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and Tadashi Kadowakiae

Quantum computing is entering a transformative phase with the emergence of logical quantum processors,

which hold the potential to tackle complex problems beyond classical capabilities. While significant

progress has been made, applying quantum algorithms to real-world problems remains challenging.

Hybrid quantum-classical techniques have been explored to bridge this gap, but they often face

limitations in expressiveness, trainability, or scalability. In this work, we introduce conditional Generative

Quantum Eigensolver (conditional-GQE), a context-aware quantum circuit generator powered by an

encoder–decoder transformer. Focusing on combinatorial optimization, we train our generator for

solving problems with up to 10 qubits, exhibiting nearly perfect performance on new problems. By

leveraging the high expressiveness and flexibility of classical generative models, along with an efficient

preference-based training scheme, conditional-GQE provides a generalizable and scalable framework

for quantum circuit generation. Our approach advances hybrid quantum-classical computing and

contributes to accelerate the transition toward fault-tolerant quantum computing.
1 Introduction

We are at the dawn of the era of fault-tolerant quantum
computation. Logical qubits have been demonstrated across
several quantum computing architectures.1–6 Recent advances
in error-correcting codes7,8 further accelerate the shi toward
early fault-tolerant systems in the relatively near future. While
these developments enable substantially more quantum oper-
ations than systems without error correction, executing fault-
tolerant quantum algorithms for practically signicant prob-
lems remains a distant goal. Thus, building hybrid quantum-
classical algorithms that work with quantum devices in the
early-fault-tolerant regime is a practical and reasonable focus9,10

for near-term quantum computing applications.
One widely studied methodology over the past decade is the

variational quantum algorithm (VQA).11–14 Applications of VQA,
such as quantum machine learning,15–18 oen require upload-
ing classical data into the circuit. The most common strategy is
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to embed the data into the rotation angles of gates in a param-
eterized quantum circuit (PQC). However, this approach faces
limitations in expressibility, as the Fourier components of the
expectation function are constrained to specic wave
numbers.19–21 Moreover, embedding classical knowledge or
inductive bias into the PQC structure remains challenging,22

despite the critical role of inductive bias in successful optimi-
zation.23 Addressing these limitations requires innovative
strategies that lead to the next-generation hybrid quantum-
classical computation.

This paper explores an alternative approach based on the
recently proposed generative quantum eigensolver (GQE).24

GQE is a hybrid quantum-classical algorithm that uses a clas-
sical generative model to construct quantum circuits, where
circuit components are sequentially generated from a pre-
dened gate pool, similar to sentence generation in natural
language processing. Unlike VQAs, no parameters are
embedded in the quantum circuit; all parameters are contained
within a classical generative model (see Fig. 1). These parame-
ters are iteratively updated to minimize a particular objective. In
a proof-of-concept experiment,24 the generative model is
implemented using GPT-2 (ref. 25) architecture, referred to as
the generative pre-trained transformer quantum eigensolver
(GPT-QE), and its effectiveness is demonstrated in the ground
state search of molecular Hamiltonians. A key feature of GQE is
its ability to incorporate classical variables directly into the
neural network, allowing for a non-trivial inuence on the
generated quantum circuits. Additionally, inductive biases can
Digital Discovery, 2025, 4, 2229–2243 | 2229
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Fig. 1 Schematic of differences between VQA, GPT-QE, and conditional-GQE. (a) VQAs such as VQE prepare a parameterized quantum circuit,
called ansatz, for each context (i.e., target problem) and optimizes the parameters tominimize the expected value of the observables. (b) GPT-QE
optimizes the parameters for each context; however, the parameters are given as weights in a classical neural network instead of being
embedded in the quantum circuit. The final results are obtained by sampling circuits from the trained model. In the current version of the
algorithm, one needs to retrain the model whenever a new problem is given. (c) This study develops a context-aware quantum circuit generator
by using an encoder–decoder structure that enables the model to be conditioned on the problem context. Once trained, themodel can be used
for any context in the domain and does not necessarily need to be re-trained.
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be seamlessly integrated, much like classical convolutional
neural networks in computer vision26–28 and graph neural
networks in materials informatics.29–31 While the potential of
incorporating classical variables into the generative model has
been previously discussed in the context of quantum chem-
istry,24 specic methods for its implementation have not yet
been detailed.

Based on the concept of GQE, this paper introduces
conditional-GQE (Fig. 1c), an input-dependent quantum circuit
generation. To generate circuits from given inputs, we adopt an
encoder–decoder transformer architecture,32 making the model
applicable across different contexts. We apply this conditional-
GQE approach to combinatorial optimization and develop
a new hybrid quantum-classical method called Generative
Quantum Combinatorial Optimization (GQCO). By incorpo-
rating a graph neural network33 into the encoder to capture the
underlying graph structure of combinatorial optimization
2230 | Digital Discovery, 2025, 4, 2229–2243
problems, our model is trained to generate quantum circuits to
solve combinatorial optimization problems with up to 10
qubits, achieving about 99% accuracy on new test problems.
Notably, for 10-qubit problems, the trained model nds the
correct solution faster than brute-force methods and the
quantum approximate optimization algorithm (QAOA).34

Many of the existing works for quantum circuit design35,36

oen rely on labeled datasets, which limits their scalability as
classical simulation becomes infeasible for large circuits.
Although some recent approaches explore reinforcement
learning for circuit optimization,37,38 they typically require
computing intermediate quantum states to guide gate selec-
tion. Consequently, both these supervised and reinforcement
learning methods become impractical for large-scale quantum
systems where classical simulation of the quantum algorithm is
not feasible. To address these challenges, we introduce a data-
set-free, preference-based algorithm. Specically, this work
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00138b


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

1/
22

/2
02

5 
6:

45
:3

9 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
uses direct preference optimization (DPO)39 to update the
circuit parameters by comparing the expected values of gener-
ated circuits. Unlike many supervised or reinforcement
learning-based methods, our DPO-based strategy does not rely
on prior labeling; it only requires the nal measurement results
of the generated circuits, thereby substantially reducing
computational overhead.

As an illustrative demonstration of conditional-GQE, we
focus on combinatorial optimization problems. However, the
goal of this study is not to outperform existing state-of-the-art
methods in combinatorial optimization. Indeed, a wide range
of solvers have been developed, including traditional algo-
rithms like simulated annealing (SA),40 machine learning-based
approaches,41,42 quantum annealing,43 and techniques based on
classical and quantum generative models.44 Rather than aiming
to surpass these existing methods, our broader goal is to
present a novel, scalable, and generalizable workow for
quantum circuit generation across diverse domains, which is
accelerated with the help of high-performance computing
systems.10 This work is expected to support practical quantum
computation in the early fault-tolerant era and advance
quantum technology's real-world application.

2 Results
2.1 Generative quantum eigensolver (GQE)

Large language models (LLMs) generate sequences of token
indices, each corresponding to a word or subword, which, in
turn, form a sentence together. Analogously, GQE generates
quantum circuits by mapping each index to a component of
a quantum circuit, such as a gate or a gate combination. The
generated sequence of indices results in a composition of
quantum gates, forming a quantum circuit.

Given a xed initial state jfinii, GQE uses classical machine
learning to generate a quantum circuit U that minimizes the
expectation value hO iU :¼ hfinijU†OUjfinii of an observable O .
In many quantum computing applications, observables can be
expressed as the function O ðxÞ of certain variables x, such as
coefficients of the Ising Hamiltonian representing combinato-
rial optimization problems. However, similar to many VQAs,
GPT-QE—the original demonstration of GQE—does not incor-
porate x into the generative model but instead uses a separate
model for each context, as illustrated in Fig. 1a and b. We
believe that incorporating contextual inputs into the generative
model can yield signicantly different results compared to
previous algorithms. This study presents the context-aware
GQE, which aims to train a generative model with contextual
inputs, generating a circuit that minimizes the energy hO ðxÞiU
in response to a given input x. In contrast to GPT-QE, which
utilizes a decoder-only transformer, we employ a transformer
architecture that includes both an encoder and a decoder. The
details of GQE and our approach are provided in the Methods
section.

In previous work by some of us,45 we suggested a way of
training a parameterized quantum circuit U(q, x) depending on
the variables x. In this algorithm, the variables x are embedded
into the circuit, and the parameters q are optimized so that
© 2025 The Author(s). Published by the Royal Society of Chemistry
hO iUðq;xÞ is minimized for each x. However, embedding classical
data into a parameterized quantum circuit faces the challenge
of expressibility,19–21 meaning that the functional form of U(q, x)
for x is severely restricted. In contrast, in GQE, we are not
restricted by these expressibility issues. The variables x are
incorporated into the classical neural network alongside train-
able parameters, and they affect non-trivially the generated
quantum circuit.

2.2 Conditional quantum circuit generation for
combinatorial optimization

As a very important practical application, we focus on solving
combinatorial optimization problems with conditional-GQE,
which we call Generative Quantum Combinatorial Optimiza-
tion (GQCO). The schematic diagram of the entire workow is
shown in Fig. 2.

Combinatorial optimization problems can always be map-
ped to a corresponding Ising Hamiltonian,46 which serves as an
observable. We use the Hamiltonian coefficients as input to
a generator, embedding them into graph structures with feature
vectors that capture domain-specic information. A graph
encoder with transformer convolution47 then produces an
encoded representation. Using this, a transformer decoder
generates a sequence of token indices that denes a quantum
circuit. The solution is identied by selecting the bit sequence
corresponding to the computational basis state with the highest
observation probability from the generated quantum circuit.
Fig. 2 presents the schematic of this process, with further
details provided in the Methods section.

Circuit component pools must be predened, allowing for
the incorporation of domain knowledge and inductive bias. For
example, since GPT-QE24 aims to search a ground state for
a given molecule, the operator pool is composed of unitary
coupled-cluster singles and doubles (UCCSD) ansatz48 derived
from the target molecule. In this study, we use basic 1- and 2-
qubit gates (Hadamard gate, rotation gates, and CNOT gate)
and the QAOA-inspired RZZ rotational gate, i.e., an Ising-ZZ
coupling gate acting on two target qubits. The target qubit(s) of
each quantum gate and, if necessary, the control qubit, are
available in all congurations, and there are six possible rota-

tion angles of f � p

3
; � p

4
; � p

5
g for the rotation gates. By

using basic gates rather than components suitable for many-
body physics such as the UCCSD ansatz, this work aims to
study whether we can train the model successfully without prior
knowledge of an optimal or intuitively useful operator pool.

While a detailed description of our training strategy is
provided in the Methods section, we summarize it here to
highlight our scalable, broadly applicable framework. Scaling
circuit size is critical for fault-tolerant quantum computing;
however, most prior works35,36 rely on supervised learning
methods that struggle to produce high-quality training data at
large scales. In contrast, GPT-QE employs an alternative
training approach called logit matching. This method does not
require any pre-existing dataset; instead, it trains the generative
model to approximate a Boltzmann distribution derived from
the expectation value of a given Hamiltonian. In this work, to
Digital Discovery, 2025, 4, 2229–2243 | 2231

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00138b


Fig. 2 Overview of generative quantum combinatorial optimization (GQCO). GQCO employs an encoder–decoder transformer architecture.
The target combinatorial optimization problem is represented as a graph derived from the coefficients of the corresponding Ising model.
Features are engineered based on domain knowledge, and an encoded feature representation is obtained using a graph neural network. The
encoded feature is passed to a decoder transformer, which sequentially generates token indices and constructs sequences of 1- or 2-qubit
quantum gates. The mixture-of-experts (MoE) architecture is used in the model structure to improve the model expressiveness. The solution to
the input problem is obtained from the quantum states computed by the generated circuit.
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further increase the probability around the preferred circuits
beyond what is computed by the Boltzmann distribution, we
use a preference-based strategy called direct preference opti-
mization (DPO).39 DPO compares candidate circuits based on
their computed costs and updates the model parameters to
increase the likelihood of the most favourable circuit. Crucially,
it relies solely on expectation values from the generated circuits,
eliminating the need for labelled datasets and therefore it
facilitates the treatment of large-scale quantum systems. In
other words, the model is trained by exploring the space of
solutions rather than relying on previously-gathered ground
truth. To manage the diversity arising from different problem
sizes, we introduce a qubit-based mixture-of-experts (MoE)
architecture.49–51 This module comprises specialized model
sublayers called experts, and the model switches between layers
depending on the number of qubits required. We further
accelerate model training through curriculum learning,52

starting with smaller circuits and increasing task complexity
step by step, then we proceed to ne-tune each expert for the
respective problem size. Our preference-based curriculum
training with MoE modules enhances the model's expressive
power and scalability, facilitating the efficient integration of
larger quantum circuits.
2.3 Solving combinatorial optimization via GQCO

We trained a GQCO model capable of generating quantum
circuits with 3 to 10 qubits. All computations during the
training were performed on classical hardware (CPUs and
2232 | Digital Discovery, 2025, 4, 2229–2243
GPUs), and quantum calculations were conducted using a clas-
sical simulator. Specically, multiple NVIDIA V100 GPUs were
used for the GPU computations. Details of the training and
hardware are provided in the Method section and the ESI.†

Fig. 3a compares the accuracy of GQCO with two other
solvers—simulated annealing (SA)40 and the quantum approxi-
mate optimization algorithm (QAOA)34—on 1000 randomly
generated combinatorial optimization problems for each
problem size. Both training and test datasets were generated
from the same distribution. For each test problem, the GQCO
model generated 100 circuits (the same number as the number
used during training), and the circuit yielding the lowest ex-
pected value was selected. SA and QAOA were initialized and
performed independently for each problem; in particular, in
QAOA, the circuit parameters were trained from scratch for each
problem and the solution was determined based on the opti-
mized circuit. SA was executed with 1000 sweeps and 100 reads
per problem instance, while QAOA utilized circuits with four
layers. Results for the other hyperparameter settings are
provided in Fig. 3c, and detailed descriptions of the congura-
tions are provided in the Methods section.

As shown in Fig. 3a, the GQCO model consistently achieved
a high accuracy of approximately 99% across all problem sizes.
In contrast, QAOA failed to exceed 90% accuracy even for a 3-
qubit task, and its accuracy declined to about 30% for a 10-qubit
task. This performance drop reects the limited expressive
power and trainability of the canonical QAOA approach.
Achieving over 90% accuracy with QAOA would require a much
deeper parameterized circuit, making, at the current time,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Performance evaluation of GQCO and two other solvers. (a) Percentage of correct answers of QAOA, SA, and GQCO on 1000 randomly
generated combinatorial optimization problems (3–10 qubits). (b) Runtime required to reach 90% accuracy. The red line represents GQCO, the
blue line represents SA, and the gray dashed line represents the brute-force calculations. QAOA is excluded as it did not achieve 90% accuracy.
(c) Runtime versus accuracy across problem sizes. As in (b), the red lines correspond to GQCO, the blue lines to SA, and the green lines to QAOA.
Gray vertical lines show brute-force execution times; points to the left indicate a faster runtime than brute force. The points for each solver
correspond to varying parameter settings: the number of sampling circuits {1, 5, 10, 20, 100} for GQCO, the number of sweeps {102, 103, 104,
105, 106, 107} for SA, and the number of layers {1, 2, 3, 4} for QAOA.
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stable training infeasible. In contrast, GQCO addresses these
limitations by leveraging the high expressive power of classical
neural networks and by employing a large number of parame-
ters on the classical side of the computation. The performance
gap observed here indicates the advantages of the generative
quantum algorithm approach over variational algorithms.

Fig. 3b shows the time required for each method to reach
90% accuracy. To adjust runtime, we varied the hyper-
parameters—namely, the number of sampled circuits for
GQCO, the number of sweeps for SA, and the number of itera-
tion layers for QAOA. The total runtime includes all steps, from
submitting a test problem to identifying the answer. For GQCO,
this runtime encompasses both model inference and quantum
simulation; for QAOA, it includes parameter optimization and
quantum simulation. SA and brute-force calculations were
performed on CPUs, while the other computations, including
quantum simulation, were conducted on GPUs. The gray
dashed line indicates the runtime of brute-force search, which
grows exponentially with problem sizėIn contrast, the increase
in GQCO's runtime was restrained. Although it took a certain
amount of computation even for small problem sizes due to the
need for transformer inference, GQCO surpassed the brute-
force method when the problem size exceeded 10 qubits. In
terms of computational complexity, the brute-force method for
a problem size n requires a runtime on the order of O(2n). In
© 2025 The Author(s). Published by the Royal Society of Chemistry
contrast, GQCO's complexity depends on both transformer
inference and the quantum computation of the generated
circuit. The former depends on sequence length53 (i.e., circuit
depth) and scales on the order of O(n2), while the latter can
potentially benet from exponential speedup on quantum
devices. In other words, GQCO can be expected to provide
polynomial acceleration compared to brute-force, though
GQCO does not guarantee to reach 100% accuracy. It is
important to note that, in this performance evaluation, the
quantum computations were performed using a GPU-based
simulator, so any speedup that could be gained from
a quantum approach would not be present in any of these
results. Nevertheless, a clear reduction in the growth rate of the
runtime even for these classical simulations observed.

Fig. 3c illustrates the detailed relationship between runtime
and accuracy when varying the hyperparameters for each
method: the number of generated circuits for GQCO, the
number of sweeps for SA, and the number of layers for QAOA.
Generally, performance improved as execution time increased.
However, for QAOA, increasing the number of layers did not
consistently enhance the performance of the algorithm, espe-
cially with an increasing number of qubits. This behaviour is
attributed to the training difficulties inherent in VQAs. In
contrast, GQCO outperformed the other solvers, demonstrating
greater performance gains as the execution time grew. This
Digital Discovery, 2025, 4, 2229–2243 | 2233
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advantage arises from the processing power of GPUs, which
enables additional samplings at little additional wall-clock cost,
thereby boosting performance.

Because the runtime baseline depends on a device's
computational power, the problem size at which the advantage
emerges may differ across devices. However, the difference in
computational complexity is independent of the device used.
2.4 Performance under distribution shi

In the experiments shown in Fig. 3, both the training and test
datasets were created by randomly sampling Hamiltonian
coefficients from the same uniform distribution. While the
GQCO model achieves high accuracy under these conditions,
real-world applications typically involve Hamiltonians with
more structured characteristics. To investigate performance
under such realistic conditions, Fig. 4 evaluates the pretrained
GQCO model on sparse, 10-node graph Max-Cut problems with
varying connectivity levels. Note that the model evaluated in
Fig. 4 is identical to that used in Fig. 3, which was trained on
a non-structured dataset. Although the model generally main-
tains high accuracy, its performance declines when encoun-
tering highly structured problems. Specically, for Max-Cut
problems on 3-regular graphs, accuracy drop to approximately
95%. This decline likely occurs because randomly sampled
training data rarely include sparse graphs with many zero
coefficients, resulting in insufficient training examples for such
specialized cases.

Ideally, randomly generated Hamiltonians should cover
the entire solution space for combinatorial optimization
problems involving a given number of qubits. In practice,
however, limited training iterations prevent complete
coverage of the problem space, restricting the model's
performance on structured problems. This limitation can be
addressed by ne-tuning the pretrained GQCO model specif-
ically for targeted structured problems. As illustrated by the
green bar in Fig. 4, ne-tuning the pretrained GQCOmodel on
3-regular graph Max-Cut problems successfully improves
accuracy to about 98%, nearly matching performance levels
observed for dense graphs. This result highlights the impor-
tance of ne-tuning for practical applications with structured
optimization tasks.
Fig. 4 Performance comparison of pretrained GQCO models on
Max-Cut problems for sparse graphs with 10 nodes. Graph connec-
tivity ranges from degree 3 to degree 9 (fully connected). Blue bars
indicate the performance of the pretrained GQCO model, while the
green bar represents performance after fine-tuning on the Max-Cut
problem for 3-regular graphs. The fine-tuning was conducted for
1400 epochs with learning rate 1 × 10−7.

2234 | Digital Discovery, 2025, 4, 2229–2243
2.5 Error analysis of GQCO solutions

During the performance evaluation, we identied one incorrect
answer in each size-3 and size-4 problem set and two in the size-
5 problem set. Fig. 5 shows the corresponding coefficient
matrices, generated quantum circuits, and resulting quantum
states. As mentioned above, we sampled 100 circuits for each
problem, with the circuit yielding the lowest expected value
among them identied as the GQCO answer. Note that lower-
cost congurations may exist outside this nite sampling;
indeed, for the four problems in Fig. 5, sampling 100 circuits
alone did not produce a correct solution. In each case, the
second-best solution had a cost that was very close to the
optimal value, causing the GQCO model to become trapped in
a near-suboptimal solution. This likely occurred because the
transformer cannot fully capture the discrete nature of combi-
natorial optimization, where slight uctuations in the Hamil-
tonian coefficients can lead to discontinuous changes in the
solution. Increasing training time or using more precise
oating-point calculations may help in reducing such errors.
Another effective approach is to increase the number of circuit
samplings; indeed, the four problems in Fig. 5a were correctly
solved by GQCO when 1600, 300, 400, and 700 circuits were
sampled, respectively. In natural language processing, the
inference scaling law54–56 states that increasing the inference
time improves the quality of model outputs. A similar
phenomenon appears to apply to quantum circuit generation as
well. However, because generative models are inherently
stochastic, theoretically guaranteeing perfect accuracy for
circuit generation remains challenging.
2.6 Characteristics of generated circuits and limitations of
GQCO

Examining the structure of circuits generated by GQCO offers
insight into how GQCO solves problems. Fig. 6a and b show the
average circuit depth and the number of CNOT gates for circuits
generated by the GQCO model and a single-layer QAOA circuit,
respectively. Both values were obtained aer transpiling the
circuits using Qiskit57 with optimization level 1 (light optimi-
zation). Notably, the GQCO-generated circuits are shallower and
include fewer CNOT gates than those produced by QAOA.
Because the GQCO algorithm does not use the Hamiltonian
directly in its circuit design, it does not require the extensive
entanglement operations that QAOA does.

In this work, we did not impose an explicit restriction on the
number of CNOT gates, although the maximum circuit depth
for GQCO was set to twice the number of qubits. Certainly, the
cost function and model structure are exible enough to
incorporate additional constraints on circuit depth or CNOT
gate count. Further constraints that lead to shallower circuits
could help generate circuits more robust to noise. Furthermore,
the model can address device-related constraints. Because
many quantum devices have restricted physical connectivity,58,59

compilation is oen needed to map circuits onto the hardware.
However, GQE-based quantum circuit generators can bypass
this process by excluding gates that do not satisfy the device's
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Cases where the GQCOmodel failed to identify the correct solution. (a) Heat maps of the Ising Hamiltonian coefficient matrices for four
incorrectly solved problems, with diagonal elements representing external fields and off-diagonal elements representing interaction terms. (b)
Quantum circuits with the lowest expected energy, selected from 100 circuits generated by the GQCO model for each combinatorial opti-
mization problem. (c) Corresponding quantum states obtained from these circuits. The histograms show observation probability for each
computational basis (left y-axis) computed by state vector simulations, while the point plots show the Hamiltonian expectation value (i.e., the
cost of the combinatorial optimization problem) computed in each computational basis (right y-axis). The red dot for each plot corresponds to
the basis with the lowest expected value, indicating the ground truth.
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physical constraints. This exibility in generating hardware-
efficient circuits is a key advantage of the GQE-based approach.

Fig. 6 shows a typical 3-qubit quantum circuit generated by
our GQCOmodel. In this circuit, six gates are used to transform

the initial state j000i to state e�i
p
10j001i. Notably, the three
Fig. 6 Analyses of the generated circuits. (a) Comparison of circuit depth
layer QAOA circuits for each problem size. (c) A representative example o
initial state j000i to obtain the final quantum state e�i

p
10j001i. The quant

© 2025 The Author(s). Published by the Royal Society of Chemistry
successive RY(p/3) gates placed in the middle of the circuit are
primarily responsible for obtaining the nal state. The matrix
representation of the composition of three RY(p/3) gates is given

by

"
0 �1
1 0

#
, which corresponds to a bit ip from j0i to j1i (or
and (b) number of CNOT gates between GQCO-generated and one-
f a generated circuit. Six quantum gates are applied sequentially to the
um states at two intermediate stpes are also illustrated.
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from j1i to −j0i). The remaining three gates (one RZ gate and
two RZZ gates) only change the global phase for the computa-
tional basis states and have no direct effect on the nal solution.
These observations suggest that GQCO differs substantially
from quantum-oriented methods such as QAOA in that the
GQCO model does not acquire a quantum mechanics-based
logical reasoning capability. Instead, much like many classical
machine learningmodels, GQCO appears to generate circuits by
interpolating memorized instances. GQCO's circuit-generation
ability relies on a data-driven approach rather than any logical
understanding of quantum algorithms.

All of the circuits generated during the performance
comparison (Fig. 3) are non-Clifford circuits and are generally
expected to be difficult to simulate classically. However, as
noted above, many of these circuits primarily perform bit ips.
If we remove gates that affect only the global phase (e.g., the rst
RZZ gate in Fig. 6c), most GQCO-generated circuits become
Clifford, allowing them to be classically simulable. Conse-
quently, our ndings do not demonstrate a quantum advan-
tage58 or the quantum utility59 of GQE-based circuit generation.
Nevertheless, even if the trained model produces circuits that
can be classically simulated, non-Clifford circuits are still
generated during training. In other words, the entire circuit
space—including circuits that are computationally hard to
simulate classically—must be explored to obtain the trained
model, highlighting the benets of incorporating quantum
computation into the overall workow. Moreover, for applica-
tions beyond combinatorial optimization, solutions oen
involve more complex quantum states, and the circuits gener-
ated by the trained model are expected to be classically
unsimulable. Since our model can be trained without explicitly
determining whether the generated circuits are classically
simulable, the GQCO workow applies equally well to problems
that rely on superposition or entanglement.

These results do not imply that GQCO is inherently a clas-
sical heuristic method. Indeed, the original GQE24 has demon-
strated strong performance on quantum tasks, such as the
ground-state searches for molecules. In this study, the
absence of quantumness in the generated circuits is likely
because the combinatorial optimization problem itself is not
intrinsically quantum. Thus, the model probably determined
during training that quantumness was unnecessary for this type
of task. The conditional-GQE workow remains applicable to
quantum problems, and it is still feasible to obtain quantum
circuit generators exhibiting quantumness. However, training
generators for such problems entails a more intricate cost
landscape, making it challenging to train using simple gate
pools or vanilla DPO loss, as done in this study. Future research
focusing on more carefully designed workows would therefore
be promising, including the incorporation of quantum-specic
metrics, such as entanglement entropy, into the loss function.
2.7 Solving combinatorial optimization using a quantum
device

At the end of the performance analyses of GQCO, we examined
its behavior on a physical quantum device. The target problem
2236 | Digital Discovery, 2025, 4, 2229–2243
was the 10-variable Max-Cut problem illustrated in Fig. 7a. For
comparison, we used a two-layer QAOA circuit whose parame-
ters were optimized with a classical simulator. The resulting
circuits (Fig. 7b) were then executed on the IonQ Aria quantum
processor. Fig. 7c presents the sampling results for varying
numbers of shots alongside the state vector computed by the
classical simulator.

A key characteristic of GQCO-generated circuits is that
resulting quantum state exhibits a distinct observation proba-
bility peak at a single computational basis state. In contrast,
because QAOA discretely approximates time evolution from
a uniform superposition, its resulting quantum state is more
complex and less likely to yield a clear peak, particularly when
the circuit depth is limited. Consequently, QAOA required more
than 100 shots to identify the correct answer in this study,
whereas GQCO was able to nd it with just a single shot. This
disparity in the number of required shots is expected to grow as
the number of qubits increase.

Another notable aspect of GQCO becomes evident in cases
where the ground state is degenerate. In principle, our GQCO
model cannot account for degeneracy because the training
process relies solely on circuit sampling, focusing on identi-
fying a solution without considering the underlying quantum
mechanics of the input Ising Hamiltonian. In a Max-Cut
problem, the system is inherently degenerate, particularly the
target problem in this section is doubly degenerate. As illus-
trated in Fig. 7c, while GQCO identied only one of the two
solution candidates, QAOA exhibited observation probability
peaks for both degenerated ground states. Originating in adia-
batic quantum computation, QAOA is theoretically expected to
yield a non-trivial probability distribution over degenerate
ground states. GQCO's inability to capture degeneracy will
require future work on model architectures and training
approaches. Possible directions include directly incorporating
degeneracy-aware constraints into the loss function, embed-
ding symmetries of problems into circuit architectures, or
initializing circuits with uniform superpositions.
3 Discussion

We developed a novel quantum-classical hybrid technique for
context-aware quantum circuit generation and then applied it to
combinatorial optimization problems. Our approach, which we
have named conditional-GQE, extends GQE by integrating
contextual encoding, and employs the cutting-edge methodol-
ogies such as DPO-based training and qubit-based curriculum
learning to yield a scalable workow. This strategy enabled us to
successfully build the quantum circuit generator for combina-
torial optimization, a high-performance solver that outperforms
conventional solvers for problems with up to 10 variables.
Although this work is still a prototype, the results suggest the
potential for more practical, larger-scale implementations
toward foundation models of combinatorial optimization.
Moreover, we highlight the capacity of classical neural networks
to generate exible, high-quality quantum circuits, paving the
way for advanced quantum-classical hybrid technologies.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Results on the real quantum processor. (a) Target Max-Cut problem with 10 variables. The edge weights are represented by line styles:
dashed lines indicate a weight of 1, and solid lines indicate a weight of 2. (b) Quantum circuits generated by GQCO and a two-layer QAOA circuit
for the target problem. (c) Sampling results on the real quantum device (IonQ Aria) for each of the circuits. Results for 1, 10, 100, and 1000 shots,
as well as the state vectors computed by the simulator, are included. The histograms and plots are interpreted in the same manner as in Fig. 5c.
Each plot is marked to indicate whether it leads to the correct solution. The enlarged figures are available in the ESI.†

Fig. 8 Average computational time per epoch for quantum circuit
simulations, and their proportion relative to the average total
computational time per epoch. Blue bars represent the average
quantum circuit simulation time using CPUs, while green bars repre-
sent the simulation time using GPUs. Line plots indicate the proportion
of simulation time relative to the average total training time per epoch,
including all steps from generating training data to updating model
parameters. In both CPU and GPU simulation scenarios, gradient
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The conceptual workow described in this study can be
extended beyond combinatorial optimization to any problem
formulated as observable expectation value minimization. For
example, in molecular ground-state searches, representing
molecular structures as graphs allows direct adoption of our
graph-based encoding. By replacing the encoder, the GQE-
based approach also generalizes to quantum machine
learning and partial differential equation solvers. We thus view
GQE-based quantum circuit generation as a next step following
VQAs.

However, several limitations remain as open problems. A
major obstacle is the signicant classical computational
resources required to achieve scalability. While our ndings
indicate the computational advantage over brute-force solvers
and QAOA, fully realizing this advantage demands extensive
classical training beforehand. Fig. 8 illustrates the average
computational time required for quantum circuit simulations
during one epoch of GQCO model training, as well as the
proportion of this simulation time relative to the average total
computational time per epoch. The comparison spans various
number of qubits and contrasts CPU and GPU simulation
performance. A signicant portion of the GQCO model's
training time was consumed by quantum circuit simulations,
and this computational cost increases exponentially with the
number of qubits. Utilizing high-performance computing
resources, such as GPUs, can help mitigate this rapid growth in
computational cost.10 However, classical simulations become
impractical for quantum circuits exceeding approximately 50
qubits, rendering conditional-GQE model training infeasible in
such scenarios. Direct integration of quantum computations
into the training process thus becomes necessary in these
© 2025 The Author(s). Published by the Royal Society of Chemistry
regimes, although this inevitably introduces new challenges,
including training instability arising from sampling random-
ness and a substantial increase in the number of shots required.

Furthermore, enhancing the efficiency of generator training
and reducing the required number of training epochs are
essential objectives. This can be achieved by rening training
strategies, such as designing encoder architectures informed by
domain knowledge and developing effective pre-training
methods. Additionally, careful gate pool design will play
a crucial role. Machine learning-based approaches for identi-
fying suitable gates or gate representation learning may offer
a promising direction.
computations for model parameter updates are conducted on GPUs.
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This research provides a novel pathway for quantum
computation by leveraging large-scale machine learning
models. It underscores the growing role of AI in the advance-
ment of next-generation quantum computing research activi-
ties. We believe that our work will serve as a catalyst for
accelerating the development of quantum applications across
diverse domains and facilitating the democratization of
quantum technology.
�

4 Methods
4.1 GQE, GPT-QE, and conditional-GQE

Let t = {t1, ., tN} be a generated token sequence of length N,
where each token index tk is an integer satisfying 1 # tk # V,
with V being the vocabulary size. Each token index tk corre-
sponds to a quantum circuit component Uk selected from
a predened operator pool fU‘gV‘¼1. These components collec-
tively form a quantum circuit U = UtN/Ut1. Let pq(U) denote the
generative model of quantum circuits, where pq(U) is a proba-
bility distribution over unitary operators U, and q is the set of
optimizable parameters. In GQE, the parameters q are itera-
tively optimized so that circuits sampled from pq(U) are more
likely to minimize the expectation value of an observable:

hO iU :¼ hfinijU†OU jfinii
where O is an observable and jfinii is a xed input state. In
particular, for an n qubit system, we use jfinii = j0i5n. The
quantum computation is involved in the estimation of hO iU .
Notably, unlike in VQAs, all optimizable parameters are
embedded in the classical generative model pq(U) rather than in
the quantum circuit itself (see Fig. 1b).

As discussed in the Result section, the observable can be
expressed as a function of certain variables x. Let us denote such
an observable as O ðxÞ. The quantum circuit U that minimizes
hO ðxÞiU also depends on the variable x. In original GQE
approach (including GPT-QE), parameters are set and opti-
mized for each specic target problem, much like in VQAs.
More precisely, GPT-QE aims to obtain a decoder-only trans-
former pq*(x)(U) for each x, where q*(x) is the solution for the
following minimization problem:

q*ðxÞ ¼ argmin
q

E
U�pqðUÞ

hO ðxÞiU ; (1)

where EX�pðXÞ½f ðXÞ� denotes the expectation value of f(X) with
respect to the random variable X over the sample spaceU, where
X is drawn from the distribution p(X), i.e.,
EX�pðXÞ½f ðXÞ� :¼

Ð
U
f ðXÞpðXÞdX .

By utilizing x as context (i.e., input), conditional-GQE aims to
train a generative model pq(Ujx) that generates circuits mini-
mizing hO ðxÞiU . The function pq(Ujx) provides the conditional
probability of generating the unitary operator U when the input
x is given. In transformer-based generative models, the proba-
bility pq(Ujx) is expressed as follows:

pqðU jxÞ ¼
YN
i¼1

pq
�
UtijUt0;.;Uti�1

; x
�
f
YN
i¼1

exp

�
zi
�
Ut0;.;Uti�1

; x; q
�

T

2238 | Digital Discovery, 2025, 4, 2229–2243
where t0 is the start-token index, chosen such that Ut0=I5n in
this work. zi denotes the logit for i-th token, that is, the corre-
sponding output from the model before applying the sigmoid
function. T is the sampling temperature; in this work, we set T=

1.0 for training and T = 2.0 for evaluation, thereby enhancing
randomness in the evaluation phase. Then, we can realize
a generative model pq*(Ujx) through the following optimization:

q* ¼ argmin
q

E
x�pðxÞ

E
U�pqðU jxÞ

hO ðxÞiU (2)

where p(x) denotes the probability distribution of inputs x in the
target domain.

Solving the optimization problems in eqn (1) or eqn (2) is
challenging and thus requires surrogate objective functions.
GPT-QE employs a logit-matching approach, whereas this study
utilizes DPO39 loss. Further details of DPO are provided in the
subsequent section.
4.2 Outline of the GQCO model architecture

The GQCO model proposed in this study employs an encoder–
decoder transformer architecture32 with GELU activation.60 Its
architectural diagram is provided in the ESI.† Both encoder and
decoder consist of 12 repeated modules, each incorporating
graph convolution47 and a multi-head attention transformer.
The encoder components are detailed in subsequent sections.
The intermediate representations have dimension 256, and
each transformer layer has 8 attention heads. In total, themodel
has approximately 256 million parameters, with 127 million in
the encoder and 129 million in the decoder. This parameter
count is comparable to T5,61 an early encoder–decoder LLM
with 246million parameters, and the decoder alone is similar in
scale to GPT-1,62 which is a decoder-only transformer model and
has 117 million parameters. Our gate pool supports the gener-
ation of quantum circuits with up to 20 qubits and offers 1901
gate candidates, including an identity gate, although we have
only proceeded to the 10-qubit scale. During generation, gates
unnecessary for the given problem size are masked. The length
of the token index sequence, which corresponds to the number
of generated gates, is set to a maximum of 2n, where n is the
number of qubits used. Note that, when four or more gates have
been generated, and an end-token index tend = t0 is produced,
the generation process is terminated before reaching the
maximum length.
4.3 Embedding combinatorial optimization problems as
graphs

Any combinatorial optimization problem can be bijectively
mapped to an Ising Hamiltonian:46

H ¼
X
i\j

Jijsi
zssj

z þ
X
i

hisi
z

whose ground states correspond to the solutions of the
problem. The coefficients of the Ising Hamiltonian—the
external magnetic eld hi and the interaction coefficient Jij—are
used as inputs (or contexts) to the encoder of the model. We
map these coefficients into a graph representation, considering
© 2025 The Author(s). Published by the Royal Society of Chemistry
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hi as the weight of node i and Jij as the weight of the edge
between nodes i and j.

The feature vector is then constructed using the following
three elements: (1) the weights themselves, (2) the sign of the
magnitude relationships between the weights of adjacent nodes
or edges, and (3) the sign of the product of the weights of
adjacent nodes or edges (see Fig. 2). More formally, the node
feature vi and edge feature eij are computed as follows:

vi ¼

2
666664
vi

ð1Þ

vi
ð2Þ

vi
ð3Þ

vi
ð4Þ

3
777775; eij ¼

2
666664

sgn
�
Jij
�

sgn
�
Jij � hi

�
sgn
�
Jij � hj

�
sgn
�
hihjJij

�

3
777775;

vi
ð1Þ ¼ hi; vi

ð2Þ ¼

2
666664
sgn
�
hi � hj1

�
sgn
�
hi � hj2

�
«

sgn
�
hi � hjk

�

3
777775;

vi
ð3Þ ¼

2
666664
sgn
�
hi � Jij1

�
sgn
�
hi � Jij2

�
«

sgn
�
hi � Jijk

�

3
777775; vi

ð4Þ ¼

2
666664
sgn
�
hihj1Jij1

�
sgn
�
hihj2Jij2

�
«

sgn
�
hihjkJijk

�

3
777775

where sgn($) is the sign function and fj‘gk‘¼1ð¼: N ðiÞÞ denote
the index set of nodes connected to node i. These handcraed
features serve to incorporate domain knowledge of the Ising
model into our model; specically, the facts that spin–spin
interactions with large coefficients or strong external magnetic
elds have a signicant impact on the spin conguration of the
system, and that frustration—the absence of a spin congura-
tion that simultaneously minimizes all interaction energies—
generates a complex energy landscape.
4.4 Encoder with graph transformer convolution

The embedded graphs are converted into encoded representa-
tions by alternately applying graph transformer convolutional
layers47 and feed-forward layers. Specically, local message
passing and feature transformation are performed according to
the following equations:

v
0
i ¼ LayerNorm

 
W1vi þ

X
j˛N ðiÞ

aij

�
W2vj þW3eij

�!
;

aij ¼ softmax

 
ðW4viÞu

�
W5vj þW6eij

�
ffiffiffi
d

p
!
;

v
00
i ¼ LayerNorm

�
v
0
i þW8GELU

�
W7v

0
i

��
;

© 2025 The Author(s). Published by the Royal Society of Chemistry
where the matricesWk(k= 1,., 8) are trainable weight, and d is
the dimension of the intermediate representations (i.e. d =

256). LayerNorm($) is layer normalization,63 somax($) denotes
the somax function, and GELU($) refers the GELU activation
function60 applied element-wise. This base module is repeated
12 times, and the resulting node features, indexed by node
order, serve as input to the decoder. Although using 12 itera-
tions risks issues of graph neural networks like over-
smoothing,64 over-squashing,65 and graph bottlenecks,66 we set
the iteration count to 12 to align the model scale with that of
well-known language models such as T5 and GPT-1.
4.5 Direct preference optimization

Traditionally, supervised learning with labeled dataset has been
widely used in machine learning applications to quantum
information processing. Examples include quantum circuit
compilation,37,38,67 ansatz generation for VQAs,68,69 and
diffusion-based quantum circuit generation.35 However, this
approach faces some signicant challenges. The most notable
issue is the scalability. Preparing training data using classical
computation quickly becomes infeasible for large-scale circuits
exceeding 50 qubits. Furthermore, for complex tasks, it is
difficult to prepare ground-truth circuits, or the circuit structure
may not be uniquely dened. Consequently, preparing high-
quality training datasets remains problematic.

For these reasons, we employ a preference-based approach
using direct preference optimization (DPO).39 DPO is a training
strategy derived in the eld of reinforcement learning from
human feedback (RLHF),70,71 used to ne-tune LLMs for gener-
ating preferred outputs. In this approach, multiple outputs are
sampled and parameters are updated to increase the likelihood
of preferred outputs while decreasing that of less preferred
ones. Typically, in LLMs, human evaluators determine the
preference of outputs. In our study, we assess the preferrability
of circuits using the computed expectation values of the
Hamiltonian.

Fig. 9a shows the schematics of our DPO-based training
process. The expected DPO loss function used in this work is
dened by:

L DPOðqÞ :¼ E
x
E

w_‘
Lðw; ‘; x; qÞ;

Lðw; ‘; x; qÞ :

¼ log

(
1þ exp

(
�b

 
log

pq
�
U ðwÞ		x�

pref

�
U ðwÞ

		x�
� log

pq
�
U ð‘Þ		x�

pref

�
U ð‘Þ

		x�
!))

where fUðkÞgMk¼1 is the set of sampled circuits, and w_‘ indi-
cates that hO ðxÞiUðwÞ\hO ðxÞiUð‘Þ , i.e., the circuit U(w) is preferred
over the circuit U(‘). pref($jx) is a reference probability and serves
as the baseline for the optimization during the DPO, and b is
a hyperparameter controlling the inuence of pref. In this work,
we use prefðUjxÞfexpf �hO ðxÞiUg. Since the negative log-
sigmoid function log(1 + exp(−x)) is monotonically
Digital Discovery, 2025, 4, 2229–2243 | 2239
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Fig. 9 Training strategy for GQCO. (a) Training iterations of direct preference optimization (DPO). For a randomly generated input problem,
multiple quantum circuits are sampled, and the expected value of the Hamiltonian is computed for each one. The model parameters of the
encoder and decoder are updated to increase the probability of generating the circuit with the lowest energy value while decreasing the
probabilities of generating the other circuits. (b) Curriculum learning based on the number of qubits. We start training by generating circuits with
three qubits and gradually increase the complexity of the task by increasing the number of qubits. (c) Expert tuning. The weights of the shared
layers, such as the attention layers, are fixed, and the expert layers are fine-tuned.
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decreasing, the function L is minimized when pq(U
(w)jx) is

maximized and pq(U
(‘)jx) is minimized. In other words, this loss

function is designed to increase the generation probability of
preferred circuits while decrease the probability of non-
preferred circuits.

Ideally, the function L should be computed for all possible
pairs of the M sampled circuits, totaling M(M − 1)/2 combina-
tions. However, to reduce computational overhead, we employ
the best-vs-others empirical loss, dened as follows:

L BvO
DPOðqÞ :¼

1

jDxj
X
x˛Dx

1

M � 1

X
‘

Lðwbest; ‘;x; qÞ

where wbest represents the index of the circuit with the smallest
expectation value for each input x, and Dx is an input dataset
with size jDxj.

However, if allM sampled circuits are identical, the gradient
of the loss will be zero regardless of the magnitude of the ex-
pected values, preventing the model from being trained effec-
tively. To mitigate this issue, we employ contrastive preference
optimization (CPO),72 an improved version of DPO. In addition
to the DPO loss, CPO introduces a negative log-likelihood term
on the probability of generating the most preferred output. In
summary, the loss function used in this work is given by:

L BvO
CPOðqÞ :¼

1

jDxj
X
x˛Dx

"
1

M � 1

X
‘

Lðwbest; ‘;x; qÞ � pq
�
U ðwbestÞ

		x�
#

(3)

The hyperparameter b is set to 0.1, and the number of
samplings M is adjusted according to the number of qubits to
maximize the utilization of computational memory. Model
training proceeds by generating an input x uniformly at random
2240 | Digital Discovery, 2025, 4, 2229–2243
as a coefficient of the Ising Hamiltonian (i.e., jDxj ¼ 1),
computing the gradient based on the loss function eqn (3), and
iteratively updating the parameters. See the ESI† for detailed
training settings, including the values of M.
4.6 Qubit-based mixture-of-experts

Depending on the number of variables in a combinatorial
optimization problem, quantum computation requires a corre-
sponding number of qubits. To effectively handle the diversity
of tasks resulting from variations in problem size, we employ
the mixture-of-experts (MoE) architecture,49–51 which is
commonly used in LLMs. As illustrated in Fig. 2 and 9b, c, each
feed-forward module in the model is partitioned into special-
ized submodules, referred to as “experts”. The gating mecha-
nism dynamically selects layers based on the number of qubits,
forming what we term a qubit-based MoE. This design balances
the need for diverse model representations while limiting the
growth of model parameters.
4.7 Curriculum learning

The qubit-based MoE enhances model scalability. By incorpo-
rating additional experts and restarting training, circuit gener-
ators can be trained for varying numbers of qubits without the
need to retrain the entire model from scratch. Leveraging this
capability, we adopt curriculum learning,52 a method that
incrementally increases task complexity by starting with
simpler problems and gradually progressing to more chal-
lenging ones.

Training begins with randomly generated combinatorial
optimization problems involving 3 qubits. Performance is
© 2025 The Author(s). Published by the Royal Society of Chemistry
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monitored regularly, and training continues until the model
achieves an accuracy exceeding 90% on randomly generated test
problems. Once this threshold is met, size-4 optimization
problems are introduced as training candidates, along with the
integration of a new expert module within theMoE layers. Then,
performance is continuously monitored, and the maximum
problem size in the training dataset is gradually increased.

Even when the maximum problem size is nmax, problems
involving fewer qubits (<nmax) are still generated as part of the
training data. The probability of generating a problem of size n
when the current maximum size is nmax is dened as:

pðnjnmaxÞ ¼

8>>>>>>><
>>>>>>>:

0 if n# nmax\3

1 if n ¼ nmax ¼ 3;

0:5

nmax � 3
if 3# n\nmax;

0:5 if 3\n ¼ nmax:

(4)

In brief, when the number of qubits is larger than three, the
probability of generating the largest problem size is 0.5, and the
remaining 0.5 probability is equally divided among all smaller
sizes. Notably, the probability of generating previously trained
problem sizes is not set to zero. This strategy mitigates cata-
strophic forgetting73—a phenomenon in which performance on
previously learned tasks declines rapidly in continuous learning
and online learning. Without such adjustments, continuously
updating training data could lead to the model forgetting
previously acquired knowledge. A small amount of instances for
smaller problem sizes helps to maintain consistent perfor-
mance across all problem sizes.

4.8 Simulated annealing

In this study, simulated annealing (SA) was implemented using
D-Wave's Ocean library. The number of reads per sampling was
xed at 100, while the number of sweeps varied across the set
{102, 103, 104, 105, 106, 107} to evaluate the performance.

4.9 Quantum approximate optimization algorithm (QAOA)

The standard QAOA34 was employed as the baseline for the
quantum combinatorial optimization solver. The number of
layers was varied from 1 to 4. Specically, the quantum circuit
was initialized by applying Hadamard gates to all qubits, fol-
lowed by repeated applications (from 1 to 4 iterations) of the
problem Hamiltonian and mixing Hamiltonian. Parameter
optimization was conducted using the Nelder–Mead algo-
rithm,74 with initial parameters uniformly and randomly
initialized within the range−p/8 to p/8. Optimization iterations
were capped at a maximum of 1000 steps. All quantum circuit
construction, simulation, and parameter optimization were
performed using CUDA-Q75 on GPU hardware.

4.10 Hardware conguration

Multiple compute nodes, each consisting of four NVIDIA V100
GPUs, were used, and the model was trained using a distributed
data parallel (DDP) strategy.76 The quantum circuit simulations
were performed on a CPU (Intel Xeon Gold 6148 processor)
© 2025 The Author(s). Published by the Royal Society of Chemistry
environment using Qiskit.57 The number of GPU nodes used in
training and the epochs differ for each stage of the curriculum
learning. The details are summarized in the ESI.†

For performance evaluation, the model inferences and
quantum circuit simulations were both performed on an NVI-
DIA RTX A6000 GPU. All other classical computations were
performed on an Intel Core i9-14900K CPU. For the real
quantum device, we used IonQ Aria via Amazon Braket.
Data availability

All training datasets were randomly generated during training
and were therefore not stored. Instead, the random seeds are
xed to ensure reproducibility. These seeds, along with the test
dataset and code, are available at https://github.com/shunyaist/
generative-quantum-combinatorial-optimization and archived
at https://doi.org/10.5281/zenodo.15859123. The trained and
netuned models are available at https://doi.org/10.5281/
zenodo.15858977.
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