#® ROYAL SOCIETY
PPN OF CHEMISTRY

Digital
Discovery

View Article Online

View Journal | View Issue,

W) Checkfor updates Solving an inverse problem with generative models

Cite this: Digital Discovery, 2025, 4, John R. Kitchin@®*

1856
Inverse problems, where we seek the values of inputs to a model that lead to a desired set of outputs, are
considered a more challenging problem in science and engineering than forward problems where we
compute or measure outputs from known inputs. In this work we demonstrate the use of two generative
machine learning methods to solve inverse problems. We compare this approach to two more
conventional approaches that use a forward model with nonlinear programming, and the use of
a backward model. We illustrate each method on a dataset obtained from a simple remote instrument

that has three inputs: the setting of the red, green and blue channels of an RGB LED. We focus on
Received 3rd April 2025 L outputs f light that intensity at 445 nm, 515 nm, 590 d 630
Accepted 10th June 2025 several outputs from a light sensor that measures intensity a nm, nm, nm, an nm.
The specific problem we solve is identifying inputs that lead to a specific intensity in three of those

DOI: 10.1035/d5dd00137d channels. We show that generative models can be used to solve this kind of inverse problem, and they

Open Access Article. Published on 17 June 2025. Downloaded on 10/28/2025 5:26:31 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

rsc.li/digitaldiscovery

1 Introduction

In many problems of interest in science and engineering we
have some variables we can control (we often call these inputs),
and we seek to understand how those variables affect properties
we measure (often called outputs). A conventional approach to
develop this understanding is to develop a model that relates
the inputs to outputs. Typically the model has some fittable
parameters, and we might express this model as f{x; p) = y for
the inputs x, outputs y and parameters p. The model develop-
ment typically involves getting data for pairs of (x,), and fitting
a model by linear or nonlinear regression, or through the use of
machine learning or other data-driven methods to develop the
model. We call this a forward model.

Once we have a model, we can use it to predict outputs for
new inputs, for example, given a model to estimate a rate
constant as a function of temperature, one might predict the
rate constant at a different temperature. The opposite of this,
where we ask what inputs give us a desired output, is what we
call the inverse problem here. For example, what temperature is
required to achieve a specific rate constant? Some models are
easy to invert. For example, if our model was: k = k, exp(—Ea/RT)
as a forward model relating a rate constant to the temperature
and some parameters (ko, E,), it is straight forward to derive an
inverse model: T = —E/R/(In k — In k,). Now for a given desired
k (assuming we already know the parameters (ko, E5)), we can
easily compute the input variable T by evaluating the right hand
side of that equation with those known parameters and the
desired rate constant.

Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave.,
Pittsburgh, PA 15213, USA. E-mail: jkitchin@andrew.cmu.edu

1856 | Digital Discovery, 2025, 4, 1856-1869

have some advantages over the conventional approaches.

For models that are not analytically invertible, one can resort
to nonlinear programming to solve a problem where one iter-
atively varies x to find the desired y, usually to find a solution to
an equation like y - f{x; p) = 0. We presented a complementary
approach that uses differentiable programming® to derive
differential equations that link the input and output spaces
through differential equations. Integration of these solutions
allows one to map out connected input spaces and output
spaces. Thus, with knowledge of one (x,, yo) pair, one can
integrate along a path from y, to a final desired value yr and
obtain the corresponding final input value x¢ from the solution.

For well-behaved systems (which we define later), an alter-
native approach to inverting a forward model is to simply
develop a backward model. Here we express the model as g(y; q)
= x where again x are the inputs, y are the outputs, and g are
parameters associated with the backward model. This model
may be data-driven, e.g. using machine learning, or, where
possible, may have an analytical form that is used to regress the
parameters. Either way, now one simply evaluates g(y; ¢g) at the
desired output to identify the input variables that determine it.

Bayesian statistical inversion (BSI) can also be used to solve
inverse problems.”> This approach is particularly useful when
a physical model is available, and prior information is available,
or attainable by experimentation. BSI has additional benefits of
integrated uncertainty quantification, and incorporation of
prior information when available.

In this work, we will explore an approach using generative
models for inverse problem solving. The basic idea is that there
are ways to use machine learning to make generative models
that are capable of generating samples of (x, y) that are
consistent with the distribution of those pairs that is known
from data. We show that we can effectively solve inverse prob-
lems by using conditional generation of samples, where we

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d5dd00137d&domain=pdf&date_stamp=2025-07-05
http://orcid.org/0000-0003-2625-9232
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00137d
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD004007

Open Access Article. Published on 17 June 2025. Downloaded on 10/28/2025 5:26:31 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

specify one or more of the values, and then generate the rest of
the values. This approach offers some benefits over the methods
described above which we discuss.

Conditional generation of samples is not a new idea; we
commonly see it today in applications of text generation from
large language models, or in image generation. Generative
models have been used to solve inverse problems in mechanics.?
Invertible neural networks have been used in inverse problems,
e.g. to determine hidden parameters from measurements.*
Gaussian mixture models have been used to predict explanatory
variables (we call these inputs) from objective variables (we call
these outputs).” Generative models have recently been used to
generate tabular data.®” This work often seeks to impute missing
data. However, when that data contains columns of input and
output variables that imputation can be seen in the context of
inverse problems; i.e., given some outputs, what are the corre-
sponding inputs? In this work we focus on this use of generative
models for solving an inverse problem.

There may be utility in distinguishing between purely data-
driven approaches and those that involve a physical model for
solving inverse problems here. With data-driven models one
typically resorts to generating a learning curve to determine how
much data is required to achieve an accuracy goal. In the case of
a physical model, one can often use the structure of the model
to design optimal experiments that minimize the amount of
data required for some level of accuracy, especially when prior
information is available. A mix of these approaches is often
used. For example, if we have prior knowledge that a system is
linear, we may choose a linear kernel in a Gaussian process or
the Relu activation function in a neural net, or a linear decision
tree model to reflect that. We can incorporate physical infor-
mation into data-driven models.

We focus on “well-behaved” inverse problems here, by which
we mean there is a unique solution to the inverse problem. That
is not always true, and we refer to ref. 2 for a thorough discussion
of the challenges that can be observed in inverse problems. Here
we consider some simple examples for illustration. Consider the
relationship y = x> There is no (real value of) x where y = —1. In
an inverse problem, it is possible for there to be more than one
solution, even when one set of inputs leads to one output. The
inverse is not always true; an output might correspond to two or
more inputs. In the last example, there are two values of x (x =
+1) where y = 1. The dataset we will use in this work does not
have these problems, and in this work we do not consider these
interesting issues. Our goal in this work is to introduce and
motivate the idea of generative models for inverse problem
solutions. We have begun exploring how generative approaches
work in these scenarios including nonlinear and many-to-one
mapping datasets,® but do not discuss them here.

The paper proceeds as follows. First, we generate an experi-
mental dataset from a model instrument. We use exploratory
data analysis to choose some input and output variables. Then
we illustrate several approaches to solving an inverse problem
of finding inputs that give a corresponding desired output. We
start with a forward linear model with nonlinear programming
to invert it. Then, we illustrate a partial least squares backward
model that is simply evaluated to solve the problem. Finally, we

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

consider two generative approaches: first, generation by directly
sampling of a learned distribution; and second, generation by
sampling a reference distribution and transforming it to a new
distribution.

2 Methods

To illustrate these approaches we will use a simple dataset
generated using Claude-Light.*'* This simple instrument has an
RGB LED with three settable inputs: the red, green and blue
channel intensity as a float number from 0 to 1. There is a light
sensor with 10 outputs at 8 wavelengths of light from blue to
red, a near-IR channel, and a clear channel. The outputs are 16
bit counts that vary from 0 to 2'°-1. The LED and light sensor are
connected to a Raspberry Pi which provides the interface to
control the instrument via a REST APIL The instrument is an
adaptation of the SDL-light instrument previously reported,™
and the instrument used in this work is shown in Fig. 1.

For this study, we generated 100 samples of the three input
channels with a Latin hypercube sampling strategy, and
measured the outputs for each sample. The sampling strategy is
arbitrary, and other choices like uniform sampling or a surface
response design of experiments could also be used. The
important feature is to span the RGB input space. That dataset
is used in each of the examples that follow, and the code used to
generate it is available in Section 8.2. We consider four different
approaches to solving the inverse problem, which is what inputs
are required to achieve an output of 2'* in three of the output
channels. This is an arbitrary choice that was made for conve-
nience (they are all the same) and feasibility (it is possible to get
that intensity in each channel).

3 Results and discussion
3.1 Exploratory data analysis

We start by looking at all the data as a pairplot in Fig. 2, which is
a convenient way to visualize correlations between variables. In
the following sections we will only consider a subset of this data

[1599 | 2350 [6299 [23372] 8581 [10845]16020 | 6938 |56051[15170|

Fig. 1 An image of Claude-light showing the RGB LED that is
controlled by the input settings (R, G and B) and typical outputs from
the light sensor.

Digital Discovery, 2025, 4, 1856-1869 | 1857

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00137d

Open Access Article. Published on 17 June 2025. Downloaded on 10/28/2025 5:26:31 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

for ease of presentation and discussion. We will focus on the
three inputs, and four of the outputs (445 nm, 515 nm, 590 nm,
and 630 nm). This shows that many of the outputs are linear in
one or more of the inputs, and some do not depend on the
inputs much at all. For example the R input channel is highly
correlated with the 590 and 630 nm output channels which
measure reddish colored light, but it is not correlated at all with
445 nm or 515 nm which are for blue or green lights where there
is no overlap of the wavelengths emitted from the red channel
and these output channels. The B and G inputs are correlated
with the 445 nm and 515 nm respectively, and uncorrelated with
the other output channels.

Ezploratory Data Analysis
import jsonlines

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

data = np.array([line['in'] + list(line['out'].values())
for line in jsonlines.open('rgb.jsonl')])

df = pd.DataFrame(data, columns=['R', 'G', 'B', "415nm", "445mm",
"480nm", "515om", "555nm", "590nm",
"630nm", "680nm", "nir", "clear"l)

'630nm']])

g = sns.pairplot(df[['R', 'G', 'B', '445nm', '515nm', '590nm’',

inputs = ['R', 'G', 'B']

remove tick labels

for ax in g.axes.flatten():
ax.set_xticklabels([])
ax.set_yticklabels([])

make inputs bold, and outputs italics
for i, ax_row in enumerate(g.axes):
for j, ax in enumerate(ax_row):

y_col = df.columns[i]
x_col = df.columns[j]

Set z-azis label formatting
fs = 32
if x_col in inputs:
ax.set_xlabel (ax.get_xlabel(),
fontweight='bold', fontsize=fs)
else:
ax.set_xlabel (ax.get_xlabel(),
fontstyle='italic', fontsize=fs)

Set y-azis label formatting
if y_col in inputs:
ax.set_ylabel(ax.get_ylabel(),
fontweight='bold', fontsize=fs)
else:
ax.set_ylabel(ax.get_ylabel(),
fontstyle='italic', fontsize=fs)

plt.savefig('pairplot.png', dpi=300)

For convenience we define several Pandas DataFrames for
the inputs and outputs here, as well as a train and test set. These
variables are used in all of the subsequent examples.

extract inputs and outputs
from sklearn.model_selection import train_test_split

X = daf[['R', 'G', 'B']]
Y = df[['445nm', '515nm', '590nm', '630nm']]
X_train, X_test, Y_train, Y_test = train_test_split(X, Y,

test_size=0.2,
random_state=42)

1858 | Digital Discovery, 2025, 4, 1856-1869

View Article Online

Paper

3.2 Linear forward model + nonlinear program

It is pretty evident from Fig. 2 that the outputs are linear in one
or more of the inputs. We can fit a simple linear model: Y = Xp
in a least squares sense to estimate the parameters p in the
model. We use a numpy library function for the fitting, but one
could readily apply the normal equation and basic linear
algebra if desired, or a model from scikit-learn." This
approach benefits from simplicity in the math and
implementation.

rcond=None suppresses a DeprecationWarning in lstsq
pars = np.linalg.lstsq(X_train, Y_train, rcond=None) [0]

In multivariate models it is a challenge to visually show the
goodness of fit. We consider a parity plot and R* values for each
fit to the train and test data here (Fig. 3). We think it is good
practice to combine qualitative visual assessment (e.g. the parity
plot) with quantitative metrics like R?>, MAE, RMSE, etc. Quan-
titative metrics alone can be misleading, and graphs are
useful.*®

There is nothing new in this approach, we simply use it to
start a foundation for comparison later. The key observations in
the model are that the forward model “looks good” for both the
train and test data; parity is good, R” is close to 1. Those are all
indicators of a good model. We follow a good practice of eval-
uating metrics on a test set of data that was not used in the fit.

from sklearn.metrics import r2_score

pred_train = X_train @ pars
pred_test = X_test @ pars

plt.figure(figsize=(4, 6))

for y, pr, c, label in zip(Y_train.values.T, pred_train.values.T, 'bggr',
Y_train.columns):
R2 = r2_score(y, pr)
plt.plot(y, pr, '.', color=c,

alpha=0.4)

for y, pr, c, label in zip(Y_test.values.T, pred_test.values.T, 'bggr',
Y_test.columns) :
R2 = r2_score(y, pr)
plt.plot(y, pr, 's', color=c, label=f'{label} $R"2$={R2:1.3f}')

plt.xlabel('Measured values (fit)')
plt.ylabel('Predicted values')

plt.plot ([0, 2%*16], [0, 2**16], 'k--', label='parity')
plt.legend()

plt.tight_layout()

plt.savefig('lr.png', dpi=300)

We now work out our first inverse problem: what RGB
settings are required to get an output of 2** counts in each of the
channels for 445 nm (blue), 515 nm (green), and 630 nm (red)? A
traditional way to solve this is with a nonlinear optimizer where
we seek the settings that minimize the error between the
desired output and predicted output. We use a minimizer here
in case there is not an exact solution, and so we find the closest
solution. It is noteworthy that the solution here can be sensitive
to the objective function, initial guess and optimizer settings.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00137d

Open Access Article. Published on 17 June 2025. Downloaded on 10/28/2025 5:26:31 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

445nm

515nm

590nm

630nm

590nm

515nm

B 445nm 630nm

Fig. 2 Pairplot of the data. Bold axis labels are input variables, and
italicized axis labels are measured output variables. The main diagonal
shows the distribution of values. The off-diagonal plots if there are
correlations between the variables. The red channel is highly corre-
lated with two output channels (590 nm and 630 nm), and the blue
(445 nm) and green (515 nm) are each correlated with one channel.

B 445nm R?=0.999 ,
H 515nm R?=1.000
600004 M 590nm R2=0.993
B 630nm R?=0.996
-=—=- parity ’7’
50000 A
.(‘ff
7
@ 40000 - d
= 4
©
>
©
§oi
L 30000 A
©
(0]
a
20000
10000 +
() 4
0 20000 40000 60000

Measured values (fit)

Fig.3 Parity plots and R? values for the linear regression model for the
train and test data sets. Train points are transparent circles, and test
points are squares.

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

Inverse by an iterative nonlinear program
goal = (2%*x14, 2**14, 2%*14)

def objective(RGB):
RGB = np.atleast_2d(RGB)
pred = (RGB @ pars)[0][[0, 1, 3]]
minimize the summed squared error
return np.sum((goal - pred)**2)

from scipy.optimize import minimize
guess = [0.5, 0.5, 0.5]
sol = minimize(objective, guess)

with np.printoptions(precision=2):
print(f'The solution is {sol.x}')
s = (sol.x @ pars)[[0, 1, 3]]
print(f'At the solution we expect an output of {s}')
print(f'The goal was {goall}')

The solution is [0.49 0.24 0.52]
At the solution we expect an output of [16384. 16384. 16384.]
The goal was (16384, 16384, 16384)

The model is not difficult to solve here, and there should be
only one solution. This is not a general result, there could also
either be zero or many solutions in other models. It is only
a minor inconvenience (our opinion) that an iterative solver
must be used with a guess for the inverse solution. As imple-
mented here, we have no uncertainty quantification; that is
possible of course, it just requires more code," or the use of
a different model such as Bayesian linear regression or
a Gaussian process model.

3.3 Partial least squares backward model

We can avoid the nonlinear solver if we can develop a backward
model. In a backward model we want floutputs) = inputs. Like
the forward model, this is also a supervised regression task. We
aim to solve the inverse problem again for what input settings
(R, G, B) will lead to an output of 2'* counts in each of the output
channels for 445 nm (blue), 515 nm (green), and 630 nm (red).
We only have explicit goals for these three outputs, so these can
be the only ones in the backward model (there is not an easy way
to say the 590 nm output can have any value). Later we will see
that generative models allow us to condition on only some of
the outputs, but the model we use here does not allow that. If we
did know what value we want 590 nm to have, we could add it as
an additional output, but it would be easy to pose a problem
where there is no good solution. For example, the 590 and
630 nm channels show a lot of collinearity, so it would not be
possible to find a setting where 590 nm = 2'° and 630 nm = 2**
for example. Instead, they are both likely to have nearly the
same value for any R setting.

A simple linear regression might work, but there are known
collinearities in the outputs of this data. A partial least squares
approach can be used to eliminate the issues with collinearity.*
In partial least squares we transform the variables into a new
orthogonal vector space (thus removing collinearity). We have to
choose the dimensionality of that space. Here we choose a three
dimensional space because there is not a lot of overlap between
the red, blue and green channels, and we expect there to be
three independent variables as a result. scikit-learn®
provides a convenient library for this approach which we use

Digital Discovery, 2025, 4, 1856-1869 | 1859

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00137d

Open Access Article. Published on 17 June 2025. Downloaded on 10/28/2025 5:26:31 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

here. We train on the trainset and evaluate the model quality on
the test set (Fig. 4).

Backward model
from sklearn.cross_decomposition import PLSRegression

Train PLS Model to Invert Y -> X

Use as many components as latent variables in X

pls = PLSRegression(n_components=3)
pls.fit(Y_train[['445nm', '515nm', '630nm'l], X_train)

Step 3: Predict on test data
X_pred = pls.predict(Y_test[['445nm', '515nm', '630nm']1)

Step 4: Evaluate Performance
r2 = r2_score(X_test, X_pred)

plt.figure(figsize=(4, 6))
for x, px, ¢ in zip(X_train.values.T,
pls.predict(Y_train[['445nm', '515nm', '630nm']]).T,
'RGB'):
plt.plot(x, px, '.', color=c.lower(),
alpha=0.4)

for x, px, ¢ in zip(X_test.values.T, X_pred.T, 'RGB'):
plt.plot(x, px, 's', color=c.lower(),
label=f'{c} $R™2$={r2_score(x, px):1.5f}')

plt.plot([0, 11, [0, 1], 'k--', label='parity')

plt.xlabel('Known input')
plt.ylabel('Predicted input')
plt.legend()

plt.tight_layout()
plt.savefig('pls.png', dpi=300)

Solve the inverse problem by evaluation
goal = (2xx14, 2xx14, 2xx14)
out = pls.predict(pd.DataFrame([goall,

columns=['445nm', '515nm', '630nm']))

with np.printoptions(precision=2):
print(£"R2 Score for inverse prediction: {r2:.3f}")
print(f'The desired input is {out[0]}')

R2 Score for inverse prediction: 1.000
The desired input is [0.47 0.23 0.52]

We get nearly the same answer as before. The main
advantage of this approach over the previous one is that we do
not have to invoke a nonlinear program solver to get the
answer we want; we simply evaluate the model for the desired
outputs and get the corresponding inputs. We do not need to
back solve for what output is expected here; we specified it
from the beginning. It is necessary to construct the problem
with the specific outputs we want to specify though. Here we
had to leave one output channel (590 nm) out because we did
not want to specify what value it should have, and in this
construction we cannot estimate it. In this approach we also do
not have any uncertainty quantification, and it would be
considerably more challenging to get it. Of course, other
models like Gaussian process models, or Bayesian models that
have more integrated uncertainty quantification might be used
to mitigate this limitation. Partial least squares is not the only
way to build this model. Many other data-driven approaches
could be used with various advantages and disadvantages. For
example, a machine learning model like a neural network or
Gaussian process model might be used, even with a piece-wise
linear activation function or linear kernel to leverage our

1860 | Digital Discovery, 2025, 4, 1856-1869

View Article Online

Paper
104 ® R R?=0.99990
H GR?=0.99991
H BR?=0.99995
—-—=- parity
0.8
5 0.6
Q.
£
el
]
k8]
2
g
a 0.4 A
0.2
0.0 A
0.0 0.2 0.4 0.6 0.8 1.0

Known input

Fig. 4 Parity plot for partial least squares backward model. Train data
is shown as transparent circles, and test data as squares.

knowledge of the data. Nonlinear models also work with
enough data, and care to avoid overfitting.

We note here that it is possible to get unphysical solutions to
the inverse problem here. For example, here we ask for the
inputs that would yield negative intensities in the output. That
is not physically possible, but is mathematically defined with
this model. As with other data-driven approaches, we should
avoid making predictions outside the known data space.

unphysical output
out = pls.predict(pd.DataFrame([(-2000, -2000, -2000)1,
columns=['445nm', '515nm', '630nm']))
with np.printoptions(precision=2):
print(£"R2 Score for inverse prediction: {r2:.3f}")
print(f'The desired input is {out[0]}')

R2 Score for inverse prediction: 1.000
The desired input is [-0.13 -0.05 -0.09]

Alternatively, here we ask for inputs that would lead to
intensities greater than can be measured. The instrument
cannot do this because the sensor saturates at 2'°-1, and the
inputs cannot exceed 1. Nevertheless, the model can extrapolate
and provides an answer even though it is not possible in the
experiment.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00137d

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 17 June 2025. Downloaded on 10/28/2025 5:26:31 PM.

(cc)

Paper

445nm

515nm

590nm

630nm

590nm

"R G B 445nm 515nm 630nm

Fig. 5 Pair plot of samples from the Gaussian mixture model.

out of range output
out = pls.predict(pd.DataFrame([(2%*17, 2%%17, 2#*17)],
columns=['445nm', '515nm', '630nm']))
with np.printoptions(precision=2):
print (f"R2 Score for inverse prediction: {r2:.3f}")
print(f'The desired input is {out[0]}')

R2 Score for inverse prediction: 1.000
The desired input is [4.23 2.01 4.27]

Finally, we note that this example is a well-behaved inverse
problem where there is a one-to-one mapping of inputs to outputs.
If there was a many to one mapping, this model would not be able
to find them all, and may not even fit the data very well. In
contrast, with the forward model, one may be able to find multiple
inputs from different initial guesses. Thus, these approaches have
different benefits for different problems, and it is necessary to
know enough about the problem to choose between them.

3.4 Generative samples of a distribution - Gaussian mixture
models

We now transition to a generative approach. Here we aim to
represent the joint distribution of inputs and outputs with
a Gaussian mixture model.'® Then, we will generate samples
from the joint distribution. Each sample will contain the inputs
and outputs. Once the distribution is known, we can generate
conditional samples, e.g., where we specify the outputs and
generate the inputs. See Section 8.3 for an example of condi-
tional generation in two dimensions.

The joint distribution is approximated as a sum of multivariate
Gaussian distributions using the gmr Python package."” The most
important choice to make is how many Gaussians to include in the
mixture. The data here is pretty simple: the outputs are each linear
in one of the inputs. That suggests we might only need one
multivariate Gaussian. The covariance will capture the correlations

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

we observed in Fig. 2. This choice is a classic hyperparameter
tuning problem, and one might use any of the existing methods to
fine-tune this in a more complex example.”® In ref. 8 we use
a Bayesian Information Criteria (BIC) to identify the number of
Gaussians required to minimize the BIC, which finds the best
compromise in under/overfitting. Alternatively, there are tools in
scikit-learn for this. As with models from scikit-learn,
a model is created and fitted with one or two lines of code.

Generative model with Gaussian Mizture Model
from gmr import GMM

A dataframe of data to fit. We have to combine the inputs and outputs
into a single DataFrame

D_train = pd.concat([X_train, Y_train], axis=1)

D_test = pd.concat([X_test, Y_test], axis=1)

Create and fit model
gmm = GMM(n_components=1) .from_samples(D_train.values) ;

It is not obvious what has been achieved yet, but we have
created a model that we can generate samples from. We cannot
analyze this in the usual way of parity plots yet because when we
generate a sample it contains generated values for the inputs and
outputs that are independent of the training data. To see what the
model does, we make 500 samples from the fitted model, and then
we look at the pair plot of the samples in Fig. 5. The key point to
observe is that the correlations look like the same pair plot we saw
before in Fig. 2. The distributions on the diagonal look different,
but that is just because we used a more uniform distribution
(technically a Latin hypercube sampling) before, and the distri-
butions sampled here are Gaussian. That difference is not
important here because we only care about the covariances (i.e. the
correlations between inputs and outputs) of each distribution.

Ezploratory data analysis with the generative model
import seaborn as sns
import pandas as pd

Generate samples from the entire distridbution
gmnm_df = pd.DataFrame (gmm.sample(500),
columns=['R', 'G', 'B', '445nmm',
'515nm', '590nm', '630nm'])
g = sns.pairplot(gmm_df)
inputs = 'RGB'

for ax in g.axes.flatten():
ax.set_xticklabels([])
ax.set_yticklabels([])

for i, ax_row in enumerate(g.axes):
for j, ax in enumerate(ax_row):

y_col = df.columns[i]
x_col = df.columns[j]

Set z-azis label formatting
fs = 32
if x_col in inputs:
ax.set_xlabel (ax.get_xlabel(),
fontweight='bold', fontsize=fs)
else:
ax.set_xlabel(ax.get_xlabel(),
fontstyle='italic', fontsize=fs)

Set y-azis label formatting
if y_col in inputs:
ax.set_ylabel (ax.get_ylabel(),
fontweight='bold', fontsize=fs)
else:
ax.set_ylabel (ax.get_ylabel(),
fontstyle='italic', fontsize=fs)

plt.savefig('gmm.png', dpi=300);

Digital Discovery, 2025, 4, 1856-1869 | 1861

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00137d

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 17 June 2025. Downloaded on 10/28/2025 5:26:31 PM.

(cc)

Digital Discovery

On its own it is interesting we can generate samples, but the
real value of this model is we can generate conditional samples.
That means we can specify some values we want, and then
generate the rest. So for an inverse problem, we can specify the
values we want for some of the outputs, and then generate the
rest of the numbers, which includes the input.®

We can use this to make something like a parity plot. We are
most accustomed to plot predicted outputs against measured
outputs. We can do that here by specifying we want to condition
the predictions on the desired inputs. In the gmr implementa-
tion, one specifies the columns and values to fix, and then
predicts the rest. We use a train/test split as we did before

(Fig. 6).

Conditional generation of outputs from known inputs

RGB_train = D_train[['R', 'G', 'B'l].values
RGB_test = D_test[['R', 'G', 'B']].values
RGB_i = [0, 1, 2]

known inputs
known inputs
columns to fiz

these preditions are 445, 515, 590, 630 nm
p_train = gum.predict(RGB_i, RGB_train)
p_test = gmm.predict(RGB_i, RGB_test)

plt.figure(figsize=(4, 6))

for (color, colname, i) in [('r', '630nm', 3),
('g', '516mm', 1),
('b', '445mn', 0)]:
train data
plt.plot(D_train[colname], p_train[:, il,
alpha=0.4)

'.', color=color,

test
r2 = r2_score(D_test[colname], p_test[:, il)

plt.plot(D_test[colname], p_test[:, il, 's',
label=f'{colname} $R™2$={r2:1.5f}')

color=color,

plt.plot ([0, 2#*16], [0, 2%*16], 'k--', label='parity')
plt.xlabel('Measured')

plt.ylabel('Predicted')

plt.x1im([-5000, 70000])

plt.legend ()

plt.tight_layout()

plt.savefig('gmm-parity.png', dpi=300)

To solve the inverse problem, we simply specify the output
values and then generate the inputs. In this specific example,
the outputs we want to specify are in columns 3, 4 and 6. The
code below fixes the values of those columns and then predicts
the rest. The inputs we want are in columns 0, 1 and 2 of the
predicted values.

Conditional generation of the inputs for a desired output
x1 = [goal]

x1_index = [3, 4, 6] # indices of the output we are conditioning on
x2_predicted_mean = gmm.predict(x1_index, x1)
with np.printoptions(precision=2, suppress=True):

print(f'The desired input is {x2_predicted_mean[0][0:3]}')

The desired input is [0.47 0.23 0.52]

Finally, we can go one step further to estimate how confident
we are in the predictions. The generate function only gives us
the most likely value. The condition method instead draws
a number of samples randomly from the conditioned distri-
bution. Then we can consider statistical properties of that
distribution, for example, the standard deviation of it to

1862 | Digital Discovery, 2025, 4, 1856-1869

View Article Online

Paper

H 630nm R2=0.99990

B 515nm R2=0.99991 4
600004 M 445nm R2=0.99995
—-== parity]
14
50000 - ,
&
/
’
jci
¢
40000 - ’

k5 A
k8] 4
2
2 30000 -
o

20000 A

10000 -

0 .
0 20000 40000 60000
Measured

Fig. 6 Parity plot of predicted and measured outputs from the GMM
model. The train data is shown in transparent circles, and the test data
is shown in squares.

determine how certain we are in its value. If the distribution is
narrow, we would be confident in it. In this case, we can say we
are confident to three decimal places in the solution.

Conditional sampling to estimate distribution properties
c = gmm.condition(x1_index, [goall)

results = c.sample(100)

with np.printoptions(precision=4):
print(f'Mean: {np.mean(results, axis=0)[0:3]}')
print(£'Std: {np.std(results, axis=0)[0:3]1}')

Mean: [0.4686 0.2342 0.5158]
Std: [0.0023 0.0021 0.0021]

Generative models can also give unphysical or incorrect
answers if conditioned on out of domain values. We again ask
for the inputs that would give negative or greater than possible
outputs, and see that we again get inputs that are impossible;
the inputs must be between 0 and 1 for this instrument. See
Section 8.5.1 for an illustration of extrapolation with a GMM
model; essentially they extrapolate linearly from the closest
Gaussian distribution in the direction of extrapolation.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00137d

Open Access Article. Published on 17 June 2025. Downloaded on 10/28/2025 5:26:31 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

conditional sampling on unphysical and out of range outputs
c = gmm.condition(x1_index, [-2%*17, 2xx17, 2xx17])

results = c.sample(100)

with np.printoptions(precision=4):
print(f'Mean: {np.mean(results, axis=0)[0:3]}')
print(£'Std: {np.std(results, axis=0)[0:3]}')

Mean: [4.4367 2.0845 -4.3991]
Std: [0.0025 0.0022 0.002]

The Gaussian mixture model is an appealing, intuitive
approach to model a distribution as a sum of Gaussian distribu-
tions. The big advantage of this is one can condition the resulting
approximate distribution analytically, and the predictions should
be smooth and continuous. It is likely that this model will start to
scale poorly for high-dimensional systems, although we have no
direct measure of what “high” means here, but note that the
covariance matrices in the model are N x N for N dimensions.

3.5 ForestDiffusion

In the GMM approach we developed a model for the joint
distribution of inputs and outputs, and then used conditional
sampling to solve the inverse problem by specifying the outputs,
and then generating the inputs. Another way to solve this
problem is rather than learning that distribution and sampling
it, we instead develop a model for the function used to trans-
form one distribution to that distribution (see Section 8.4 for
a 1d example). Then we can generate samples by sampling the
reference distribution and transforming it to the new one.

There are two methods in this approach with generative
models: diffusion models and flow-based models. In a diffusion
model noise is added to the data in several steps (in images, this
is called a diffusion operation). Then, a model is trained to
denoise those samples back to the data. The model can then be
used to generate samples of data from the noise distribution. In
other words, the model is able to transform noise from a noise
distribution into samples with the data distribution. In a flow
model, we use a neural network to represent a vector field that
determines a “flow” from one distribution (e.g. a Gaussian
distribution) to the target distribution that represents the data.
A specific model is called continuous normalizing flows (CNF).*
The idea of this approach is an ODE-driven transformation of
a reference distribution, e.g., a Gaussian distribution, to the
desired distribution. As an analogy, consider a fluid flowing
through a pipe with a parabolic velocity profile. The pipe feeds
into a complex geometry that transforms that simple velocity
profile to a more complex one. For example, a pipe where the
diameter constricts to increase the fluid velocity enough to
transition from laminar flow (with a parabolic velocity profile)
to turbulent flow (with a more uniform velocity profile) repre-
sents a transformation from one distribution to another.

We use the ForestDiffusion® implementation which uses
a Gradient-Boosted Tree (GBT) and a flow matching technique
to learn the vector field that transforms the distributions. This
library makes it easy to build a model and we just have to decide
in advance which variables we want to condition on, and which

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

ones we want to generate. That is a feature of this imple-
mentation, and it is similar to the decision we had to make with
PLS. Here, we want to condition on three of the outputs for the
counts at 445 nm, 515 nm, and 630 nm in the data, and we want
to generate the rest of the numbers in the sample, which
includes the inputs and the remaining output channel. The
default settings for the ForestDiffusionModel work well in
this example, and we keep it simple by using them.

Conditional diffusion model using XGBoost and flow matching
from ForestDiffusion import ForestDiffusionModel

generate these numbers

X_model = D_train[['R', 'G', 'B']].values

conditioned on these ones

X_covs = D_train[['445nm', '515nm', '630nm']].values

forest_model = ForestDiffusionModel(X_model, X_covs=X_covs)

As before, we cannot easily assess goodness of fit like we could
with parity plots. Instead, we can do conditional generation with
this model, we just provide the values to condition on as an
additional argument to the generate method. Here we generate
the inputs we expect conditioned on the actual outputs and
compare that to the real inputs that led to the measurements.
The parity is very good, as are the fit metrics like R (Fig. 7).

Conditional generation of inputs from the known outputs
pred_train = forest_model.generate(batch_size=len(X_covs),
X_covs=X_covs)

test_covs = D_test[['445nm', '515nm', '630nm']].values
pred_test = forest_model.generate(batch_size=len(test_covs),
X_covs=test_covs)

plt.figure(figsize=(4, 6))

for ay, py, ¢, label in zip(X_model.T, pred_train.T,
['R', 'G', 'B']):

.', c=c, alpha=0.4)

'rgb',

plt.plot(ay, py, '
test set
for ay, py, c, label in zip(D_test[['R', 'G', 'B']].values.T,
pred_test.T, 'rgb',
['R', 'G', 'B']):
plt.plot(ay, py, 's', c=c,
label=f'{label} $R™2$={r2_score(ay, py):1.3f}')

plt.plot([0, 1], [0, 1], 'k--', label='parity')

plt.legend ()

plt.xlabel('Actual RGB settings')
plt.ylabel('Predicted RGB settings')
plt.tight_layout ()
plt.savefig('cfm-parity.png', dpi=300)

We can also generate multiple samples and then do statis-
tical analysis on the distribution of samples as we did with the
GMM. This gives an estimate of how certain a prediction is.

Conditional generation of input for a desired output
N = 100
with np.printoptions(precision=2):
out = forest_model.generate(
batch_size=N,
X_covs=np.array([goal]l*N))
print(f'Mean: {np.mean(out, axis=0)[0:3]}')
print(f'Stdev: {np.std(out, axis=0)[0:3]}')

Mean: [0.47 0.23 0.51]
Stdev: [0. 0. 0.01]

Digital Discovery, 2025, 4, 1856-1869 | 1863

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00137d

Open Access Article. Published on 17 June 2025. Downloaded on 10/28/2025 5:26:31 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

1.0 ® R R?=0.995
B GR?=0.997
Em BR?=0.997
-== parity
0.8 A
1]
()]
C
£ 0.6
[]
)]
[a]
Q
x
e
g
3 0.4 -
(]
a
0.2 - ‘
0.0 A
0.0 0.2 0.4 0.6 0.8 1.0

Actual RGB settings

Fig. 7 Parity plot of predicted inputs vs. actual inputs for the output
data observed. The train data is shown as small transparent circles, and
the test data is shown as solid squares.

It is fair to ask what happens when the model is conditioned
on out of distribution data. Here we consider two out of
distribution options, the first two outputs are larger than
anything considered, and the last one is physically unattain-
able. The model outputs a result with high confidence. The
result is not as unphysical like the GMM case was, but it is also
not correct, nor easy to tell that. This model extrapolates like
a tree model, and outputs whatever the outermost leaf value is
(see Section 8.5.2 for an example). Generative models are not
expected to work in extrapolation; these are regions where the
underlying distribution is not known. In this example, those
regions are not even accessible.

goal = (2%%18, 2%x18, -2#%18)
N = 100
with np.printoptions(precision=2):
out = forest_model.generate(
batch_size=N,
X_covs=np.array([goal]*N))
print(f'Mean: {np.mean(out, axis=0)}')
print(f'Stdev: {np.std(out, axis=0)}')

Mean: [0.04 0.98 0.98]
Stdev: [0.01 0.01 0.]

1864 | Digital Discovery, 2025, 4, 1856-1869

View Article Online

Paper

Table 1 Summary of the results from each model

Model Inverse solution
Linear forward [0.49, 0.24, 0.52]
PLS backward [0.47, 0.23, 0.52]
GMM [0.47, 0.23, 0.52]
ForestDiffusion [0.47,0.23, 0.51]

Flow matching and diffusion models are used at very large
scales in image generation, and we could anticipate that these
models would work well in high-dimension scientific data;
albeit with the corresponding need for large datasets.

3.6 Summary

We summarize the four solutions in Table 1. They are practically
the same, indicating all four methods are suitable for solving
the inverse problem posed here.

4 Conclusions

On the surface it appears we solved a simple problem four
different ways. That is because we did do that, but the solution
was not the main point; the idea of using a generative approach
was. Although the dataset here was fairly simple with a linear
mapping between the inputs and outputs, it is real experimental
data with noise. It is also a prototype for other systems with
multiple inputs and outputs, e.g., formulations with multiple
components and multiple properties.

We have illustrated four approaches to solving an inverse
problem in this work: (1) forward model + nonlinear program-
ming; (2) backward model; (3) conditional sampling of the joint
distribution of inputs and output (the GMM); and (4) condi-
tional sample generation by distribution transformation (the
ForestDiffusion model). Each approach has advantages and
disadvantages along the dimensions of ease of interpretation,
implementation, and uncertainty quantification.

Combining forward models with nonlinear programs is
a straight-forward, conventional approach that combines two
well-understood and developed concepts. This approach may be
subject to limitations associated with the model and the opti-
mizer, e.g., one may only find local solutions, or optimizers may
fail to converge. There are decades of experience in this space
though, and many options for specialized models and algo-
rithms to mitigate that problem. It is a feature of the forward
model approach that an initial guess is required to solve the
inverse problem every time, and many must be made to explore
the solution space.

Backward models can be equally simple to build as forward
models (provided of course the problem is well-behaved, espe-
cially with a one-to-one mapping). One still has to choose an
appropriate model that captures any nonlinearity, and that
there is enough data available to reliably develop that model.
The main advantage of this approach is that one simply evalu-
ates the model to solve the inverse problem. A disadvantage is
this model does not have forward prediction capabilities, at

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00137d

Open Access Article. Published on 17 June 2025. Downloaded on 10/28/2025 5:26:31 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

least without resorting to a nonlinear program solver. A further
disadvantage is this approach cannot work if there are many
inputs that map to an output.

We showed two generative approaches. These are unique in
the sense that they are neither forward nor backward models in
principle, but rather either a model of the joint probability
distribution linking the input and output data or the trans-
formation function between distributions. At generation time
the choice of conditioning variables is what turns the sample
into a forward prediction (conditioning on inputs) or a inverse
solution (conditioning on the outputs). In the first approach we
used a Gaussian mixture model to approximate the joint prob-
ability distribution and then used conditional samples of that
distribution to solve the problem. In the second approach we
used a ForestDiffusion algorithm to develop a model that
transforms one distribution into the target distribution. When
these models are good, they allow forward or backward
predictions based on conditioning, combining the best features
of those individual approaches.

It is pretty remarkable to us that each method relies on
roughly the same amount of user code lines (as illustrated in
this manuscript). Of course, this is because a tremendous
amount of abstraction is hidden away in the libraries that
support the code. Nevertheless, this abstraction allows each
approach to be used in a just a handful of lines of code.

In this work we only focus on the algorithms for solving the
inverse problem, and not on the data selection, or design of
experiment, approach. This remains an open challenge.
Although many active learning approaches exist for the
conventional forward modeling approach, it is less evident how
one should sample efficiently for generative models, especially
when there is not prior knowledge of how complex the joint
distribution will be.

There remains substantial work to do in using generative
models for general inverse problems. In this work, we focused
on linear models with one-to-one mapping. In principle, one
can extend the approach described here to nonlinear models or
one-to-many mappings, and those are a focus of current work in
our group.® It remains an open challenge to detect extrapola-
tion, out-of-domain predictions and to estimate uncertainty in
these models. Finally, there remains work to explore local
properties of these models, for example, how smooth are the
models, or alternatively how does one avoid overfitting with
them? Is it possible to build models with derivative
information?

This work shows, in our opinion, that generative methods
have significant potential in solving inverse problems, which is
exciting. They may enable us to change the difficult job of
identifying the type and architecture of a forward or backward
model to the challenge of generating data that represents the
distribution, training and assessing the generative model. It is
likely this approach has broader application than this work
shows. One can pose many problems as inverse problems. For
example, in parameter estimation we might ask what model
parameters are required to yield a given set of observations? Or
in an optimization, what inputs yield a minimum defined by
some derivatives being zero? In uncertainty quantification, we

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

might ask given some samples from a parameter distribution
what distribution of outputs might be expected. Generative
approaches may provide new insights and methods to solve
these problems.

Data availability

Data for this article and a Jupyter notebook derived from the
manuscript and the manuscript source document are available
at Figshare at https://doi.org/10.6084/m9.figshare.28726628.

Conflicts of interest

There are no conflicts to declare.

5 Appendices
5.1 Setting up the python environment

We recommend using a virtual environment to reproduce the
work in this notebook. uv is one of the current popular tools for
generating virtual environments. This is how we setup the
environment for this work. This work was performed on a Mac
mini with 64 GB of RAM running macOS Sequoia 15.4.1.

uv venv --python=3.12

source .venv/bin/activate

uv pip install jupyter IPython pandas seaborn jsonlines \
numpy pycse scipy scikit-learn gmr \
requests tqdm ForestDiffusion

This virtual environment worked for us, but we report the
following issues noted during review:

(1) It is possible to have numpy version incompatibilities
with catboost and numpy. catboost is a library used by
ForestDiffusion.

This looks like an error like this, and it results from
a different version of numpy being installed than the one that
the catboost library was built with. We did not observe this in
the virtual environment used above, but we did observe it trying
to run this code in an another virtual environment where the
packages were not all installed at the same time.

(ValueError: numpy.dtype size changed, may indicate binary incompatibility
Expected 96 from C header, got 88 from PyObject)

A solution was reported that was to uninstall both libraries,
reinstall numpy, and then reinstall catboost with
pip install -no-binary :all: catboost.

(2) This warning may be seen sometimes. It does not seem to
affect anything.

RuntimeWarning: covariance is not symmetric positive-semidefinite.

(3) An intermittent multiprocessor shared memory warning
was observed by a reviewer. This also does not seem to affect
anything.

Digital Discovery, 2025, 4, 1856-1869 | 1865

https://doi.org/10.6084/m9.figshare.28726628
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00137d

Open Access Article. Published on 17 June 2025. Downloaded on 10/28/2025 5:26:31 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

5.2 Generating the data for this study

We generate and save 100 samples of data. We choose 100
because the experiments are cheap. We use Latin Hypercube
sampling which distributes the measurements across the three-
dimensional input space with better coverage than simple
random sampling.

import numpy as np

from scipy.stats import qmc
import requests

import jsonlines

import time

from tqdm import tqdm
import os

samples = gmc.LatinHypercube(d=3) .random(n=100)

class RGB:
CLAUDE_IP = 'https://claude-light.cheme.cmu.edu/api
def __call__(self, R=0, G=0, B=0):
resp = requests.get(self.CLAUDE_IP,
params={'R': R, 'G': G, 'B': B})
data = resp.json()
return data

rgb = RGB()
if os.path.exists('rgb.jsonl'): os.unlink('rgb.jsonl')

with jsonlines.open('rgb.jsonl', 'a') as f:
for row in tqdm(samples):
d = rgb(*row)
d['time'] = time.time()
f.urite(d)

100% 100/100 [01:06<00:00, 1.51it/s]

Each line of rgb.jsonl is a dictionary with the inputs in the
“in” key, outputs in the “out” key, and a timestamp for when the
data point was taken.

import json
import jsonlines
with jsonlines.open('rgb.jsonl') as f:
for line in f:
print(json.dumps(line, indent=2))
break

{

"in": [
0.5038333048590254,
0.896150143945812,
0.4905281802830161

iR

"out": {
"415nm" :
"445nm" :
"480nm" :
"515nm" :
"555nm" :
"590nm" :
"630nm" :
"680nm": 4033,

"clear": 65535,
"nir": 6678
1,
"time": 1742557987.341563
}

1924,

15885,
15568,
57861,
10556,
10527,
18100,

The number of samples, 100, was chosen somewhat arbi-
trarily. It is probable that fewer samples could be effective if
a factorial or Box-Benken type of design of experiments was
used.

1866 | Digital Discovery, 2025, 4, 1856-1869

View Article Online

Paper

5.3 2d distribution and conditional sampling

In this section we motivate the idea behind the Gaussian
Mixture model approach in this work by examining a single
Gaussian distribution in two dimensions. We suppose we have
two variables, x, y that are Gaussian distributed and correlated.
This is like having a function y = x with correlated noise in both
of the variables (Fig. 8).

Mean and covariance matriz for the 2D Gaussian

mean = [0, 0]

cov = [[1, 0.999],
[0.999, 111

Centered at origin
Covariance matriz (correlation between z and y)

Generate samples
num_samples = 10000
samples = np.random.multivariate_normal(mean, cov, num_samples)

p = sns.jointplot(pd.DataFrame(samples, columns=['x', 'y']),
marker='.', alpha=0.5,
x='x', y='y")
p.savefig('xy-gaussian.png', dpi=300)

If we choose one of the variables, say y = 1 then the probable
values of x changes. There is an analytical formula to compute
this new distribution, but we approximate it here by first finding
all the y-values near 1, and then analysing the properties of the
corresponding x-values. For comparison, we see as expected the
full x distribution is centered near 0 with a standard deviation
of 1.

X, y = samples.T
print(f'Mean x = {np.mean(x):1.2f}')
print(f'stdev x = {np.std(x):1.2f}')

Mean x = -0.00
stdev x = 0.99

After conditioning though, the distribution consistent with y
= 11is centered at x = 1 with a much smaller standard deviation.
There is a formal way to derive the conditioned distribution, but
we illustrate it by filtering a thin slice of the data here.

ind = (y > 0.98) & (y < 1.02)
print (f'Mean conditioned x = {np.mean(x[ind]):1.2f}')
print(f'stdev conditioned x = {np.std(x[ind]):1.2f}')

Mean conditioned x = 1.01
stdev conditioned x = 0.05

5.4 Transforming a uniform distribution to a Gaussian
distribution

It is possible to transform one distribution into another one.
One method is inverse transform sampling, which utilizes the
inverse of the cumulative distribution function (CDF) to achieve
this transformation. For example, there is a known trans-
formation for a uniform distribution x1 to a Gaussian distri-
bution x2:

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00137d

Open Access Article. Published on 17 June 2025. Downloaded on 10/28/2025 5:26:31 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

Fig. 8 A joint plot of two covarying variables.

0.0 0.2 0.4 0.6 0.8 1.0
x1

Fig.9 Illustration of transforming a uniform distribution (on the x-axis)
to a Gaussian distribution (on the y-axis).

x2 = V2erf ' (2x1 — 1)

where erf ' represents the inverse error function. This function
is provided as a special function in scipy. We illustrate how the
transform works here (Fig. 9). First a set of uniformly distrib-
uted samples is generated, e.g., from a random number gener-
ator. Then, the transformation formula is applied to each point.
The result is a Gaussian distribution. It is fair to say we have
generated a Gaussian distribution this way.

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

from scipy.special import erfinv

x1 = np.random.uniform(size=10000)
x2 = np.sqrt(2) * erfinv(2 * x1 - 1)

p = sns.jointplot(pd.DataFrame(np.array([x1, x2]1).T,
columns=['x1', 'x2']),
marker='.', alpha=0.5,
x='x1', y='x2')
p-savefig('uniform-gaussian.png', dpi=300)

It is possible to use machine learning to learn this trans-
formation function. This idea motivates the idea in this work
that it is possible to generate samples of a desired distribution
from a reference distribution.

5.5 Extrapolating behaviors of generative models

The generative models we present here are still data-driven
models, and one should not expect they are reliable outside
the training data distribution. We build some intuition in this
section. To do that we build a simple dataset that samples
a parabola. We create a gap in the middle of missing data. This
will enable us to consider what is classically considered
“interpolation”, that is predictions that are “inside” the data,
and extrapolation, which are predictions “outside” the data. It
will become evident in this example that those are not very

25 A
® data

e fitted points
predicted model

20

15 A

10 A

—10 A

—15

Fig. 10 Illustration of extrapolation and interpolation behavior of
a Gaussian mixture model on data sampling a parabola.

Digital Discovery, 2025, 4, 1856-1869 | 1867

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00137d

Open Access Article. Published on 17 June 2025. Downloaded on 10/28/2025 5:26:31 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

precise ideas, and that the models are not necessarily accurate
in either scenario.

import numpy as np
X = np.linspace(-5, 5, 150)

ind = (X > -4) & (X< -2) | (X>2) & (X< 4)
x = X[ind]
Y = X*x2

5.5.1 GMM. Based on the previous discussion in the
section on conditional sampling of a 2d distribution, we can
think of a Gaussian mixture model as a probabalistic piecewise
linear model where each Gaussian models a linear piece. As one
samples far from the data, a single Gaussian will become
dominant, and we could expect then that the model will make
linear predictions far from the data. We illustrate that in this
example. We choose four components, which should provide
two piecewise segments in each chunk of data. The results are
shown in Fig. 10, where it is evident that each chuck of data
indeed has two Gaussians associated with it. It is also evident
that in both interpolation and extrapolation the model behaves
as a linear function.

16 A

14 A

12 A

> 10 A

Fig. 11 Extrapolation and interpolation of a ForestDiffusion model for
data samples from a parabola.

1868 | Digital Discovery, 2025, 4, 1856-1869

View Article Online

Paper

from gmr import GMM

D = np.array([x, y1).T
N=4

gmm = GMM(n_components=N) .from_samples (D)
x1 = np.array([x]).T

x1_index = [0]
y_pred = gmm.predict(x1_index, x1)

y_full = gmm.predict(x1_index, np.array([X]).T)

plt.figure(figsize=(4, 6))

plt.plot(x, y, 'b.', ms=12, label='data')
plt.plot(x, y_pred, 'r.', label='fitted points')
plt.plot(X, y_full, 'r', label='predicted model')
plt.xlabel('x')

plt.ylabel('y')

plt.legend()

plt.tight_layout ()

plt.savefig('gmm-ext-int.png', dpi=300);

5.5.2 ForestDiffusion. It is unclear a priori how a Forest-
Diffusion should extrapolate, but obvious to us in hindsight. In
Fig. 11 it is evident this particular model does not interpolate
(predictions “inside” the data) or extrapolate (predictions
“outside” the data) reliably. Conceptually a ForestDiffusion
model learns a transformation function. That function will only
be modified during training by existing data, so in regions
where there is no data there is no modification of that trans-
formation function. In this example, this evidently leads to
a RandomPForest is used in training, and presumably one hits
a terminal leaf in the model that leads to constant output away
from the data. Other models may behave differently, but it is not
expected they extrapolate or interpolate more reliably.

generate these numbers
Note we repeat the y-column because the library does not

work with a single column. We just ignore the other column
X_model = np.array([y, y1).T

X_covs = x[:, None]

forest_model = ForestDiffusionModel(X_model, X_covs=X_covs)

pred = forest_model.generate(batch_size=len(X_covs),
X_covs=X_covs)

full_pred = forest_model.generate(batch_size=len(X),
X_covs=X[:, Nonel)

plt.figure(figsize=(4, 6))

plt.plot(x, y, 'b.', ms=12, label='data')
plt.plot(X_covs, pred[:, 0], 'r.')
plt.plot(X, full_pred[:, 0], 'r-')
plt.xlabel('x')

plt.ylabel('y')

plt.legend()

plt.tight_layout ()
plt.savefig('cfm-int-ext.png', dpi=300)

5.6 About this manuscript

This document was written as a literate program®>** using org-
mode* and scimax.”® This enables the interleaving of narrative
text with code and results. The code is executable within the
document using a Jupyter kernel, and the results are captured in
the document, ensuring the code and data is consistent.>* The
document can be exported to LATEX/pdf (for manuscript
submission) or a Jupyter notebook (for sharing in a format more
commonly used). The org source and derived Jupyter notebook

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00137d

Open Access Article. Published on 17 June 2025. Downloaded on 10/28/2025 5:26:31 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

are provided in the supporting information at https://doi.org/
10.6084/m9.figshare.28726628.

Acknowledgements

JRK acknowledges A] Medford for an early suggestion to use
generative modeling with Claude-Light to overcome hardware
bandwidth for many simultaneous users.

Notes and references

1 V. Alves,]J. R. Kitchin and F. V. Lima, An inverse mapping
approach for process systems engineering using automatic
differentiation and the implicit function theorem, AIChKE J.,
2023, 18119, DOIL: 10.1002/aic.18119.

2 F. G. Wagqar, S. Patel and C. M. Simon, A tutorial on the
bayesian statistical approach to inverse problems, APL
Mach. Learn., 2023, 1(4), 041101, DOI: 10.1063/5.0154773.

3 A. Dasgupta, H. Ramaswamy, J. Murgoitio-Esandi, K. Y. Foo,
R. Li, Q. Zhou, B. F. Kennedy and A. A. Oberai, Conditional
score-based diffusion models for solving inverse elasticity
problems, Comput. Methods Appl. Mech. Eng., 2025, 433,
117425, DOI: 10.1016/j.cma.2024.117425.

4 L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini,
R. S. Klessen, L. Maier-Hein, C. Rother and U. Kothe.
Analyzing inverse problems with invertible neural
networks, arXiv, 2018, preprint, arxiv:1808.04730, DOI:
10.48550/ARXIV.1808.04730.

5 H. Kaneko, True gaussian mixture regression and genetic
algorithm-based optimization with constraints for direct
inverse analysis, Sci. Technol. Adv. Mater.:Methods, 2022,
2(1), 14-22, DOI: 10.1080/27660400.2021.2024101.

6 A. Jolicoeur-Martineau, K. Fatras and T. Kachman.
Generating and imputing tabular data via diffusion and
flow-based gradient-boosted trees, arXiv, 2023, preprint,
arxiv:2309.09968, DOIL: 10.48550/ARXIV.2309.09968.

7 D.-K. Kim, D. H. Ryu, Y. Lee and D.-H. Choi, Generative
models for tabular data: a review, J. Mechanical Eng. Sci.
Technol., 2024, 38(9), 4989-5005, DOI: 10.1007/s12206-024-
0835-0.

8 V. Alves and]. Kitchin. Generative machine learning
approaches to optimization, chemXiv, 2025, preprint, DOI:
10.26434/chemrxiv-2025-hk886-v2.

9 J. Kitchin. Claude-light: an online, remote instrument for
data science education, chemXiv, 2024, preprint, https://
claude-light.cheme.cmu.edu.

10 J. R. Kitchin, The evolving role of programming and llms in
the development of self-driving laboratories, APL Mach.
Learn., 2025, 3(2), 026111, DOIL: 10.1063/5.0266757.

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

11 S. G. Baird and T. D. Sparks, What is a minimal working
example for a self-driving laboratory?, Matter, 2022, 5(12),
4170-4178, DOI: 10.1016/j.matt.2022.11.007.

12 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot and E. Duchesnay, Scikit-learn:
Machine learning in Python, J. Mach. Learn. Res., 2011, 12,
2825-2830.

13 F. J. Anscombe, Graphs in statistical analysis, Am. Stat.,
1973, 27(1), 17-21, DOI: 10.1080/00031305.1973.10478966.

14 Ni Zhan and J. R. Kitchin, Uncertainty quantification in
machine learning and nonlinear least squares regression
models, AICRE J., 2021, 68(6), e17516, DOI: 10.1002/
aic.17516.

15 The digital transformation of product formulation, ed. A.
Schmidt and K. Wallace, CRC Press, London, England, 2024.

16]J. Giesen, P. Lucas, L. Pfeiffer, L. Schmalwasser and
K. Lawonn, The whole and its parts: Visualizing gaussian
mixture models, Vis. Inform., 2024, 8(2), 67-79, DOL
10.1016/j.visinf.2024.04.005.

17 A. Fabisch, Gmr: Gaussian mixture regression, J. Open Source
Softw., 2021, 6(62), 3054, DOIL: 10.21105/j0ss.03054.

18 S. Shirinkam, A. Alaeddini and E. Gross, Identifying the
number of components in gaussian mixture models using
numerical algebraic geometry, J. Algebra Appl., 2019,
19(11), 2050204, DOIL: 10.1142/s0219498820502047.

19 Y. Lipman, T. Ricky. Q. Chen, H. Ben-Hamu, M. Nickel and
M. Le, Flow matching for generative modeling, arXiv, 2022,
preprint, arxiv:2210.02747, DOL: 10.48550/
ARXIV.2210.02747.

20 D. E. Knuth, Literate programming, Comput. J., 1984, 27(2),
97-111, DOI: 10.1093/comjnl/27.2.97.

21 E. Schulte, D. Davison, T. Dye and C. Dominik, A multi-
language computing environment for literate
programming and reproducible research, J. Stat. Software,
2012, 46(3), 1-24.

22 E. Schulte and D. Davison, Active documents with org-mode,
Comput. Sci. Eng., 2011, 13(3), 66-73, DOIL 10.1109/
MCSE.2011.41.

23 scimax, https://github.com/jkitchin/scimax is an Emacs
starter kit that customizes it for scientific publishing.

24]. R. Kitchin, Examples of effective data sharing in scientific
publishing, ACS Catal., 2015, 5(6), 3894-3899, DOI: 10.1021/
acscatal.5b00538.

Digital Discovery, 2025, 4,1856-1869 | 1869

https://doi.org/10.6084/m9.figshare.28726628
https://doi.org/10.6084/m9.figshare.28726628
https://doi.org/10.1002/aic.18119
https://doi.org/10.1063/5.0154773
https://doi.org/10.1016/j.cma.2024.117425
https://doi.org/10.48550/ARXIV.1808.04730
https://doi.org/10.1080/27660400.2021.2024101
https://doi.org/10.48550/ARXIV.2309.09968
https://doi.org/10.1007/s12206-024-0835-0
https://doi.org/10.1007/s12206-024-0835-0
https://doi.org/10.26434/chemrxiv-2025-hk886-v2
https://claude-light.cheme.cmu.edu
https://claude-light.cheme.cmu.edu
https://doi.org/10.1063/5.0266757
https://doi.org/10.1016/j.matt.2022.11.007
https://doi.org/10.1080/00031305.1973.10478966
https://doi.org/10.1002/aic.17516
https://doi.org/10.1002/aic.17516
https://doi.org/10.1016/j.visinf.2024.04.005
https://doi.org/10.21105/joss.03054
https://doi.org/10.1142/s0219498820502047
https://doi.org/10.48550/ARXIV.2210.02747
https://doi.org/10.48550/ARXIV.2210.02747
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1109/MCSE.2011.41
https://doi.org/10.1109/MCSE.2011.41
https://github.com/jkitchin/scimax
https://doi.org/10.1021/acscatal.5b00538
https://doi.org/10.1021/acscatal.5b00538
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00137d

	Solving an inverse problem with generative models
	Solving an inverse problem with generative models
	Solving an inverse problem with generative models
	Solving an inverse problem with generative models
	Solving an inverse problem with generative models
	Solving an inverse problem with generative models
	Solving an inverse problem with generative models
	Solving an inverse problem with generative models
	Solving an inverse problem with generative models
	Solving an inverse problem with generative models

	Solving an inverse problem with generative models
	Solving an inverse problem with generative models
	Solving an inverse problem with generative models
	Solving an inverse problem with generative models
	Solving an inverse problem with generative models
	Solving an inverse problem with generative models
	Solving an inverse problem with generative models
	Solving an inverse problem with generative models
	Solving an inverse problem with generative models
	Solving an inverse problem with generative models
	Solving an inverse problem with generative models
	Solving an inverse problem with generative models

	Solving an inverse problem with generative models

