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us and organic solubilities with
machine learning: a workflow for identifying
organic cosolvents

Maurycy Krzyżanowski, Sirazam Munira Aishee, Nirala Singh *
and Bryan R. Goldsmith *

Developing predictive models of solubility is useful for accelerating solvent selection for applications

ranging from electrochemical conversion of organics to pharmaceutical drug development. Herein, we

report on the development of a machine learning (ML) workflow for identifying organic cosolvents to

increase the concentration of hydrophobic molecules in aqueous mixtures. This task is of particular

interest for the electrocatalytic conversion of biomass and bio-oils into sustainable fuels, which faces

challenges due to the low aqueous solubility of the feedstock. First, we predict the miscibility of potential

cosolvents in water, and we only consider cosolvents that are miscible. Second, we rank cosolvents

based on the predicted solubility of the molecule of interest in them. To achieve this, we train two

separate ML models: one using the AqSolDB dataset to predict aqueous solubility, and another using the

BigSolDB dataset to predict solubility in organic solvents. We select the Light Gradient Boosting Machine

(LGBM) model architecture for aqueous solubility (test R2 = 0.864, RMSE = 0.851 for log(S (mol−1

dm−3))) and organic solubility (test R2 = 0.805, RMSE = 0.511 for log(x)) predictions based on comparing

different ML models and features. We examine the generalizability of the organic solubility model on

unseen solutes both quantitatively and qualitatively. We evaluate the utility of this ML workflow by

identifying cosolvents for benzaldehyde and limonene—two hydrophobic molecules that are relevant for

sustainable fuel production—and validate our predictions via experimental solubility measurements.
Introduction

Solubility is a key property of interest in numerous elds,
including oil and gas,1–3 biomass conversion,4–6 and pharma-
ceutical science.7–11 However, the experimental determination
of solubility is oen challenging12,13 as well as time-consuming.
Therefore, developing predictive models for estimating solu-
bility is highly benecial. Applications of predictive solubility
models include screening pharmaceuticals based on their
aqueous solubility and selecting suitable solvents for organic
molecules of interest. The importance of predicting the solu-
bility of molecules in water (aqueous solubility) has driven the
development of many models, starting with simple linear
equations like the General Solubility Equation14 and Estimated
SOLubility.15

Recently, machine learning (ML) models have emerged as
the preferred approach for predicting aqueous solubility
because of their capacity for high accuracy and
generalizability.16–22 ML models for predicting the solubility of
organic molecules in organic solvents (organic solubility) have
also been developed,23–26 although they are less common than
niversity of Michigan, Ann Arbor, MI

du; bgoldsm@umich.edu

the Royal Society of Chemistry
those for aqueous solubility. Curated datasets of solubility are
becoming available for developing robust ML models. The
AqSolDB dataset27 for aqueous solubility of mostly organic
molecules is the most prominent among these datasets.
However, the recently created BigSolDB dataset28 makes it now
possible to develop ML models for organic solubility
predictions.

One of the many possible applications of solubility models is
the identication of organic cosolvents, which are important in
areas such as pharmaceutical molecule development29–31 and
electrochemical hydrogenation of hydrophobic molecules such
as those found in essential oils and bio-oils.32–35 In the case of
the latter, it is oen desirable that the system contains water to
serve as an abundant proton source for the reaction. However,
the low solubility of hydrophobic molecules in pure water limits
the range of concentrations in which the reaction can be per-
formed. One of the solutions to this problem is having an
organic serving as a cosolvent with water.

Developing an ML workow that aids in the identication of
organic cosolvents could greatly increase the effectiveness and
usefulness of reactions involving hydrophobic molecules in
aqueous systems. We consider a good cosolvent to be an organic
solvent that (1) is miscible with water and (2) forms a water/
organic cosolvent mixture that solubilizes hydrophobic
Digital Discovery, 2025, 4, 3031–3042 | 3031
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organic molecules. We assume that the enhanced solubility of
a hydrophobic organic molecule in a water/organic cosolvent
mixture correlates with how soluble the hydrophobic molecule
is in the pure organic cosolvent. Such an assumption implies
that the optimal cosolvent can be identied by developing two
ML models: one for aqueous solubility, which identies organic
solvents miscible with water, and another for organic solubility,
which determines which of these water-miscible organic
solvents best dissolves the hydrophobic molecule. Building on
this approach, we introduce an ML workow that integrates
these two ML models to systematically identify suitable organic
cosolvents for target molecules.

We opted for such an approach—as opposed to developing
an ML model that predicts solubility for ternary mixtures at any
given concentration of a cosolvent—due to the limited avail-
ability of data for mixed-solvent systems compared to the freely
available AqSolDB and BigSolDB datasets. Moreover, we avoi-
ded DFT-derived features, which are resource-intensive to
calculate, and instead utilized group contribution methods36

and molecular ngerprints—both derived directly from SMILES
(Simplied Molecular Input Line Entry System) strings and
computationally efficient for high-throughput screening.

We use existing machine learning architectures—Light
Gradient Boosting Machine (LGBM) and Random Forest (RF)—
to train ML models, and we demonstrate their applicability in
a workow for identifying organic cosolvents. We compare the
performance of LGBM and RF on different sets of features to
select the best-performing approach for the aqueous and
organic solvent solubility predictions. Given the complexity of
predicting organic solvent solubility, we evaluate the model to
assess its ability to distinguish between good and poor organic
solvents, predict solubility trends across organic solvents,
exactly rank cosolvents, and provide quantitatively accurate
solubility predictions. We evaluate the workow's performance
using our experimentally derived data and demonstrate its
potential to discover organic cosolvents for two hydrophobic
molecules of relevance to sustainable fuel production37–40—

limonene and benzaldehyde. Table 1 summarizes the key
ndings of the organic solubility model and the cosolvent
identication workow's performance in terms of its reliability
for different use cases. We also evaluate the aqueous solubility
model for predicting the miscibility of organic solvents in water.
Methods
Data preprocessing

AqSolDB. The AqSolDB dataset contains 9982 standardized
solubility measurements at room temperature (25 ± 5 °C). The
Table 1 Reliability of the organic solubility model and cosolvent identifi

Strengths Caveats

Distinguishes between good and poor organic
solvents and predicts solubility trends for the
organic solvent well. Test R2 = 0.805,
RMSE = 0.511 for log(x) on BigSolDB dataset.

Has moderate accur
ranking. Kendall's ta

3032 | Digital Discovery, 2025, 4, 3031–3042
AqSolDB dataset includes solutes that are either liquid or solid
at room temperature.27 Although the AqSolDB dataset contains
mostly solubility values for organic compounds, it has inorganic
salts as well. The AqSolDB dataset was ltered to contain only
organic compounds. Multiple SMILES strings associated with
the same InChIKey (textual identier for chemical substances)
were identied and replaced with the rst SMILES string from
the list. The aqueous solubility is expressed as log(S mol−1

dm−3), where S represents the molar concentration of the solute
in water (mol L−1). Aer preprocessing, the AqSolDB dataset
contained 8549 data points.

BigSolDB. The BigSolDB dataset includes 54 273 measure-
ments spanning a temperature range of −30.0 °C to 130.0 °C.
Unlike the AqSolDB dataset, this dataset consists almost
exclusively of data for solutes that are solid at room tempera-
ture. The organic solubility is expressed as log(x), where x
denotes the mole fraction of the solute in the organic solvent.
The BigSolDB dataset contains multiple solubility values for an
array of temperatures, in contrast to the AqSolDB dataset, which
contains a singular solubility value for measurements taken
within the range of 25 ± 5 °C. Therefore, we excluded organic
solubility measurements for temperatures outside this range for
our BigSolDB dataset. If multiple solubility values existed within
that range, their average value was used. This approach avoids
bias in the performance evaluation as previously observed for
multiple solute–solvent pairs at different temperatures.23 Only
organic solvents for which there are more than nine solute–
solvent pairs were considered, because predictions made for
solvents with fewer solute data points were assumed to be
untrustworthy due to data scarcity. For example, if there is
a solvent for which there are only ve data points, such a solvent
is removed from the dataset. Aer preprocessing, the BigSolDB
dataset contained 4557 data points.
Features generation

We obtained the group contribution (GC) features using the
RDKit41 and Thermo42 packages. For aqueous solubility, only
the features of the solutes were generated, whereas for organic
solubility, features were generated for both the solute and the
solvent. Some GC features were obtained through the UNIFAC
method.43 We applied the Molecular ACCess System (MACCS)44

as molecular ngerprints. MACCS features represent molecules
as binary vectors, each bit indicating the presence or absence of
specic chemical substructures. We extract both GC and
MACCS features from the SMILES notation, which is a text-
based format for representing molecular structures. The total
number of GC features was 30 for aqueous solubility and 60 for
cation workflow

Weaknesses

acy in unseen solvent
u < 0.3 for most solutes.

Not suitable for quantitatively predicting
solubility for unseen solutes.
RMSE of log(x) > 0.3 for most solutes.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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organic solubility. The total number of MACCS features was 167
for aqueous solubility and 334 for organic solubility. The group
contribution features for the model training are listed in Table
S1 along with the names of the Python packages used.

Model training, cross-validation, and testing

We evaluated two model architectures to predict aqueous solu-
bility and organic solubility: LGBM and RF. Our model selection
is justied by the fact that tree-based models oen outperform
deep learning models on medium-sized tabular datasets such as
BigSolDB and AqSolDB.45 For example, Lee and coworkers46

demonstrated that the LGBM model trained on a combined
organic and aqueous solubility dataset predicted solubility just as
well as a graph convolutional network (GCN). The GCN did
perform better than the LGBM model trained on just molecular
ngerprints (data01; 17 536 data points), with R2 values of 0.80
versus 0.74. However, in the case of a smaller dataset enriched
with physicochemical features—akin to the datasets used here
(data03; 6945 data points)—the LGBM actually performed better
than the GCN model (R2 0.85 vs. 0.81). Ye and Ouyang23 reported
that an LGBM model trained on organic solubility data
comprising 5081 data points performed better than a deep neural
network model (DNN) in generalization capability: for unseen
solutes, LGBM achieved an R2 of 0.49, signicantly outperforming
the DNN model (R2 = 0.22). In the case of aqueous solubility,
Boobier and coworkers24 benchmarked various ML architectures
against the AquaSol model22 (an undirected recursive neural
network) and found that their Extra Trees model (R2 = 0.93)
outperformed AquaSol (R2 = 0.86) on the water_set_wide dataset.
It was also shown that a RF model outperformed ChemProp,47

a well-established graph neural network.48 The authors compared
both models trained on the AqSolDB dataset, with the RF
achieving an RMSE of 0.86 versus 0.89 for ChemProp.48

The features were normalized using min–max scaling before
training an ML model. A train/test split was performed with
a training set size of 80%. The split was stratied based on the
target value (solubility). Nested ve-fold cross-validation (CV),
also stratied based on solubility, was carried out on the
training set to identify the optimal hyperparameters. The score
metrics used for the evaluation of the model on the training set,
during nested cross-validation, and on the test set were the
coefficient of determination (R2), root mean squared error
(RMSE), and mean absolute error (MAE). The AqSolDB training
set contained 6839 data points, and the test set contained 1710
data points. The BigSolDB training set contained 3645 data
points, and the test set contained 912 data points.

Feature importance

We employed two methods for feature importance analysis. The
rst method is split feature importance analysis for LGBM,
which estimates the importance of a given feature by measuring
how oen it is used to split nodes in the decision trees that
make up the model. The other one is SHapley Additive exPla-
nations (SHAP).49 Both methods were applied to the LGBM
model trained on the BigSolDB dataset. We compared the
feature importance originating from all the GC features vs. the
© 2025 The Author(s). Published by the Royal Society of Chemistry
ones from all the MACCS features for the GC-MACCS model. We
also analyzed the feature importance of the GC features within
the GC-MACCS model to see which GC features contribute the
most to its performance (Fig. S1).
Workow for organic cosolvent identication

The main components of the organic cosolvent identication
workow are summarized in Fig. 1. The MACCS and GC
ngerprints used as input features are summarized in Fig. 1a.
The workow involves creating two ML models based on the
LGBM architecture. One model is for aqueous solubility trained
on the AqSolDB dataset, and the other for organic solubility
trained on the BigSolDB dataset (Fig. 1b). The organic cosol-
vents are identied via a two-step process (Fig. 1c) with these
two models. The rst step involves using the aqueous solubility
model to determine the miscibility of solvents in water so that
water-immiscible solvents can be removed. Having identied
a pool of water-miscible solvents, the second step involves using
an organic solubility model to predict the solubility of the
hydrophobic molecule in these solvents.
Results and discussion
Performance of ML models

We systematically assess the performance of RF and LGBM
architectures and the GC, MACCS, and GC-MACCS feature sets
for predicting aqueous and organic solubility. The performance
of the models is evaluated using three metrics: R2, RMSE, and
MAE, to determine which model architecture and features are
superior for aqueous solubility, log(S mol−1 dm−3), and organic
solubility, log(x). Parity plots (Fig. 2) illustrate the performance
of the LGBM models on the aqueous and organic solubility
datasets, with the values of the performance metrics (R2, RMSE,
and MAE) for the test set displayed in the inset. The same kind
of parity plots are provided for the RF model in the SI (Fig. S2).
The RF models had slightly worse score metrics than the LGBM
models on the test set and in the nested ve-fold CV for both
datasets. Therefore, the focus of the model performance eval-
uation across different sets of features—MACCS, GC, and GC-
MACCS—is on the LGBM model. All numerical data for
training, nested ve-fold cross-validation (CV), and testing are
provided in Tables S2 and S3, with Table S2 containing results
for the aqueous solubility model and Table S3 for the organic
solubility model. The hyperparameters used for training the
models are reported in Table S4 and Table S5. Overall, the
LGBM model trained on GC-MACCS features is our best-
performing model for both aqueous solubility and organic
solubility predictions, as shown in the parity plots in Fig. 2c and
f. The aqueous solubility model achieved a ve-fold CV R2 score
of 0.863 and a test score of 0.864 (Fig. 2c). This test score of
0.864 is comparable to the previous studies that trained ML
models on the AqSolDB dataset.20,48,50,51 Namely, the model
outperformed the SolTranNet model reported by Francoeur and
Koes,20 who validated their model on the same aqueous solu-
bility dataset, AqSolDB. The base architecture of the model is
the Molecule Attention Transformer. The authors reported an
Digital Discovery, 2025, 4, 3031–3042 | 3033
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Fig. 1 Workflow for the organic cosolvent identification. (a) Representation of the MACCS and GC features used for training ML models. (b) Two
ML models were used: one trained on the AqSolDB dataset to predict aqueous solubility, and the second trained on the BigSolDB dataset to
predict organic solubility. This section also includes the schematics of the Light Gradient Boosting Machine architecture. (c) The workflow for
organic cosolvent identification. The aqueous solubility model removes water-immiscible solvents, while the organic solubility model ranks the
remaining solvents from best to worst based on the solubility of the molecule of interest.
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R2 score of 0.68 for the 3-fold scaffold split cross-validation.
Llompart and coworkers48 provided a comprehensive
summary of solubility models reported in the literature. In this
report, we can compare the performance results of other ML
models trained on the AqSolDB dataset. For example, Sluga and
coworkers reported a testing R2 score of 0.93 and RMSE of 0.59
for their neural network model50 while Falcón-Cano and
coworkers reported a R2 score of 0.72 and RMSE of 0.73 for their
RF model.52 In the case of the organic solubility model, a direct
comparison with the previous studies is not possible because of
differences in datasets and data pre-processing. Nonetheless,
the herein reported nested ve-fold CV R2 score of 0.787 and
a test R2 score of 0.805 is comparable to previous studies.23,25
Establishing a water-miscibility threshold using predicted
aqueous solubility

While it is not always necessary for the organic solvent to be
fully miscible in water, having a miscible organic solvent is
3034 | Digital Discovery, 2025, 4, 3031–3042
preferred as it offers greater exibility, as any proportion of
water to solvent can be used. Because our aqueous solubility
model does not directly predict whether a solvent is miscible
with water, we instead sought to identify an aqueous solubility
threshold above which solvents can be classied as miscible. To
create a classication model to identify if an organic solvent is
miscible or immiscible in water, we obtained a small water
miscibility/immiscibility dataset of 26 solvents obtained from
the Sigma-Aldrich solvent miscibility table.53 We predict the
aqueous solubility for each of these solvents (Table S6) using the
model trained on the AqSolDB dataset, ensuring that the 26
solvents were excluded from the training set to enable proper
validation. To establish the water-miscibility cutoff value, we
train a support vector machine classier with a linear kernel,
which enables straightforward determination of the miscibility
threshold as the intercept divided by the coefficient of the linear
equation. To estimate the 90% condence interval of the
threshold, we performed bootstrapping, where the data were
sampled with replacement 5000 times and each time the model
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Parity plots showing the performance of the LGBM models on the test set. The model was trained on (a) AqSolDB dataset with MACCS
features, (b) AqSolDB dataset with GC features, (c) AqSolDB dataset with GC-MACCS features, (d) BigSolDB dataset with MACCS features, (e)
BigSolDB dataset with GC features, and (f) BigSolDB dataset with GC-MACCS features. The axes are the experimental vs. predicted values of
solubility of an organic solvent in water (left column, log(S mol−1 dm−3)) or solubility of a molecule of interest in an organic solvent (right column,
log(x)) along with the distribution of the values next to the respective axes. The color of the hexagons corresponds to the number of counts
within each of the hexagonal bins. The diagonal solid line denotes a perfect prediction. Shown RMSE, MAE and R2 values inset correspond to
scores on the test set.

© 2025 The Author(s). Published by the Royal Society of Chemistry Digital Discovery, 2025, 4, 3031–3042 | 3035
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Fig. 3 Determination of the miscibility threshold value based on aqueous solubility. Each data point represents a solvent that is either miscible or
immiscible in water, which is indicated on the y-axis, whereas the x-axis shows the aqueous solubility prediction values from our model. The
black vertical line indicates the miscibility threshold. The red and green vertical lines represent the lower and upper bounds, respectively. The
exact values of the miscibility threshold, along with the lower and upper bounds, are displayed in the figure. For the sake of visual clarity, data
points with predicted solubility lower than log(x) = −2.6 were excluded from the plot but are given in Table S6.
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was tted to subsampled data and the threshold value was ob-
tained. Each subsample contained the same number of data
points (26) as the original dataset. The mean of these values is
the nal aqueous miscibility threshold and has a value of log(S
mol−1 dm−3) equal to 0.08, corresponding to S of 1.2 mol dm−3.
The upper and lower bounds of the 90% condence interval
were obtained by calculating the 5th and 95th percentiles of the
threshold values, respectively. The lower bound of log(S mol−1

dm−3) is −0.34 and the upper bound is to 0.44. Fig. 3 shows the
predicted aqueous solubility values of the organic solvents and
their miscibility in water.

Using the identied miscibility threshold, we achieved
a classication accuracy of 92%. As such, solvents with solu-
bilities below the lower bound are classied as immiscible,
while the solvents above the upper bound are miscible. Within
those bounds (marked as the gray area) are solvents that are
highly soluble in water but immiscible, as well as miscible
solvents that were misclassied.
Evaluation of organic solubility trends and model
generalizability

Although the models achieved satisfactory results based on
quantitative performance metrics, it is important to evaluate
directly if the models can make appropriate predictions for
previously unseen solutes. Vassileiou and coworkers25 observed
a performance drop from R2 = 0.78 for ten-fold CV for single
solute–solvent pairs to R2 = 0.56 for the leave-one-solute-out CV
when predicting organic solubility. Such an observation high-
lights the potential issues with the generalizability of the
models for organic solubility. As previously stated, some of
these issues can be attributed to the experimental uncertainty of
solubility measurements, where the standard deviation of log(S
mol−1 dm−3) can reach 0.5.54 Another potential issue is the
uneven distribution of data points across solvents in BigSolDB
as both the number of measurements per solvent and the
diversity of solutes in each solvent vary substantially. Conse-
quently, the development of quantitatively accurate organic
solubility models is challenging. However, we hypothesize that
an ML model should be capable of capturing the solubility
3036 | Digital Discovery, 2025, 4, 3031–3042
trends, that is, being able to rank the solvents from best to
worst.

Thirty molecules were selected for a case study analysis from
BigSolDB. These molecules were chosen through stratied
sampling, which was based on the log(P) (logarithm of the
octanol–water partition coefficient) and aliphatic ratio of the
molecules to ensure a representative distribution of lip-
ophilicity and aromaticity among the molecules. Because our
experimental focus is on small molecules, before sampling we
lter large molecules with the number of non-hydrogen atoms
exceeding een. Additionally, only molecules with at least
seven solvents were included to ensure our case studymolecules
span a diverse set of solvents. For example, if a molecule has
solubility data for only four solvents, the predictions lack both
chemical diversity and reliable ranking assessment by the
model. Stratied sampling was performed using a total of 16
two-dimensional bins, formed by combining four bins for log(P)
and four bins for the aliphatic ratio. The number of bins was
determined based on Sturges' rule.55 We note that the number
of solvents available for each molecule varies, as this is inherent
to the BigSolDB dataset. For each case study molecule, a new
LGBM model is trained on GC-MACCS features to test its
generalization performance. Two metrics are used to assess the
performance of the model. RMSE is used to determine how far
the solubility prediction is from experimental values. We used
Kendall's Tau56 to quantify the ability of the model to accurately
rank the solvents from best to worst. The value range of this
metric is from 0 to 1, where the value of zero means that ranking
lists are identical, and the value of one means that ranking lists
are complete opposites.

As an example of this analysis, we predict the ve best
solvents for two molecules—maleic anhydride (Fig. 4a) and
oxindole (Fig. 4b). While only the ve best solvents are shown,
the reported RMSE values and the values of Kendall's Tau were
obtained for the set of all organic solvents. The ranked solvents
are shown for all thirty molecules in Fig. S3 and the distribution
of RMSE values and Kendall's Tau for those molecules are
shown in Fig. 4c. The analysis reveals that while the RMSE
values can be non-ideal, the model is able to predict the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Case study of organic solubility predictions for maleic anhydride and oxindole. The five solvents with the highest solubility values are
shown for (a) maleic anhydride and (b) oxindole along with their predicted solubility values, while (c) shows the distribution of the Kendall's Tau
and RMSE values obtained for studied molecules, with maleic anhydride and oxindole emphasized as red dots. Data points were overlaid onto
kernel density estimates, which portray the two-dimensional distribution of data points. On the top and on the right of the plot, the distributions
of Kendall's Tau and RMSE values, respectively, are shown.
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solubility trends across solvents well, with most of the predic-
tions yielding a Kendall's Tau lower than 0.3 and only one
prediction slightly exceeding 0.5. This metric highlights the
ability of the model to rank the solvents from best to worst and
demonstrates that such models are capable of qualitatively
screening organic solvents. Maleic anhydride is an example
where the model ranked the solvents well (Kendall's Tau of
0.179), but the solubility predictions themselves are not ideal
(RMSE of log(x) = 0.737). Oxindole, on the other hand, is an
example where the model performed worse at ranking the
solvents (Kendall's Tau of 0.364), but the predicted solubility
values were closer to the actual values (RMSE of log(x) = 0.364).
Identifying cosolvents for molecules of interest

Having established that the miscibility threshold obtained from
the aqueous solubility predictions can lter solvents that are
immiscible in water, the next step to identify organic cosolvents
is based on the solubility of the molecules of interest in those
solvents. As case studies, here we focus on limonene and
benzaldehyde because of their relevance as precursors to valu-
able fuels and chemicals. We note that both of these molecules
are liquid at room temperature, whereas the BigSolDB dataset
contains mostly compounds that are solid at room temperature.
This contrast gives the opportunity to explore how well a model
trained on the solubility of solid-state molecules translates to
the solubility of liquid molecules. A pool of 46 organic solvents
was obtained from the BigSolDB dataset for screening. The data
in Fig. 5 shows the aqueous solubility of these organic solvents
and the solubility of limonene (Fig. 5a) and benzaldehyde
(Fig. 5b) in those organic solvents. The previously determined
© 2025 The Author(s). Published by the Royal Society of Chemistry
aqueous miscibility threshold, along with the condence
intervals, is also displayed. Out of all the organic solvents, 15
were found to be above the upper bound of miscibility. The
water-miscible solvents are ranked from best to worst based on
the predicted solubility of the limonene or benzaldehyde in
them. Because we do not expect the solubility in the pure
organic to quantitatively match the solubility in the organic-
water mixture, we use a ranking system rather than the pre-
dicted solubility value. Our approach also assumes that organic
solubility is proportional to solubility in organic solvent/water
mixtures, which as we discuss below is not always the case
due to non-idealities in mixing. The organic solubility predic-
tions of limonene and benzaldehyde in the water-miscible
organic solvents are given in Table S7. To test our predictions,
we experimentally investigated the solubility of limonene and
benzaldehyde in organic solvent/water mixture systems. Data
points marked in blue (Fig. 5) are the organic solvents that we
selected for experimental validation. We selected the solvents
that are within the miscible area, commercially available, and to
represent a distribution of their predicted solubility (i.e., not
only the highest ranked organic solvents). We chose the volume
percent of the organic solvent/water mixture systems for
experimental testing as described in the methods section of the
SI. To account for potential composition-dependent effects, we
conducted solubility measurements at two different solvent
compositions. Briey, for a given organic volume percent (V%)
in water the concentration of limonene or benzaldehyde was
increased until the solution became cloudy (i.e., the cloud-point
method).57 Examples of experimental solubility determination
by the cloud-point method are shown in Fig. S4. We found that
80 mM limonene in 75 V% acetic acid/water (Fig. S4a) and
Digital Discovery, 2025, 4, 3031–3042 | 3037
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Fig. 5 Organic solvent selection. Each data point represents a single organic solvent, with the x-axis corresponding to the predicted solubility
value of the (a) limonene and (b) benzaldehyde in the organic solvent, whereas the y-axis corresponds to the aqueous solubility prediction of the
organic solvent. The background color is related to the miscibility of the solvents in water—red indicates immiscible, whereas green indicates
miscible. The small area colored gray represents classification uncertainty and contains solvents that are immiscible in water but have high
solubility in water. The area also contains solvents that were potentially misclassified as immiscible. Solvents that were selected for the
experimental validation study are marked by the large, blue dots, with numbers that correspond to their rank, which is based on the solubility of
limonene or benzaldehyde in those solvents.
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140 mM benzaldehyde in 15 V% acetic acid/water (Fig. S4c)
produced clear solutions, whereas a 20 mM increment in both
limonene (Fig. S4b) and benzaldehyde (Fig. S4d) concentration
gave cloudy solutions. Consequently, we noted the highest
concentration of both limonene and benzaldehyde without any
cloudiness for maximum solubility in the acetic acid/water
mixture as 80 mM and 140 mM, respectively. To account for
the potential variability of the experiment, we conducted a total
of three measurements for each case of molecule of interest and
each V% of organic solvent/water mixture. While for some
mixtures we observed minor variability, for most cases the
observed solubility was the same. The recorded solubility values
are given in Table S8.

The experimental solubility measurements for different
organic volume percents in water for limonene and benzalde-
hyde are shown in Fig. 6. The order of the studied solvents, from
top to bottom, corresponds to their predicted organic solubility
rank from Fig. 5. For limonene, the model accurately predicted
the solubility trends for ethanol, acetic acid, methanol, and
ethylene glycol mixtures in water (Fig. 6a). However, the solu-
bility in the DMA/water mixture is lower than that of the other
organic cosolvents (except for ethylene glycol) for 75 V%
mixtures, despite the model predicting DMA to be the second
best overall organic solvent for limonene. Interestingly, for 90
V% mixtures, the solubility in the DMA mixture is higher than
that in acetic acid, methanol, and ethylene glycol. As discussed
in the methods, we did not observe the solubilization of 20 mM
limonene in 25 V% and 50 V% organic solutions for any of the
solvents tested.

For benzaldehyde, the model correctly predicted the solu-
bility trends for acetic acid, methanol, ethanol and ethylene
glycol mixtures in water (Fig. 6b). However, just like for limo-
nene, DMA was predicted to be the best organic cosolvent for
benzaldehyde, but acetic acid was found to be a slightly better
3038 | Digital Discovery, 2025, 4, 3031–3042
cosolvent for the 25 V% mixture, while the solubility was the
same for the 15 V% mixture. The severity of the error in the
prediction for DMA is much less than in the case of limonene,
as the model correctly predicted that DMA and acetic acid are
better solvents than methanol, ethanol, and ethylene glycol.
However, it is worth noting that the solubility of benzaldehyde
in methanol/water is the same as in ethanol/water, despite the
model predicting methanol to rank 7 and ethanol to rank 12. As
such, a better solubility of benzaldehyde in the methanol/water
mixture would be anticipated.

A possible cause for the deviation of the prediction and the
experimental results, aside from potential inaccuracies in the
model and visual inspection error in experiments, comes from
non-idealities of mixing. A common method to estimate the
solubility of a species in a mixture of two solvents is to use
a weighted average of the solubility in either individual solvent,
such that the solubility in a mixture of any composition of
cosolvents is a linear interpolation between the two pure
solvent's solubilities. However, inmany instances,58 this will not
be the case and solubilities in the mixtures may either be higher
or lower than that predicted by the weighted average. The
observations regarding the solubility of benzaldehyde in acetic
acid/water and DMA/water mixtures highlight the non-linear
relationship between the volume percentage of the cosolvent
and the solubility. The non-linear behavior of the solubility of
limonene in the DMA/water mixture provides additional
evidence of the limitations of our approach. We also note that
the model was trained primarily on the solubility of solid
organic compounds due to availability of data, while both
benzaldehyde and limonene are liquid organic compounds. Not
only does the experimental methodology for determining
solubility differ between solids and liquids, but the nature of
their solubility also varies. In contrast to solid solubility, the
solute phase in liquids oen also contains diffused solvent.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Semi-quantitative measurements of maximum solubility of molecules of interest. Themeasurements were done for (a) limonene in 75 V%
and 90 V% organic solvent/water and (b) benzaldehyde in 15 V% and 25 V% organic solvent/water mixtures. The height of the bar corresponds to
the mean value of the three solubility measurements recorded for the organic solvent/water mixture as indicated on the x-axis. The percentage
of the organic solvent in the mixture is displayed on top of the bar. The y-axis contains the name of the organic solvent. Measurements were
made at room temperature. Insoluble refers to the solubility by the cloud-point method being below 20 mM for limonene and below 80 mM for
benzaldehyde, as described in the methods section. The variance of the measurements is relatively low, and, as such, the error bars are not
shown in the figure, but all the solubility measurements are given in Table S8. The low variance is due to the measurements being made in
relatively large increments of 20 mM via the cloud-point method.
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Although the organic solubility model was shown to perform
well in terms of distinguishing between good and poor solvents,
it is important to acknowledge that, while having most of the
Kendall's Tau values below 0.3 indicates good screening abili-
ties, it does not mean that the model is able to perfectly predict
the rank of the solvent, as that would correspond to Kendall's
Tau values closer to zero.
Conclusions

We developed an ML workow for organic cosolvent identi-
cation. Creating the ML workow involved training two inde-
pendent ML models, one for each of the two solubility datasets:
AqSolDB (aqueous solubility) and BigSolDB (organic solubility).
We demonstrated strong cross-validation and testing perfor-
mance for both solubility models. The generalizability of the
organic solubility model was further assessed on unseen
solutes. We demonstrated that, while the organic solubility
model struggles with quantitative solubility predictions, it
qualitatively predicts solubility trends. As such, the organic
solubility model can distinguish between good and poor
organic solvents.

Comparison between our ML workow predictions and
experimental results showed that while the ranking of solvents
varied slightly between compositions, the differences were not
substantial. The workow accurately predicted solubility trends
for mixtures of water with ethanol, acetic acid, and ethylene
glycol. However, it overestimated the solubilities of limonene in
N,N-dimethylacetamide (DMA) and benzaldehyde in methanol.
These results demonstrate that while the approach of using two
stand-alone ML models effectively screens for miscible organic
solvents and distinguishes between good and poor cosolvents, it
struggles with accurately ranking them. Beyond model errors,
© 2025 The Author(s). Published by the Royal Society of Chemistry
this limitation also stems from our assumption of a linear
correlation between solubility in cosolvent-water mixtures and
solubility in pure cosolvents, which does not account for non-
idealities in solubility behavior within organic/water mixtures.
Additionally, since the organic solubility model was trained on
mostly solid solutes, its performance may be less reliable for
liquid solutes like limonene and benzaldehyde, as the physi-
cochemical interactions governing solubility can differ signi-
cantly between solid and liquid phases.
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hyperparameters; and feature importance analysis. See DOI:
https://doi.org/10.1039/d5dd00134j.
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