining factor for transmembrane anion trans-
port.20,21,23 As a result, we examined the distribution of MolLog P
across the 1348 chemicals from the original training set (Fig. 5b).
The MolLog P for the 1294 inactive compounds followed a normal
distribution, varyingmainly between−2 and 6. On the other hand,
53 of the 54 active compounds had a MolLog P above 2, and the
remaining active compound had aMolLog P of 1.92. It is clear that
a compound can only be an active chloride transporter if it has
a MolLog P value $ 2, but this criterium alone is insufficient
(given the large number of lipophilic compounds without activity).
Interestingly, when the same graph was made for the urea and
thiourea compounds only, the same relationship appeared (see SI,
Fig. S56). This indicates that a simple criterium such as ‘urea with
MolLog P $ 2’ is not enough to predict the transport ability of
a given compound. The full model, containing all descriptors, is
needed to understand transmembrane chloride transport ability.

In addition to MolLog P, several other RDKit descriptors
were found to signicantly contribute to the prediction of
chloride transport activity (Fig. 5a). For example, the second
most important descriptor PEOE_VSA7 represents the amount
of van der Waals surface area (VSA) arising from atoms with
partial equalization of orbital electronegativities (PEOE) in the
range of −0.05 to 0, and is intended to capture electrostatic
interactions.81 The third most important descriptor is Kappa3,
a molecular connectivity descriptor derived from chemical
graph theory, highlighting the inuence of structural branching
and molecular shape.82 The remaining important features
2620 | Digital Discovery, 2025, 4, 2615–2626
include a variety of topological descriptors that conrm the
relevance of molecular connectivity (e.g., BalabanJ, Kappa1 and
Chi0n), as well as several electronic and electrotopological83

descriptors suggesting that charge-based interactions between
the transporters and chloride anions are important (e.g.,
VSA_Estate6, MaxPartialCharge). Collectively, these ndings
indicate that chloride transport is governed by a combination of
lipophilicity, molecular topology, and electrostatic interactions,
offering mechanistic insights into the physicochemical deter-
minants underlying model predictions.
ML model can predict the chloride transport activity of
chemicals from the DrugBank database

To further test the potency of the model, the overall consensus
model was used for predicting the chloride transport activity of
compounds in the DrugBank database (a total of 10 509
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Chloride transport activity of 10 compounds from the Drug-
Bank database that had high probability of functioning as chloride
transporters, measured using either (a) the standard Cl−/NO3

− ion
selective electrode assay, or (b) the modified lucigenin assay used
during high-throughput screening.
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chemicals) in a virtual screening.84 Principle component anal-
ysis using MACCS keys conrmed that the DrugBank
compounds are within the chemical space dened by the
training set, conrming the validity of this approach (see SI,
Fig. S58). We decided to take a closer look at the compounds
with the highest predicted probability for chloride transport,
and picked 10 compounds that were commercially available at
a low price and were not structurally related: bazedoxifene,
centhaquine, brilliant green, dapivirine, pipequaline,
naphthoquine, tamoxifen, amodiaquine, nevanimibe, and
quinacrine (see SI for structures, and Table S3 for the full list of
DrugBank predictions). In addition, the compound with the
highest predicted probability was already found to be active in
the original high-throughput screening (clorobiocin,
NSC227186), and one other compound in the top 10 of highest
predicted probability had previously been shown to be an active
chloride transporter (tiocarlide).66 The transport activity of these
two known compounds was therefore not tested again. The
chloride transport activity of the other 10 compounds was
assessed using the 20 minute lucigenin assay and the 20 minute
ion selective electrode assay. Brilliant green and quinacrine
showed optical interference with lucigenin and could not be
tested using this assay. Amodiaquine, pipequaline and quina-
crine were supplied as HCl salts, which can give false positives
in ion selective electrode assays. To overcome this, we sub-
tracted the electrode readings for these compounds with those
obtained upon the addition of an equimolar amount of HCl.
The results of both assays are shown in Fig. 6. All compounds
show above zero chloride efflux in the ion selective electrode
assay, but only 6 of these compounds show >20% efflux in 20
minutes (Fig. 6a). Out of these 6, brilliant green could not be
conrmed with the lucigenin assay due to optical interferences,
but the other 5 active compounds were tested (Fig. 6b).
Naphthoquine was the only compound that appeared active in
the ion selective electrode assay, but not in the lucigenin assay.
Naphthoquine was purchased as a phosphate salt, but the ion
selective electrode data for this compound looked more like
a HCl salt (initial fast transport that subsequently levels off). We
therefore classied naphthoquine as inactive, and the remain-
ing 5 DrugBank chemicals as active: bazedoxifene, centhaquine,
brilliant green, tamoxifen, and nevanimibe. Although brilliant
green could not be veried with the lucigenin assay and its
activity in the ion selective electrode assay was low, it was still
considered active because it did not display a fast initial rate of
transport followed by a slow rate (as observed for naphtho-
quine) to suggest that the weak observable chloride efflux was
an artefact. The overall prediction rate of the model is therefore
50–60% (5/10 of the tested compounds, or 7/12 when including
clorobiocin and tiocarlide). Given that the hit rate of the initial
high throughput screening was only 3–4%, the ML model is
>10× better at predicting the transport activity of a novel
chemical than random screening.85 To evaluate the applicability
of using the generated models to virtually screen new chem-
icals, we also calculated the enrichment factor, resulting in
a value of 4.91 (see SI).86 This further conrmed the potential of
our models to effectively select new active chemicals from
external chemical libraries at least 5 times better than a random
© 2025 The Author(s). Published by the Royal Society of Chemistry
screening, which is good for a relatively small dataset. Thus, our
modeling strategy shows promise in saving signicant
resources by prioritizing active compounds for further experi-
mental testing as potential chloride transporters. Instructions
on how to regenerate our models and use them to predict the
chloride transport ability of unknown compounds are provided
in the SI.87
Highly potent cation transporters can induce chloride
transport at high concentration

Although the model was able to predict the transport activity of
new compounds, we were still intrigued about the chloride
transport ability of some of the hits without a clear hydrogen
bond donor (see Fig. 2). In particular, hit NSC292567 (nigericin)
is a known K+/H+ transporter and was not expected to have any
chloride transport ability.88,89 Interestingly, valinomycin
Digital Discovery, 2025, 4, 2615–2626 | 2621
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(another well-known K+ transporter) and monensin (which is
very closely related to nigericin) have also previously been
shown to transport anions under certain conditions.90–94 We
therefore postulated that at high concentrations (5 mol% with
respect to lipid) a potent cation transporter can also transport
anions. Presumably, the fast cation transport induced by
nigericin can cause the transport of chloride as either an ion
pair or by increasing anion permeability due to the high
cationic charge in the membrane (without necessarily forming
a contact ion pair). Experimental studies have suggested that
valinomycin can indeed form ion pair complexes, explaining
the anion and pH dependence of K+ transport by valinomycin
and its weak anion transport ability.92,95,96 Shirai and co-workers
also argue that both cation and anion need to distribute into the
bilayer to maintain electroneutrality in the membrane.97,98 On
the other hand, valinomycin is also able to bind directly to
anions via its peptide NH groups,91 and pure anionophore
ability is also possible. Monensin and nigericin have very
different structures to valinomycin because they do not contain
Fig. 7 Highly potent cation transporters can induce chloride transport
determine the anion and cation transport ability of nigericin and urea 1. 1
buffered KCl and are suspended in either a nitrate buffer (496 mM NaN
HEPES, pH 7.4). Under these conditions transport can be Na+/K+ antipor
due to the high charge and hydration energy of sulfate. (b) Result of the K
conditions shown in (a), as measured using either a potassium- or chlor
various concentrations of nigericin under the conditions shown in (a), as

2622 | Digital Discovery, 2025, 4, 2615–2626
any hydrogen bond donors and are negatively charged at
neutral pH.99,100 They form electroneutral complexes with
cations and binding to additional anions is therefore not ex-
pected. Nevertheless, Dias et al. have shown that monensin can
enhance F− permeability and MD simulations showed that the
F− anion remains in close proximity to the monensin–K+

complex in a ceramide bilayer.93 Even if this ion pair formation
is only a minor event, at high cationophore concentrations
there might be enough anion present in the bilayer for anion
transport to occur (especially given the high transmembrane
anion gradient). These ndings suggest that perfect cation-over-
anion selectivity is nearly impossible to achieve. If this is the
case, the opposite could also be true for anion transporters,
where a high concentration of a potent anion transporter can
facilitate the transmembrane transport of cations due to small
amounts of ion pair binding.

To investigate this, we measured both the K+ and Cl− efflux
induced by nigericin and 1,3-bis(4-(triuoromethyl)phenyl)urea
1 at different concentrations using ion selective electrodes. Two
at high concentration. (a) Schematic of the liposome-based assay to
00 nm LUVs (7 : 3 POPC : cholesterol) are prepared containing 496 mM
O3, 10 mM HEPES, pH 7.4) or sulfate buffer (167 mM Na2SO4, 10 mM
t, K+/Cl− symport or Cl−/NO3

− antiport. Cl−/SO4
2− antiport is unlikely

+ and Cl− efflux induced by various concentrations of urea 1 under the
ide-selective electrode. (c) Result of the K+ and Cl− efflux induced by
measured using either a potassium- or chloride-selective electrode.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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types of LUVs were investigated: the rst type contained a buff-
ered KCl solution on the inside and a buffered NaNO3 solution
on the outside of the liposome (‘nitrate buffer’), and the second
type contained a buffered KCl solution on the inside and
a buffered Na2SO4 solution on the outside of the liposome
(‘sulfate buffer’) (Fig. 7a). For the rst type, we expected that
transport can occur as K+/Na+ antiport, K+/Cl− symport or Cl−/
NO3

− antiport, while in the second condition only K+/Na+

antiport and K+/Cl− symport are realistic (Cl−/SO4
2− is less

likely due to the high charge and hydration energy of sulfate).
The results for urea 1 and nigericin are shown in Fig. 7b and c
respectively. For nigericin, chloride efflux is only observed at
high concentrations, whereas potassium efflux is observed even
at very low concentrations, conrming that nigericin functions
as a cation transporter. Furthermore, no difference in K+ or Cl−

efflux is observed for nigericin depending on the external
buffer, indicating that anion exchange (Cl−/NO3

− antiport) does
not play a role for nigericin. Overall, the results show that the
predominant mode of transport for nigericin is K+/Na+ antiport
(or more precisely K+/H+ symport combined with Na+/H+ sym-
port in the other direction), but K+/Cl− symport is also possible
at higher concentrations. As expected, for the putative anion
transporter 1 the results are the reverse of those of nigericin. For
urea 1, chloride efflux is more pronounced than potassium
efflux and is observed at lower concentrations. Furthermore, the
nature of the external buffer does play a role in the observed ion
efflux, conrming that urea 1 predominantly functions as an
anion exchange transporter (Cl−/NO3

− antiport), but can also
facilitate K+/Cl− symport at higher concentrations. Thus, it
seems likely that many potent cation transporters can facilitate
anion transport at high concentrations, and vice versa that many
potent anion transporters can also facilitate cation transport at
high concentrations. In the context of this manuscript, this
nding suggests that some of the hits that were identied using
the high-throughput screening assay are in fact predominantly
cation transporters that can also transport chloride at
a concentration of 5 mol% with respect to lipid. However, in the
context of synthetic transmembrane ion transporter develop-
ment, these ndings suggest that transport mechanisms can be
concentration dependent and that it would be good practice to
investigate the potential transport mechanism of a novel anio-
nophore or cationophore at a variety of concentrations.

Conclusions

In this manuscript we developed a high-throughput screening
assay based on lucigenin-encapsulated liposomes that can be
used to identify novel small-molecule chloride transporters.
Approximately 2000 compounds were tested, and 59 compounds
were identied as potential chloride transporters. Most active
compounds contain NHorOHhydrogen bond donors that can be
responsible for chloride binding. To explain the results of the
high throughput screening, we also developed ML binary classi-
cation models. These models revealed that a MolLog P $ 2 is
required to be an active chloride transporter, but this criterium
alone is not sufficient. Although lipophilicity has long been
recognized as a key determinant of anion transport activity, our
© 2025 The Author(s). Published by the Royal Society of Chemistry
study conrms this principle through data-driven analysis of over
1300 compounds. More importantly, our ML models also iden-
tied active compounds with structures that are different from
typical transporter designs. For example, several top-ranked
DrugBank hits had chemical features not commonly associated
with chloride transport but were nonetheless validated experi-
mentally. This suggests that our ML models effectively captured
subtle structure–activity relationships that extend the current
design space. Thus, while our ndings conrm foundational
chemical features, results from our models also highlight how
machine learning can uncover underexplored regions of chemical
space.We believe that our ndings can provide new scaffolds that
can be optimized into potent chloride transporters, and that our
MLmodels can be used to guide the design of increasingly potent
transporters with biological activity. In the future, we aim to
improve our ML models by training them on larger datasets with
more active compounds.
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